青岛版九年级上学期期末数学测试题及参考答案
青岛版九年级上学期期末数学测试题及参考答案
青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A. 圆柱B. 正方体C. 圆锥D. 长方体2..顺次连结等腰梯形各边中点得到的四边形是()A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是A.B.C.D.4. 根据下列表格的对应值:02=++c bx ax 的范围是A . 3<x <3.23B . 3.23<x <3.24C . 3.24<x <3.25D .3.25 <x <3.26 5. 下列函数中,属于反比例函数的是 A 、3x y = B 、13y x=C 、52y x =-D 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A .2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x7. 对于反比例函数2y x=,下列说法不正确...的是 A .点(-2,-1)在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点9. 一元二次方程2560--=的根是x xA、x1=1,x2=6B、x1=2,x2=3C、x1=1,x2=-6D、x1= -1,x2=610. 如果矩形的面积为6cm2,那么它的长y cm与宽x cm 之间的函数关系用图象表示大致A B C D11. 顺次连结等腰梯形各边中点得到的四边形是A、矩形B、菱形C、正方形D、平行四边形12. 如图,△ABC中,∠A=30°,∠C=90° AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是Array A、AD=DBB、DE=DCC、BC=AED、AD=BC一、选择题(每小题3分,共36分)填写最后结果,每小题填对得3分)13.在“W el i k e m a t h s.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为:.18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是 cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积;三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。
青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为( )A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.2、如图,AB是⊙O直径,弦CD⊥AB于点E.若CD=6,OE=4,则⊙O的直径为()A.5B.6C.8D.103、如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°4、如图,在Rt△ABC中,∠ABC=90°,AB= ,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A. B. C. D.5、如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40°B.50°C.80°D.100°6、一元二次方程x2﹣4x=12的根是()A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=67、下列方程是一元二次方程的是()A. x2=xB.2 x+1=0C.(x﹣1)x=x2D. x+ =28、如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A.25°B.40°C.50°D.65°9、如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF.把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM.若矩形纸片的宽AB=4,则折痕BM的长为( )A. B. C.8 D.10、下列说法中,正确的是()A.三点确定一个圆B.一组对边平行,另一组对边相等的四边形是平行四边形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形11、有一边长为2的正三角形,则它的外接圆的面积为()A.2 πB.4 πC.4πD.12π12、一元二次方程的一般形式是()A. B. C. D.13、方程的两个根是()A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=0,x2=0 D.x1=1,x2=-114、某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业额的月平均增长率为.根据题意列方程正确的是()A. B. C.D.15、如图,四边形为的内接四边形,已知为,则的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、如果、是一元二次方程的两个根,则________.17、若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是________cm18、如图,六边形ABCDEF为⊙O的内接正六边形,若⊙O的半径为,则阴影部分的面积为________ .19、关于x的方程(m-4)x︱m︱-2+(m+4)x+2m+3=0,当m________时,是一元二次方程;20、如图,点P是内一点,过点P分别作直线平行于的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,9和49.则△ABC的面积是________.21、如图,点分别是以为直径的半圆上的三等分点,若阴影部分的面积是,则弧的长为________.22、已知是关于x的方程的两个根,且,则m的值是________.23、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为________,线段O1O2的长为________.24、⊙O的半径为1,弦AB= ,点C是圆上异于A、B的一动点,则∠ACB=________.25、方程x(x﹣2)=﹣(x﹣2)的根是________ .三、解答题(共5题,共计25分)26、解方程x2+6x+1=0.27、(0,).(Ⅰ)求抛物线的解析式.(Ⅱ)抛物线与轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分,若存在,求出点Q的运动速度;若不存在,请说明理由.(Ⅲ)在(Ⅱ)的前提下,过点B的直线与轴的负半轴交于点M,是否存在点M,使以A、B、M为顶点的三角形与相似,如果存在,请直接写出M的坐标;若不存在,请说明理由.28、如图,D、E分别是△ABC的边AB、AC上的点,AB=9,BD=7,AC=6,CE =3,求证:△ADE∽△ACB.29、如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.30、已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.参考答案一、单选题(共15题,共计45分)2、D3、B4、A5、A6、B7、A8、B9、A10、D11、C12、D13、B14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
(名校卷)青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在矩形中,,,AC是对角线,点E在线段BC上,连结AE,将沿AE翻折,使得点B的对应点F恰好落在AC上,点G在射线CD上,连接EG,将沿EG翻折,使得点C的对应点H恰好落在EF所在直线,则线段EG的长度为()A. B. C. D.2、在△ABC中,D、F、E分别在边BC、AB、AC上一点,连接BE交FD于点G,若四边形AFDE是平行四边形,则下列说法错误的是()A. B. C. D.3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是A.AD=BDB.AF=BFC.OF=CFD.∠DBC=90°4、如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长为10米,斜坡AB的坡度i=1:,则河堤高BE等于( )米A. B. C.4 D.55、如图,AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB= ,BD=5,则OH的长度为()A. B. C.1 D.6、如图,△ABC和△DEF都是等腰直角三角形,∠ACB=∠EFD=90°,△DEF的顶点E与△ABC的斜边AB的中点重合.将△DEF绕点E旋转,旋转过程中,线段AC与线段EF相交于点Q,射线ED与射线BC相交于点P,线段ED与AC交于点M.若AQ=4,PB=18,则MQ的长为()A. B.5 C.4 D.7、下列几个命题中正确的有()(1)四条边相等的四边形都相似;(2)四个角都相等的四边形都相似;(3)三条边相等的三角形都相似;(4)所有的正六边形都相似。
A.1个B.2个C.3个D.4个8、如图,⊙O 的半径为6,AB为弦,点 C 为的中点,若∠ABC=30°,则弦 AB 的长为()A. B.6 C. D.9、已知两个五边形相似,其中一个五边形的最长边为20,最短边为4,另一个五边形的最短边为3,则它的最长边为()A.15B.12C.9D.610、关于的方程有两个相等的实数根.则反比例函数的图象在()A.第一象限B.第二象限C.第三象限D.第四象限11、如图,正方形ABCD的边长AB=4,分别以点A、B为圆心,AB长为半径画弧,两弧交于点E,则CE弧的长是()A. B.π C. D.12、关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且13、已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:①= ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1B.2C.3D.414、如图,在中,D在AC边上,,O是BD的中点,连接AO并延长交BC于E,则()A.1:2B.1:3C.1:4D.2:315、如图,已知第一象限内的点A在反比例函数 y=的图象上,第二象限内的点B在反比例函数 y =的图象上,且OA⊥OB,tanA=,则k的值为A.-3B.-C.-6D.-2二、填空题(共10题,共计30分)16、如图,AB是半圆的直径,O是圆心,,则∠ABC=________°.17、已知(x2+y2+1)2=81,则x2+y2=________18、在实数范围内定义一种运算“*”,其规则为a*b=ab-a,根据这个规则,方程(x-1)*x=0的解为________ .19、如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为________.20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC 于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心;④AP•AD=CQ•CB.其中正确的是________(写出所有正确结论的序号).21、如图,点A、B、C在O0上,切线CD与OB的延长线交于点D.若∠A=30°,CD= ,则⊙O的半径长为________.22、如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.23、母线长为3,底面圆的直径为2的圆锥的侧面积为________.24、已知一元二次方程x2 -5x-1=0的两根为x1, x2,则x1+x2=________.25、请写一个两根分别是﹣3和2的一元二次方程________.三、解答题(共5题,共计25分)26、如图,在Rt△ABC中,∠C=90°,BC=8,tanB= ,点D在BC上,且BD=AD,求AC的长和cos∠ADC的值.27、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x > 40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?28、如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)29、如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A、B、C在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin65°≈0.9063,cos65°≈0.4226,tan65°≈2.1445)30、关于x的一元二次方程,其根的判别式的值为1,求m的值及这个方程的根.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、A5、D6、B7、B8、D9、A10、A11、A12、D13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、。
青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在□ABCD中,是上一点,且,与交于点,若的面积是1 ,则□ABCD的面积是:( )A.16.5B.17.25C.17.5D.18.752、如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1B.C.2D.23、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=4,CD=1,则EC的长为( )A. B. C. D.44、若cosα=,则锐角α的大致范围是()A.0°<α<30°B.30°<α<45°C.45°<α<60° D.0°<α<90°5、一元二次方程x2+3x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根6、如图,⊙O是△A BC的外接圆,∠OCB=40°则∠A的度数等于( )A.60°B.50°C.40°D.30°7、如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2B.C.π﹣4D.8、如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A. B. C. D.9、已知x1, x2是关于x的方程x2-(2m-2)x+(m2-2m)=0的两根,且满足x1•x2+2(x1+x2)=-1,那么m的值为()A. 或3B. 或1C.D.110、如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P 分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是()A.2B.4C.6D.811、如图,AC与BD相交于点E,AD∥BC.若AE=2,CE=3,AD=3,则BC的长度是()A.2B.3C. 4.5D.612、下列一元二次方程中,有两个相等实数根的是()A. ﹣8=0B. 2 ﹣4x+3=0C. 9 +6x+1=0D.5x+2=13、若x1, x2是一元二次方程x2+4x﹣2016=0的两个根,则x1+x2﹣x1x2的值是()A.﹣2012B.﹣2020C.2012D.202014、已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0B.1C.-1D.215、如图,正方形的边长为,在正方形外,,过作于,直线,交于点,直线交直线于点,则下列结论正确的是()①;②;③;④若,则A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则k的取值范围是________.17、用含30°、45°、60°这三个特殊角的四个三角比及其组合可以表示某些实数,如:可表示为=sin30°=cos60°=tan45°•sin30°=…;仿照上述材料,完成下列问题:(1)用含30°、45°、60°这三个特殊角的三角比或其组合表示,即填空:________=________=________ =…;(2)用含30°、45°、60°这三个特殊角的三角比,结合加、减、乘、除四种运算,设计一个等式,要求:等式中须含有这三个特殊角的三角比,上述四种运算都至少出现一次,且这个等式的结果等于1,填空:1=________ .18、已知是一元二次方程()的一个根,则另一根是________.19、若关于x的方程x2+5x+m=0的两个根分别为为x1, x2,且=1,则m=________.20、如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO 于点P,则∠P的度数为________.21、如图,的顶点都是正方形网格中的格点,则等于________.22、在直角三角形ABC中,是AB的中点,BE平分交AC于点E连接CD交BE于点O,若,则OE的长是________.23、⊙O的半径为10cm,A、B、C三点到圆心O的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在________;点B在________;点C在________.24、已知一个扇形的圆心角为45°,扇形所在圆的半径为4cm,则这个扇形的面积为________.25、如果x1, x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=﹣,x1x2= ,这就是一元二次方程根与系数的关系(韦达定理).利用韦达定理解决下面问题:已知m与n是方程x2﹣5x﹣25=0的两根,则+=________.三、解答题(共5题,共计25分)26、解方程:x2+3x﹣2=0.27、如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=60°,∠BEQ=45°;在点F处测得∠AFP=45°,∠BFQ=90°,EF=2km.(1)判断AB、AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离(结果保留根号).28、某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,部分),在起点处测得大楼部分楼体的顶端点的仰角为,底端点的仰角为,在同一剖面沿水平地面向前走20米到达处,测得顶端的仰角为(如图②所示),求大楼部分楼体的高度约为多少米?(精确到1米)(参考数据:,,,,)29、周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽.测量时,他们选择河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点,共线.已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.30、如图是某路灯在铅垂面内的示意图,灯柱的高为米,灯柱与灯杆的夹角为,路灯采用锥形灯罩,在地面上的照射区域的长为米,从两处测得路灯A的仰角分别为和,且,求灯杆的长度.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、D6、B7、A8、A9、B10、D11、C12、C13、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、29、。
青岛版九年级上册数学期末测试卷及含答案精编(全国通用)
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是⊙O的内接四边形,点E是DC延长线上一点,且CB=CE,连接BE,若∠E=40°,则∠A的度数为()A.90°B.100°C.110°D.80°2、某化肥厂今年一月份某种化肥的产量为20万吨,通过技术革新,产量逐月上升,第一季度共生产这种化肥95万吨,设二、三月份平均每月增产的百分率为x,则可列方程()A.20(1+x)2=95B.20(1+x)+20(1+x)2=95C.20+20(1+x)+20(1+x)2=95D.20(1+x)2=95-203、设x1, x2是一元二次方程-2x-3=0的两根,则=()A.6B.8C.10D.124、一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm,现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张5、已知圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A.60πcm 2B.45πcm 2C.30πcm 2D.15πcm 26、若方程x2+ax﹣2a=0的一根为1,则a的取值和方程的另一根分别是()A.1,﹣2B.﹣1,2C.1,2D.﹣1,﹣27、汽车刹车后行驶的距离s(单位:米)与行驶的时间t(单位:秒)的函数关系式是s=15t-6t2,那么汽车刹车后几秒停下来?()A.2B.1.25C.2.5D.38、平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数y=-图象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q 为顶点的三角形与△OAB相似,则相应的点P共有()A.1个B.2个C.3个D.4个9、若关于x的一元二次方程kx2-4x+3=0有实数根,则k的非负整数值是()A.1B.0,1C.1,2D.1,2,310、方程的解是()A. B. C. D.11、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A. B. C. D.12、如图,在中,点,分别在,上,,,若,,则线段的长为()A. B. C. D.513、下列运算结果正确的是()A.3a 3•2a 2=6a 6B.(﹣2a)2=﹣4a 2C.tan45°=D.cos30°=14、现有一个圆心角为90°,半径为10的扇形纸片,用它恰好卷成一个圆锥的侧面(接缝忽略不计),则该圆锥的底面半径为()A.5B.3.5 C.2.5D.215、用配方法解方程,配方后的方程是()。
青岛版九年级数学上册期末检测试卷含答案
青岛版九年级数学上册期末检测试卷含答案一、单选题1.如图,正五边形ABCDE的边长为2,连结AC,AD,BE,BE分别与AC和AD相交于点F,G,连结DF,给出下列结论:①∠FDG=18°;②FG=3-;③(S四边形CDEF)2=9+2;④DF2-DG2=7-2.其中结论正确的个数是()A.1B.2C.3D.42.如图是一个十字路口,O是两条公路的交点,点A,B,C,D表示的是公路上的四辆车.若OC=8m,AC=17m,AB=5m,BD=10m,则C,D两辆车之间的距离为()A.5m B.4m C.3m D.2m3.如图所示,在△ABC中,cos B=,sin C=,BC=7,则△ABC的面积是( )A.B.12C.14D.214.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.5.在半径为12cm的圆中,垂直平分半径的弦长为( )A.cm B.27 cm C.cm D.cm6.方程左边配成一个完全平方式后,所得到的方程是()A.B.C.D.7.已知⊙O的直径为6cm,且点P在⊙O内,则线段PO的长度(范围)()A.小于6cm B.6cm C.3cm D.小于3cm8.“行千里,致广大”是重庆人民向大家发出的旅游邀请.如图,某建筑物上有一个旅游宣传语广告牌,小亮在处测得该广告牌顶部处的仰角为,然后沿坡比为的斜坡行走米至处,在处测得广告牌底部处的仰角为,已知与水平面平行,与垂直,且米,则广告牌顶部到的距离为()(参考数据:,,)A.B.C.D.9.在坡度为的斜坡上,一个人从点出发向上运动到点,若,则此人升高了( )m.A.B.C.D.10.如图,扇形纸扇完全打开后,外侧两竹条AB、AC夹角为120°,AB的长为30㎝,贴纸部分BD的长为20㎝,则贴纸部分的面积为()A.㎝B.㎝C.800㎝D.㎝11.如图,圆O的半径为6,点A、B、C在圆O上,且∠ACB=45°,则弦AB的长是A.B.6 C.D.512.cos30°=( )。
【新】青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于()A.﹣2B.2C.﹣2或2D.02、要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为( )A.x(x﹣1)=30B.x(x+1)=30C. =30D. =303、已知Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中,正确的是()A. B. C. D.4、已知矩形中,,,下列四个矩形相似的是()A. B. C. D.5、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.20°D.40°6、在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC 的值为 ( )A. B. C. D.7、一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,且最短边长为6,则最长边长为()A.18B.12C.24D.308、如图,在△ABC中,D、E分别为AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为()A. B. C. D.49、若关于x的一元二次方程2x2﹣2x+3m﹣1=0有两个实数根x1、x2,且x1x2>x1+x2﹣4,则实数m的取值范围是()A.m>﹣B.m≤C.m<﹣D.﹣<m≤10、如图,AB为⊙O的切线,切点为B,连接AO,OA与⊙O交于点C,BD为⊙O 的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为()A. B. C. D.11、关于x的一元二次方程kx2+2x-1=0有两个不相等实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠012、如图,⊙O的直径CD过弦EF的中点G,∠DCF=18°,则弧DE的度数等于()A.72°B.54°C.36°D.18°13、一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是18°B.斜坡AB的坡度是tan18° C.AC=2tan18°米 D.AB= 米14、已知一个直角三角形的两条直角边恰好是方程2x2﹣9x+8=0的两根,则此三角形的面积为()A.1B.2C.3D.415、若m、n是方程的两个实数根,则的值为()A.0B.2C.-1D.3二、填空题(共10题,共计30分)16、如图,若内一点满足,则称点P为的布罗卡尔点,三角形的布罗卡尔点是法国数学教育家g雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知中,,,为的布罗卡尔点,若,则________.17、已知关于x的方程(k-1)x2-2kx+k-3=0有两个不相等的实数根,则k的取值范围是________。
青岛版九年级上册数学期末测试卷及含答案(实用)(完美版)
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若0°<α<90°,且4sin2α﹣3=0,则α等于()A.30°B.45°C.60°D.90°2、关于x的一元二次方程x2﹣3x+m=0的两实数根分别为x1、x2,且x1+3x2=4,则m的值为()A. B. C. D.33、若△ABC~△DEF,它们的面积比为4︰1,则△ABC与△DEF的相似比为()A.2︰1B.1︰2C.4︰1D.1︰44、若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()A.6B.3πC.6πD.12π5、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°6、已知:∠A为锐角,且cosA≥,则()A.0°<∠A≤60°B.60°≤∠A<90°C.0°<∠A≤30° D.30°≤∠A<90°7、方程与方程的所有实数根的和为()A.3B.5C.-2D.08、如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是()A. ﹣B. ﹣C. ﹣D. ﹣9、方程x(x-6)=0的根是()A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=010、公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x 2﹣3x+16=0C.(x﹣1)(x﹣2)=18 D.x 2+3x+16=011、如图,在△ABC中,若DE∥BC,=,DE=4cm,则BC的长为()A.8cmB.12cmC.11cmD.10cm12、若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. 且 D. 且13、圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切14、如图,在⊙O中,弦AB,CD相交于点P,若∠A=55°,∠APD=80°,则∠B 等于( )A.40°B.45°C.50°D.55°15、在Rt△ABC中,斜边AB =4,∠B= 60°,将△ABC绕点B按顺时针方向旋转60°,顶点C运动的路线长是()A. B. C. π D.二、填空题(共10题,共计30分)16、计算:cos60°+()0=________17、如图所示,在▱ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为________.18、已知x1, x2是方程2x2﹣5x﹣1=0的两个根,则x1+x2的值是________.19、如图半径为6的⊙O中,弦AB=8,则圆心O到AB的距离为________.20、如图,将弧长为6π,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计),则圆锥形纸帽的高是________.21、如图,在半径为3的⊙O中,Q、B、C是⊙O上的三个点,若∠BQC=36°,则劣弧BC的度数是________ .22、如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k= ________.23、在△ABC中,AB=10,AC=8,B为锐角且,则BC=________.24、如图,四边形是三个正方形、________25、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为2 ,则a的值是________三、解答题(共5题,共计25分)26、计算:4sin45°+3tan230°- .27、如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.28、如图,在Rt△ABC中,,D是AB的中点,过D点作AB的垂线交AC 于点E,若BC=6,sinA=,求DE的长.29、如图,在RT△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB 长为半径作⊙D.求证:AC与⊙D相切.30、在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、C5、D6、A7、A8、A9、B10、C12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
青岛版九年级上册数学期末测试卷【及含答案】
青岛版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、一元二次方程=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根 D.无法确定根的情况2、若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k 的取值范围是()A.k<5B.k>5C.k≤5,且k≠1D.k<5,且k≠13、若△ABC∽△DEF ,若∠A=50°,∠B=60°,则∠F的度数是()A.50°B.60°C.70°D.80°4、如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A.πB. πC.2πD. π5、下列方程中,有两个不相等实数根的是()A. B. C. D.6、已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2-2x+b=0的根的情况是()A.有两个正根B.有两个负根C.有一个正根一个负根D.没有实数根7、如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20°B.40°C.70°D.80°8、已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A,C,D三点至少有一点在⊙B内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是( )A.r>15B.15<r<20C.15<r<25D.20<r<259、如图,四边形内接于,延长交于点,连接.若,,则的度数为()A.50°B.60°C.70°D.80°10、如图,在中,,点是的中点,连接,将沿翻折得到与交于点,连接.若,则点到的距离为()A. B. C. D.11、若方程有两个不等的实数根,则m的取值范围是( )A.m=1B.C. 且D. 且12、方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定13、若两个相似三角形的周长之比为1:4,则它们的面积之比为()A.1:2B.1:4C.1:8D.1:1614、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米15、如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD 绕AB所在直线旋转一周所得圆柱的侧面积为( )A.10πB.4πC.2πD.2二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,sinA=,则tanA=________.17、扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为________cm.18、如图,在△ABC中,AB=AC,点A在y轴上,点C在x轴上,BC⊥x轴,tan∠ACO=.延长AC到点D,过点D作DE⊥x轴于点G,且DG=GE,连接CE,反比例函数y=(k≠0)的图象经过点B,和CE交于点F,且CF:FE=2:1.若△ABE面积为6,则点D的坐标为________.19、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m-4,则=________.20、已知x1, x2是方程x2+6x+3=0的两实数根,则+ 的值为________.21、如图,要使△ABC与△D BA相似,则只需添加一个适当的条件是________ (填一个即可22、如图,连接正十边形的对角线AC与BD交于点E,则∠AED=________°.23、如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan∠ACG=________.24、设x1, x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x 1+x2=________,m=________.25、如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为________.三、解答题(共5题,共计25分)26、解方程:.27、如图所示,△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,若AC=.求线段BD的长.28、如图所示,某施工队要测量隧道长度,米,,施工队站在点D处看向B,测得仰角,再由D走到处测量,米,测得仰角为,求隧道长.(,,).29、光华机械厂生产某种产品,1999年的产量为2000件,经过技术改造,的产量达到2420件,平均每年增长的百分率是多少?30、如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B处开始航行多少小时,离观测点A的距离最近?(计算结果用根号表示,不取近似值).参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、A5、D6、C7、C9、B10、D11、D12、A13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
2022-2023年青岛版初中数学(初三)九年级上册期末考试综合检测试卷及部分答案(三套)
2022-2023年青岛版数学九年级上册期末考试测试卷及答案(一)1.如图,已知点A(0,4),A(4,0),点A为线段AA的中点,且AA⊥AA,AA⊥A轴,则点A的坐标为( )A. (4,3)B. (4,2)C. (4,1.5)D. (4,1)2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21 3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.54.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1 8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD =30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为米时,才能使喷出的水流不至于落在池外.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由个小正方体组成.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有个.所以:如图3,平行四边形共有个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=.24.(12分)如图,在矩形ABCD中,AB=6cm,BC=8cm.如果点E由点B出发沿BC方向向点C匀速运动,同时点F由点D出发沿DA方向向点A匀速运动,它们的速度分别为2cm和1cm,FQ⊥BC,分别交AC、BC于点P和点Q,连接EF、EP,设运动时间为t(s)(0<t<4)(1)连接DQ,若四边形EQDF为平行四边形,则t的值是;(2)设△EPF的面积为ycm2,求y与t的函数关系式;(3)运动时间t为何值时,EF⊥AC?参考答案:1.略2.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5B.(x+2)2=9C.(x﹣2)2=9D.(x﹣2)2=21【分析】两边配上一次项系数一半的平方可得.【解答】解:∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选:B.3.如图,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子DA恰好与甲影子CA在同一条直线上,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙两同学相距()米.A.1B.2C.3D.5【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设两个同学相距x米,∵△ADE∽△ACB,∴,∴,解得:x=1.故选:A.4.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【分析】根据正切函数可求小河宽P A的长度.【解答】解:∵P A⊥PB,PC=100米,∠PCA=35°,∴小河宽P A=PC tan∠PCA=100tan35°米.故选:C.5.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.6.如图,在正方形ABCD中,AB=2,E是AD中点,BE交AC于点F,DF的长为()A.B.C.D.【分析】先在Rt△ABE中利用勾股定理求出BE=,再证明△AFE∽△CFB,根据相似三角形对应边成比例得出BF=BE=,然后证明△ADF≌△ABF,即可得出DF =BF=.【解答】解:∵在正方形ABCD中,AB=2,E是AD中点,∴∠BAE=90°,AE=AD=AB=1,∴BE==.∵AE∥BC,∴△AFE∽△CFB,∴==,∴BF=2EF,∵BF+EF=BE,∴BF=BE=.在△ADF与△ABF中,,∴△ADF≌△ABF,∴DF=BF=.故选:C.7.如图,二次函数y=ax2+c的图象与反比例函数y=的图象相交于A(﹣,1),则关于x的不等式ax2+c>的解集为()A.x<﹣B.x>﹣C.x<﹣或x>0D.﹣<x<1【分析】把点P的纵坐标代入反比例函数解析式求出点P的坐标,再根据函数图象写出抛物线在双曲线上方部分的x的取值范围即可.【解答】解:∵点A横坐标为﹣,∴不等式ax2+c>的解集是x<﹣或x>0.故选:C.8.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应如下表所示:x…﹣10123…y…﹣23676…下列说法:①abc>0;②a+b+c=6;③b2﹣4ac>0;④当y<6时,x<1;⑤关于x的方程ax2+bx+c=3的解是x1=0,x2=4.正确的有()个.A.2B.3C.4D.5【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,本题得以解决.【解答】解:由表格可得,该函数的对称轴是直线x==2,∴该函数的顶点坐标是(2,7),有最大值,开口向下,∴a<0,∵x=0时,y=c=3,∴c>0,∵﹣=2,∴b=﹣4a>0,∴abc<0,故①错误;∵图像经过点(1,6),∴a+b+c=6,故②正确;∵由表格可得,抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;由表格可得,当y<6时,x<1,故④正确;∵函数的对称轴为直线x=2,∴点(0,3)关于对称轴的对称点为(4,3),∴关于x的方程ax2+bx+c=3的解是x1=0,x2=4.故⑤正确;故选:C.二、填空题(本题满分18分,共6道小题,每小题3分)9.若关于x的一元二次方程x2+4x+k=0有实数根,则k的取值范围是k≤4.【分析】根据判别式的意义得到△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故答案为:k≤4.10.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是(﹣1,2)或(1,﹣2).【分析】利用位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,把A点的横纵坐标分别乘以或﹣即可得到点A′的坐标.【解答】解:∵以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(﹣2×,4×)或[﹣2×(﹣),4×(﹣)],即点A′的坐标为:(﹣1,2)或(1,﹣2).故答案为:(﹣1,2)或(1,﹣2).11.已知函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),则+的值为﹣.【分析】根据函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),得出ab=﹣6,a+b =1,再把要求的式子进行变形,然后代值计算即可.【解答】解:∵函数y=﹣与y=﹣x+1的图象的交点坐标是(a,b),∴b=﹣,b=﹣a+1,∴ab=﹣6,a+b=1,∴+==﹣;故答案为﹣.12.如图,矩形ABCD的对角线交于点O,点E是矩形外一点,CE∥BD,BE∥AC,∠ABD=30°,连接AE交BD于点F、连接CF.若AC=8,则线段CF的长为2.【分析】根据平行四边形的判定定理得到四边形OBEC是平行四边形,根据矩形的性质得到OB=OC,根据菱形的判定定理即可得到平行四边形OBEC是菱形,可得BE=OC =AO,由“AAS”可证△AOF≌△EBF,可得BF=OF,推出△OBC是等边三角形,根据等边三角形的性质得到CF⊥OB,解直角三角形即可得到结论.【解答】解:(1)∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是矩形,∴AC=BD,OB=BD,OC=AC,∴OB=OC,∴平行四边形OBEC是菱形;∴OC=BE=OA,∵BE∥AC,∴∠OAF=∠BEF,在△AOF与△EBF中,,∴△AOF≌△EBF(AAS),∴OF=BF,∵AC=8,∴BD=8,∴OC=OB=4,∵∠ABD=30°,∴∠OBC=60°,∴△OBC是等边三角形,∴CF⊥OB,∴CF=OC=2.故答案为:2.13.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).A点距离水平面为米,即OA=.如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=ax2+bx+c(x>0),该抛物线的顶点是(2,),那么圆形水池的半径至少为 4.5米时,才能使喷出的水流不至于落在池外.【分析】直接利用顶点式求出二次函数解析式,进而得出a的值,求出答案即可.【解答】解:由题意可得,设抛物线解析式为:y=a(x﹣2)2+,当x=0时,y=,则=a(0﹣2)2+,解得:a=﹣1,故抛物线解析式为:y=﹣(x﹣2)2+,当y=0时,0=﹣(x﹣2)2+,解得:x1=4.5,x2=﹣0.5,故圆形水池的半径至少为4.5米时,才能使喷出的水流不至于落在池外.故答案为:4.5.14.如图是由若干个小正方体组成的.阴影部分是空缺的通道,一直通到对面.这个立体图形由38个小正方体组成.【分析】由题意,阴影部分是空缺的通道,一直通到对面,即中间有重复,因此可分层计数,从前往后分为4层,画出每层的示意图进行计数即可.【解答】解:从前往后分层数,如图所示:共有13+6+6+13=38个,答:这个立体图形由38个小正方体组成.故答案为:38.三、作图题(本题满分4分)15.(4分)尺规作图:如图,已知∠α和线段a,求作:菱形ABCD,使∠DAB=∠α,对角线AC=a.【分析】作∠MAN=α,作∠MAN的角平分线AP,在射线AP时截取AC=a,作线段AC 的垂直平分线交AM于D,交AN于B,连接CD,BC,四边形ABCD即为所求作.【解答】解:如图,四边形ABCD即为所求作.四、解答题:16.(6分)(1)解方程:(x﹣3)2=7x﹣21(2)计算:tan260°﹣2sin30°﹣cos45°.【分析】(1)利用因式分解法求解即可;(2)代入特殊锐角的三角函数值,再计算乘方和乘法,最后计算加减即可.【解答】解:(1)∵(x﹣3)2=7x﹣21,∴(x﹣3)2﹣7(x﹣3)=0,则(x﹣3)(x﹣10)=0,∴x﹣3=0或x﹣10=0,解得x1=3,x2=10;(2)原式=()2﹣2×﹣×=3﹣1﹣1=1.17.(6分)在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?【分析】(1)根据概率公式可得;(2)画树状图列出所有等可能结果,再根据概率公式计算可得;(3)根据大量重复实验时,频率可估计概率列出方程求解可得.【解答】解:(1)∵4个小球中,有1个蓝色小球,∴P(蓝色小球)=;(2)画树状图如下:共有12种情况,摸到的都是红色小球的情况有6种,P(摸到的都是红色小球)==;(3)∵大量重复试验后发现,摸到红色小球的频率稳定在0.9,∴摸到红色小球的概率等于0.9,∴=0.9,解得:x=6.18.(8分)心理学家研究发现,一般情况下,一节课45分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,BC∥x 轴,CD为双曲线的一部分),其中AB段的关系式为y=2x+20.(1)根据图中数据,求出CD段双曲线的关系式;(2)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【分析】(1)分别从图象中找到其经过的点,利用待定系数法求得函数的解析式即可;(2)分别求出注意力指数为32时的两个时间,再将两时间之差和20比较,大于20则能讲完,否则不能.【解答】解:(1)∵AB段的关系式为y=2x+20,∴当x=10时,y=40,∴点B的坐标为(10,40),点C的坐标为(24,40),设C、D所在双曲线的解析式为y2=,把C(24,40)代入得,k=960,∴y=(x>24).(2)令y=2x+20=32,∴32=2x+20,∴x=6令y==32,∴x=30,∵30﹣6=24>20,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.19.(6分)小明家所在居民楼的对面有一座大厦AB=74米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=74米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,tan37°=,则=,∴AD=x;在Rt△BCD中,tan48°=,则=,∴BD=x.∵AD+BD=AB,∴x+x=74,解得:x=40,答:小明家所在居民楼与大厦的距离CD的长度是40米.20.(8分)学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【分析】根据题意首先表示出每件商品的价格,进而得出购买商品的总钱数,进而得出等式求出答案.【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,根据题意可得:x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,答:王老师购买该奖品的件数为40件.21.(8分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.【分析】(1)由平行四边形的性质可得OB=BC,由等腰三角形的性质可得出BE⊥AC;(2)由直角三角形的性质和三角形中位线定理可得到EG=EF,根据平行四边形的性质和菱形的判定定理即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴BO=BD,即BD=2BO,又∵BD=2BC,∴OB=BC,又∵点E是OC的中点,∴BE⊥AC;(2)∵E、F分别是OC、OD的中点,∴EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AG=AB,∴又∵平行四边形ABCD中,AB=CD,AB∥CD,∴EG=EF=AG,EF∥AG,∴四边形AGEF是菱形.22.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?【分析】(1)根据表格中的x、y的值利用待定系数法确定一次函数的解析式即可;(2)根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由表格数据可推想函数表达式为一次函数,设:函数y与x的表达式为:y=kx+b,将(30,500),(40,400)代入表达式得:k=﹣10,b=800.函数关系式为:y=﹣10x+800;(2)工艺品每天获得的利润为W元,由题意得:W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000,∴当x=50时,每天获得的利润最大,为9000元.23.(10分)问题提出:将一个边长为n(n≥2)的菱形的四条边分别n等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?【问题探究】要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=1×(2+1)个.为便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=1×(2+1)个.即:第二行平行四边形总共有2×(2+1)个.所以如图1,平行四边形共有2×(2+1)+1×(2+1)=(2+1)(2+1)=(2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有2个,边长为2的菱形共有12个.所以:如图1,菱形共有22+12=5=×2×3×5个.探究二:将一个边长为3的菱形的四条边分别3等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.(2)第二行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第二行平行四边形总共有2×(3+2+1)个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.底在第三行平行四边形还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=1×(3+2+1)个.即:第三行平行四边形总共有3×(3+2+1)个.所以:如图2,平行四边形共有3×(3+2+1)+2×(3+2+1)+1×(3+2+1)=(3+2+1)(3+2+1)=(3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第二行平行四边形总共有2×(4+3+2+1)个.(3)模仿上面的探究,写出图3中第三行探究过程;(4)按照以上规律,第四行平行四边形总共有4×(4+3+2+1)个.所以:如图3,平行四边形共有(4+3+2+1)2个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=×4×5×9个.【问题解决】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2,菱形的个数是(用n表示).【实际应用】将一个边长为n(n≥2)的菱形的四条边都n等分,连接对边对应的等分点,得出该菱形被剖分的网格中的平行四边形的个数是225个,则n=5.【拓展延伸】将一个边长为n(n≥2)的菱形的四条边n等分,连接对边对应的等分点,根据上面的规律,得出该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,n 的值=9.【分析】本题是找规律的试题,通过第一行,第二行,第三行,进而推出第四行的规律为4×(4+3+2+1)个,在通过边数得到平行四边形的个数(n+n﹣1+n﹣2+…+1)2,菱形的个数为,再通过找规律得到其他答案.【解答】解:【问题探究】第三行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.底在第三行还包括斜边长为3,底长为1~4的平行四边形,共有4+3+2+1=1×(4+3+2+1)个.即:第三行平行四边形总共有3×(4+3+2+1)个.按照以上规律,第四行平行四边形共有4×(4+3+2+1)个,所以,如图3,平行四边形共有4x(4+3+2+1)+3×(4+3+2+1)+2×(4+3+2+1)+1×(4+3+2+1)=(4+3+2+1)×(4+3+2+1)=(4+3+2+1)2个.【问题解决】将一个边长为n(n>2)的菱形的四条边都几等分,连接对边对应的等分点,根据上面的规律,得出该菱形的补剖分的网格中的平行四边形的个数是(n+n﹣1+n﹣2+…+1)2个,菱形的个数n(n+1)(2n+1)个.根据题意可得,(n+n﹣1+n﹣2+…+1)2=225,n+n﹣1+n﹣2+…+1=15,。
青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知△ABC,AB=BC,以AB为直径的圆交AC于点D,过点D的⊙O的切线交BC于点E.若CD=5,CE=4,则⊙O的半径是()A.3B.4C.D.2、已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x 1x2=0,则a的值是()A.a=1B.a=1或a=﹣2C.a=2D.a=1或a=23、已知方程2x2﹣x﹣1=0的两根分别是x1和x2,则x1+x2的值等于()A.2B.﹣C.D.﹣14、将一个菱形放在2倍的放大镜下,则下列说法不正确的是()A.菱形的各角扩大为原来的2倍B.菱形的边长扩大为原来的2倍C.菱形的对角线扩大为原来的2倍D.菱形的面积扩大为原来的4倍5、已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( ).A.12B.13C.14D.156、在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D 上C.点A在⊙D内D.无法确定7、若,,则以,为根的一元二次方程是()A. B. C. D.8、已知关于x的一元二次方程有两个不相等的实数根,那么m的值为()A. B. C. D.9、已知,在中,,,,作.小亮的作法如下:①作,②在上截取,③以为圆心,以5为半径画弧交于点,连结.如图,给出了小亮的前两步所画的图形.则所作的符合条件的()A.是不存在的B.有一个C.有两个D.有三个及以上10、如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.11、把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是()A. B. C. D.512、按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1 个B.2 个C.3 个D.4 个13、若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m 的值是()A.﹣B.C.﹣或D.114、如图,四边形ABCD是⊙O的内接四边形,若∠B=80°,则∠ADC的度数是()A.60°B.80°C.90°D.100°15、已知弦AB把圆周分成1:5的两部分,则弦AB所对应的圆心角的度数为()。
青岛市九年级上册期末数学试题(含答案)
青岛市九年级上册期末数学试题(含答案)一、选择题1.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º2.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .43.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-4.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=5.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线 B .三条中线 C .三条角平分线D .三条高7.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .238.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2 B .3C .4D .510.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 11.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7C .8D .912.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°14.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3415.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252-B .25-C .251-D .52-二、填空题16.若a b b -=23,则ab的值为________. 17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.18.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.19.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.20.一组数据:2,5,3,1,6,则这组数据的中位数是________.21.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 22.一组数据3,2,1,4,x 的极差为5,则x 为______. 23.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.24.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.25.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.26.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.27.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm . 28.已知234x y z x z y+===,则_______ 29.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.32.(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P ,求证:DP EP BQ CQ=; (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN .33.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.34.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l 3 的“友好”抛物线 l 4 的表达式,并指出 l 3 与 l 4 中y 同时随x 增大而增大的自变量的取值范围;(3)若抛物线 y =a 1(x -m)2+n 的任意一条“友好”抛物线的表达式为 y =a 2(x -h)2+k , 写出 a 1 与a 2的关系式,并说明理由.35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.38.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.39.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°. 故选B. 【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.3.C解析:C 【解析】 【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案. 【详解】解:∵(1)(2)0x x --=, ∴x -1=0或x -2=0, 解得:1x =或2x =. 故选:C. 【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.4.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC ,∴△ADE∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC 的外接圆圆心是△ABC 三边垂直平分线的交点, 故选:A . 【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.D解析:D 【解析】 【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.8.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.9.B解析:B 【解析】 【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可. 【详解】∵这组数据有唯一的众数4, ∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4, ∴中位数为:3. 故选B . 【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.10.D解析:D 【解析】 【分析】根据二次函数的顶点式即可直接得出顶点坐标. 【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5), 故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 11.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.12.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 14.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38. 故选B .【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 18.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 19.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.20.3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中解析:3【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.21.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.22.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.23.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.24..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.25.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.26.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 27.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长. 28.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k来表示x、y、z. 29.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB =5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FHCD=EFDE,∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M 为AF 中点,则OM⊥AF∵六边形ABCDEF 为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r1=3 3a同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.32.(1)证明见解析;(2)①29;②证明见解析.【解析】【分析】(1)易证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出DP EP BQ CQ=;(2)①根据等腰直角三角形的性质和勾股定理,求出BC边上的高22,根据△ADE∽△ABC,求出正方形DEFG的边长23.从而,由△AMN∽△AGF和△AMN的MN边上高26,△AGF的GF边上高22,GF=23,根据 MN:GF等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又DG=GF=EF,得GF2=CF•BG,再根据(1)DM MN ENBG GF CF==,从而得出结论.【详解】解:(1)在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴DP AP BQ AQ=,同理在△ACQ和△APE中,EP AP CQ AQ=,∴DP PE BQ QC=;(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=22,∵DE=DG=GF=EF=BG=CF ∴DE:BC=1:3又∵DE∥BC∴AD:AB=1:3,∴AD=13,DE=23,∵DE边上的高为26,MN:GF=26:22,∴MN:23=26:22,∴MN=29.故答案为:29.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD ∽△EFC , ∴DG BG CF EF=, ∴DG•EF=CF•BG ,又∵DG=GF=EF ,∴GF 2=CF•BG ,由(1)得DM MN EN BG GF FC ==, ∴MN MN DM EN GF GF BG CF =, ∴2()MN DM EN GF BG CF=, ∵GF 2=CF•BG ,∴MN 2=DM•EN .【点睛】 本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.33.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.34.(1)()4,1;(2)4l 的函数表达式为()21412y x =--+,24x ≤≤;(3)120a a +=,理由详见解析【解析】【分析】(1)设x=0,求出y 的值,即可得到C 的坐标,根据抛物线L 3:21(2)12y x =--得到抛物线的对称轴,由此可求出点C 关于该抛物线对称轴对称的对称点D 的坐标; (2)由(1)可知点D 的坐标为(4,1),再由条件以点D 为顶点的L 3的“友好”抛物线L 4的解析式,可求出L 4的解析式,进而可求出L 3与L 4中y 同时随x 增大而增大的自变量的取值范围;(3)根据:抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 也在抛物线L 1上,可以列出两个方程,相加可得(a 1+a 2)(h-m )2=0.可得120a a +=.【详解】解:(1)∵抛物线l 3:21(2)12y x =--, ∴顶点为(2,-1),对称轴为x=2,设x=0,则y=1,∴C (0,1), ∴点C 关于该抛物线对称轴对称的对称点D 的坐标为:(4,1);(2)解:设4l 的函数表达式为()241y a x =-+由“友好”抛物线的定义,过点()2,1- ()21241a ∴-=-+12a ∴=- 4l 的函数表达式为()21412y x =--+ 3l ∴与4l 中y 同时随x 增大而增大的自变量的取值范围是24x ≤≤(3)120a a +=理由如下:∵ 抛物线()21y a x m n =-+与抛物线()22y a x h k =+-互为“友好”抛物线,()()2122k a h m n n a m h k ⎧=-+⎪∴⎨=-+⎪⎩①② ①+②得:()()2210+-=a a m h m h ≠。
青岛版九年级数学上册期末测试题及参考答案
九年级数学试题一、选择题1.下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.在下列命题中,是真命题的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相平分的四边形是平行四边形D .两条对角线互相垂直且相等的四边形是正方形3.如图,矩形ABCD 的两条对角线相交于点O ,602AOB AB ∠==°,,则矩形的对角线AC 的长是( )A .2B .4C .23D .434.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )A .矩形B .直角梯形C .菱形D .正方形5.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =6.正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针旋转90°后,B 点的坐标为( )A.(-2,2)B.(4,1)C.(3,1)D.(4,0)7.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )ODCABA .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠58.2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。
受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( ) A .2200(1%)148a += B .2200(1%)148a -= C .200(12%)148a -=D .2200(1%)148a -=9. 两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是( ) A .相交B .外离C .内含D .外切10.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为( ) A.2 B.22 C.22 D.26 11.弧长等于半径的圆弧所对的圆心角是( ) A.360πB.180πC.90πD.60012.已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 13.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( ) A.点A B.点B C.点C D.点D14.如图,⊙O 内切于△ABC ,切点为D ,E ,F .已知∠B=50°,∠C=60°,•连结OE ,OF ,DE ,DF ,那么∠EDF 等于( )A .40°B .55°C .65°D .70°AB CD MNPP 1M 1N 1 (第13题图)15.如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =12,BD =9,则该梯形的面积是( )A. 30B. 15C. 7.5D. 5416.某校数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是( )17. 若n (0n ≠)是关于x 的方程220x mx n ++=的根,则n m +的值为( ) A 、1 B 、2 C 、-1 D 、-218.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A. y 3<y 1<y 2B. y 2<y 1<y 3C. y 1<y 2<y 3D. y 3<y 2<y 1 19.如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如右图所示,则△ABC 的面积是()94xyOPDC BAA 、10B 、16C 、18D 、2020. 如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点,双曲线为y=x1的图像,利用函数图象判断不等式1kx b x<+的解集为( ) (A)3132x --<或3132x -+>(B)353522x ---+<< (C)31331322x ---+<< (D)3535022x x ---+<<<或二、填空题(本大题共5个小题,满分15分,只要求填写最后结果,每小题填对得3分) 21.方程25)1(2=-x 的解是__________________. 22. 函数31-=x y 的自变量的取值范围是_________________.23.如图:矩形纸片ABCD ,AB =2,点E 在BC 上,且AE=EC .若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .24.如图,正方形ABCD 的边长为1,E 、F 分别是BC 、CD 上的点,且△AEF 是等边三角形,则BE 的长为_________________. 25.如图,同心圆O 中,大圆半径OA 、OB 分别交小圆于D 、C ,OA ⊥OB,若四边形ABCD 的面积为50,则图中阴影部分的面积为____________________. 三、解答题(解答应写出必要的文字说明、证明过程或推演步骤) 26.(本题满分10分)xyOA (-2,-1)B (-3,0)A B C DE第23题图如图,在△ABC 中,∠A 、∠B 的平分线交于点D ,DE ∥AC 交BC 于点E ,DF ∥BC 交AC 于点F .(1)点D 是△ABC 的________心; (2)求证:四边形DECF 为菱形.27. (本题满分11分)如图,利用一面墙(墙的长度不超过45m )当做一边,用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m 2?⑵能否使所围矩形场地的面积为810m 2,为什么?28.(本题满分12分)如图,AB 为⊙O 的直径,PQ 切⊙O 于T ,AC PQ ⊥于C ,交⊙O 于D . 求证:(1)AT 平分∠BAC(2)AT 2=A B ·AC29. (本题满分12分) 已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,在x 轴上求一点P ,使PA PB +最小.AB C D OP T Q (第28题图)九年级数学试题一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 选项 B C B A D D C B A A 题号 11 12 13 14 15 16 17 18 19 20 选项BDBBDADAAD二、填空题:21. x 1=6 x 2 =4-; 22. x >3 ; 23. 4 ; 24. 2-3; 25. 75π 三、解答题: 26.(1) 内. ············································································································· 3分(2) 证法一:连接CD , ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形,…………………………2分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD ,…………………………3分 由DF ∥BC 知∠FDC =∠ECD ,∴ ∠FCD =∠FDC …………………………5分 ∴ FC =FD , ∴ □DECF 为菱形.……………………………………………………………7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH . ∴DH =DI .∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ∴□DECF 为菱形.27.解:⑴设所围矩形ABCD 的长AB 为x 米,则宽AD 为)80(21x -米.………1分依题意,得 ,x x 750)80(21=-∙………………3分即,.x x 01500802=+-解此方程,得 ,x 301= .x 502= ……………5分∵墙的长度不超过45m ,∴502=x 不合题意,应舍去.当30=x 时,.x 25)3080(21)80(21=-⨯=-………6分所以,当所围矩形的长为30m 、宽为25m 时,能使矩形的面积为750m 2.……7分 ⑵不能.因为由,x x 810)80(21=-∙得.x x 01620802=+- 又∵ac b 42-=(-80)2-4×1×1620=-80<0, ∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m 2…………………………………4分 28.(1)连接OT, ∵PQ 切⊙O 于T …………………………………1分 ∴OT ⊥PQ, ∵AC ⊥PQ, ∴OT ∥AC, ∴∠OTA=∠TAC …………………3分∵OA=OT, ∴∠OTA=∠TAO, ∴∠TAO=∠TAC, ∴AT 平分∠BAC ……………..6分. (2)连接BT, ∵AB 为⊙O 直径,∴∠BTA=90°,∴∠BTA=∠TCA=90°……9分 又由(1)知∠BAT=∠TAC,∴△BAT ∽△TAC ……………………………10分, ∴AB AT =ATAC ,∴AT 2=AB ·AC …………………………………………12分. 29.(1)过点A 作AE ⊥ x 轴于E, ∵点A 为OD 中点,∴ AE=21DC= 2 ,OE=21OC=1.5,∴点A 坐标为(1.5,2). 设反比例函数解析式为: xky =,把x=1.5,y=2代入得:k=3, ∴反比例函数解析式为: y=x3………………………… 5分 (2)作点B 关于x 轴的对称点B ’. 连接A B ’交x 轴于点P ……………………7分 把x=3代入y=x3得,y=1, ∴点B 坐标为(3,1)……………………8分 设直线A B ’的解析式为:y kx b =+,由点A 坐标(1.5,2),点B 坐标(3,1)解得:直线A B ’的解析式为:y=-2x+5, …………………………..……………10分把y=0代入y=-2x+5得,x=2.5, ∴点P 坐标为(2.5,0)………………………12分。
青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,⊙O是△ABC的外接圆,∠B=60o, 0P⊥AC于点P,OP=2,则⊙O的半径为()A.4B.6C.8D.122、如图,在平面直角坐标系中,A(0,2 ),动点B,C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A. B. C.4 +6 D.4 -63、下列命题中,正确的有()①平面内三个点确定一个圆;②平分弦的直径平分弦所对的弧;③半圆所对的圆周角是直角;④相等的圆周角所对的弦相等;⑤在同圆中,相等的弦所对的弧相等.A.1个B.2个C.3个D.4个4、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin = ,则该圆锥的侧面积是()A. B.24π C.16π D.12π5、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.66、如图,电灯在横杆的正上方,在灯光下的影子为,,,点到的距离是3m,则点到的距离是()A. m B. C. D.7、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2B.2C.4D.﹣38、如图,已知⊙O的半径为,弦垂足为E,且,则的长为()A. B. C. D.9、已知方程x2﹣2x﹣1=0,则此方程A.无实数根B.两根之和为﹣2C.两根之积为﹣1D.有一根为-1+10、下列命题:①三点确定一个圆;②平分弦的直径平分弦所对的弧;③相等的弦所对的圆心角相等;④在半径为的圆中,的圆周角所对的弧长为.错误的有()个.A. B. C. D.11、一个圆锥的侧面积是底面积的2倍。
则圆锥侧面展开图的扇形的圆心角是()A.120°B.180°C.240°D.300°12、如图中,CA,CD分别切圆O1于A,D两点,CB、CE分别切圆O2于B,E两点.若∠1=60°,∠2=65°,判断AB、CD、CE的长度,下列关系何者正确()A.AB>CE>CDB.AB=CE>CDC.AB>CD>CED.AB=CD=CE13、如图,为安全起见,萌萌拟加长滑梯,将其倾斜角由45°降至30°.已知滑梯AB的长为3m,点D、B、C在同一水平地面上,那么加长后的滑梯AD的长是()A.2 mB.2 mC.3 mD.3 m14、下列说法中正确的是()A.同一平面内,过一点有且只有一条直线与已知直线平行B.三张分别画有菱形、等边三角形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是C.一组对边平行,一组对边相等的四边形是平行四边形 D.当时,关于的方程有实数根15、已知的三边长为a,b,c,且满足方程a2x2-(c2-a2-b2)x+b2=0,则方程根的情况是()。
青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为()A. B.8 C.10 D.162、如图,下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC2=AD•AB;④,其中能够判定△ABC∽△ACD的个数为()A.1B.2C.3D.43、是关于的一元二次方程的一个根,则此方程的另一个根是()A.5B.-5C.4D.-44、如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I 是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(2,﹣3)5、如图,AC是电线杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC 的长为( )A. 米B. 米C.6· cos52°米D. 米6、如果两个相似三角形的相似比是1:7,则它们的面积比等于()A.1:B.1:7C.1:3.5D.1:497、下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.相等的弦所对的圆心角相等D.相等的圆心角所对的弧相等8、如图,Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,△BCD的周长为(6+2 )cm,则△ABC的周长为()cm.A.(9+2 )B.(12+)C.(12+4 )D.(18+2)9、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1B.-1C.±1D.010、如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是()A.25°B.65°C.50°D.130°11、如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.12、如图,等边三角形ABC中,将边AC逐渐变成以BA为半径的,其他两边的长度不变,则∠ABC的度数大小由60变为()A. B. C. D.13、如图,四边形和是以点为位似中心的位似图形,若,四边形的面积为9 ,则四边形的面积为()A.15B.25C.18D.2714、一元二次方程x(x+5)=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x1=0,x2= D.x1=0,x2=﹣15、sin60°的值等于()A. B. C. D.二、填空题(共10题,共计30分)16、在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为________.17、已知关于的一元二次方程有两个实数根,为正整数,且该方程的根都是整数,则符合条件的所有正整数的和为________.18、若⊙O是等边△ABC的外接圆,⊙O的半径为,则等边△ABC的边长为________.19、已知x1,x2是方程x2﹣3x+1=0的两个实数根,则=________.20、如图,AB为半径为2的⊙O的内接正八边形的一边,图中阴影部分的面积为________ .21、已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是________.22、将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,那么的长是________.23、下列四个结论:①两个正三角形相似;②两个等腰直角三角形相似;③两个菱形相似;④两个矩形相似;⑤两个正方形相似,其中正确的结论是________.24、如图,ABCD是⊙O的内接四边形,AB是⊙O的直径,过点D的切线交BA的延长线于点E,若∠ADE=25°,则∠C=________度.25、已知正方形的面积是为正方形一边在从到方向的延长线上的一点,若,连接,与正方形另外一边交于点,连接并延长,与线段交于点,则的长为________.三、解答题(共5题,共计25分)26、解方程:x(x-3)=-127、试判断如图所示的两个矩形是否相似.28、关于x的一元二次方程,若m为负数,判断方程根的情况.29、已知m,n是方程x2+3x+1=0的两根(1)求(m+5﹣)﹣的值(2)求+的值.30、如图,已知二次函数y=ax2+bx+c的图象的顶点为M(2,1),且过点N (3,2).(1)求这个二次函数的关系式;(2)若一次函数y=x-4的图象与x轴交于点A,与y轴交于点B,P为抛物线上的一个动点,过点P作PQ∥y轴交直线AB于点Q,以PQ为直径作圆交直线AB于点D.设点P的横坐标为n,问:当n为何值时,线段DQ的长取得最小值?最小值为多少?参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、A5、D6、D7、A8、C9、B10、C11、B12、A13、B14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
(必刷题)青岛版九年级上册数学期末测试卷及含答案
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,等边△ABC的边长为4,D,E,F分别为边AB,BC,AC的中点,分别以A,B,C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π2、如图,在⊙O中,AB是直径,点C是的中点,点P是的中点,则∠PAB的度数()A.30°B.25°C.22.5°D.不能确定3、如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A.2对B.3对C.4对D.5对4、如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25πB.24πC.20πD.15π5、如果关于x的一元二次方程的两个根分别是,,那么p,q的值分别是()A.3,4B.-7,12C.7,12D.7,-126、如图,CD是⊙O的直径,已知∠1=30°,则∠2=()A.30°B.45°C.60°D.70°7、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为()A.10B.8C.6D.48、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.已知耕地的面积为551m2则道路的宽为()A.1mB.2mC.1.5 mD.4m9、一块直角三角形木板,它的一条直角边AC长为1cm,面积为1cm2,甲、乙两人分别按图①、②把它加工成一个正方形桌面,则①、②中正方形的面积较大的是()A.①B.②C.一样大D.无法判断10、已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°11、如图,在的正方形网格中有一只可爱的小狐狸,算算看画面中由实线组成的相似三角形有()A.4对B.3对C.2对D.1对12、两个相似三角形面积比是4:9,其中一个三角形的周长为24cm,则另一个三角形的周长是()cm.A.16B.16或28C.36D.16或3613、如图,四边形ABCD中,∠A=∠C=90°,∠B=60°,AD=1,BC=2,则四边形ABCD的面积是()A. B.3 C. D.414、如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h为( )A. 米B.1米C. 米D. 米15、下列说法中正确的是()A.两个等腰三角形相似B.有一个内角是30°的两个直角三角形相似 C.有一个锐角是30°的两个等腰三角形相似 D.两个直角三角形相似二、填空题(共10题,共计30分)16、如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=________.17、关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a、b的值:a=________,b=________.18、如图,、分别是的直径和弦,且,,交于点.若,则弦的长等于________.19、已知一元二次方程有一个根为0,则a的值为________.20、如图,在△ABC中,AB=8㎝,BC=4㎝,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′处,那么图中阴影部分的面积是________ .(结果保留)21、从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________.22、若关于x的一元二次方程的常数项为-2,则m的值为________.23、一艘轮船在小岛A的北偏东60°距小岛80海里的B处,沿正西方向航行2小时后到达小岛的北偏西45°的C处,则该船行驶的速度为________海里/小时.24、已知关于x的方程(m为常数)有两个实数根,那么m的取值范围是________.25、如图,在圆内接四边形ABCD中,、、的度数之比为,则________.三、解答题(共5题,共计25分)26、解方程:.27、如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=, CE:EB=1:4,求CE的长.28、如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C 处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)29、如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)30、已知关于x的一元二次方程x2+x+m2-2m=0有一个实根为-1,求m的值及方程的另一个实根.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、C5、B6、C7、C8、A9、A10、B11、C12、D13、A14、C15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版九年级上学期期末数学测试题注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,36分,第Ⅱ卷为非选择题,84分,共120分,考试时间120分钟。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来并填在第4页的答题栏中,每小题选对得3分,选错,不选或选出的答案超过一个,均记零分)1. 如图,它们是一个物体的三视图,该物体的形状是( )俯视图正视图左视图A.圆柱B. 正方体 C. 圆锥D.长方体2..顺次连结等腰梯形各边中点得到的四边形是( )A、矩形B、菱形C、正方形D、平行四边形3.小明拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是4. 根据下列表格的对应值:02=++c bx ax 解x的范围是A. 3<x<3.23 B . 3.23<x<3.24C. 3.24<x <3.25 D.3.25 <x<3.26 5. 下列函数中,属于反比例函数的是 A 、3xy =ﻩ B、13y x=C 、52y x =-ﻩD 、21y x =+ 6. 将方程122=-x x 进行配方,可得 A.2)1(2=+x B .5)2(2=-x C .2)1(2=-x D .1)1(2=-x 7. 对于反比例函数2y x=,下列说法不正确...的是 A.点(-2,-1)在它的图象上 ﻩx3.23 3.24 3.25 3.26 c bx ax ++2-0.06 -0.020.030.09A .B .C .D .B .它的图象在第一、三象限 C.当0x >时,y 随x 的增大而增大ﻩ D .当0x <时,y 随x 的增大而减小8. 到三角形三条边的距离相等的点是三角形 A 、三条角平分线的交点 B 、三条高的交点 C 、三边的垂直平分线的交点 D 、三条中线的交点 9. 一元二次方程2560x x --=的根是A 、x 1=1,x 2=6B 、x 1=2,x 2=3C 、x1=1,x2=-6 D、x 1= -1,x 2=6 10. 如果矩形的面积为6cm 2,那么它的长y cm 与宽x c m之间的函数关系用图象表示大致A B CD11. 顺次连结等腰梯形各边中点得到的四边形是 A、矩形 B 、菱形 C 、正方形 D 、平行四边形12. 如图,△ABC 中,∠A=30°,∠C=90° A B的垂直平分线交AC 于D 点,交A B于E点,则下列结论错y xOoy xy oy o误的是A、AD=DBB、DE=DCC、BC=AED、AD=BC一、选择题(每小题3分,共36分)写最后结果,每小题填对得3分)13.在“We like maths.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).14.任意写出一个经过一、三象限的反比例函数图象的表达式.15.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次鱼共200条,有10条做了记号,则估计湖里有_____________条鱼.16.小明想知道某塔的高度,可是又不能爬上去,便灵机一动,发现身高1.80米的他在阳光下影长为2.4米,而塔的影子正好为36米,则塔的高度为______米17.某商品成本为500元,由于连续两年降低成本,现为190元.若每年成本降低率相同,设成本降低率为x,则所列方程为: . 18.菱形的一条对角线长是6cm,周长是20cm,则菱形的面积是cm2.19. 等腰△ABC一腰上的高为3,这条高与底边的夹角为60°,则△ABC的面积 ; 三、解答题(本大题共7小题,满分63分,解答应写出必要的文字说明、证明过程或推演步骤)20. (本小题满分8分, 每小题答对得4分)解方程:(1)2 x2 + 5 x - 1= 0(2)2(2)-=-x x x21.(本小题满分6分)如图,树、红旗、人在同一直线上。
已知人的影子为AB,树的影子为CD,确定光源在什么位置,并画出红旗的影子。
B DA E C22.(本小题满分8分)某商店四月份的营业额为40万元,五月份的营业额比四月份有所增长,六月份比五月份又增加了5个百分点,即增加了5%,营业额达到了48.3万元。
求五月份增长的百分率。
23. (本小题满分10分)如图,△OAP、△ABQ均为等腰直角三角形,点P、Q在反比例函数图象上,直角顶点A、B均在x轴上,已知OP=(1)求此反比例函数表达式; (2)求点Q的坐标.EBCAD24. (本小题满分10分)已知:如图,D 是ΔAB C的B C边上的中点,DE⊥AC,DF ⊥AB,垂足分别 是E 、F,且B F=CE.求证:(1)ΔABC 是等腰三角形; (2)当∠A=900时,试判断四边形AFDE 是怎样的四边形,证明你的结论.25. (本小题满分10分)如图,P 是边长为1的正方形AB CD 对角线AC 上一动点(P与A、C 不重合),点E 在射线BC 上,且PE=PB.求证: ①P E=P D; ②PE ⊥PD26.(本小题满分11分)实验与探究探索一个问题:“任意给定一个矩形A ,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(阅读(1)完成后面的问题)(1) .当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是y x 和,由题意得方程组:⎪⎩⎪⎨⎧==+327xy y x ,消去y 化简得:06722=+-x x ∵△=49-48>0 ∴2,2321==x x ∴满足要求的矩形B存在.(2) .如果已知矩形A 的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3分)(3)对上述(2)中问题,小明同学从“图形”的角度,利.用函数图象.....给予了解决.小明论证的过程开始是这样的:如果用x、y分别表示矩形的长和宽,那么矩形B满足x3,xy=1.请你按照小明的论证思路完成后面的论+y=2 Array证过程.(4分)(4).如图,在同一平面直角坐标系中画出了一次函数和反比例函数的部分图象,其中x和y分别表示矩形B的两边长,请你结合刚才的研究,回答下列问题:(4分)①.这个图象所研究的矩形A的两边长为___ __和__ ___;②.满足条件的矩形B的两边O长为___ __和___ __.九年级数学上学期期末测试题参考答案及评分标准1、选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分。
2、解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数,本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分。
3、如果考生在解答的中间过程中出现了计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现了严重的逻辑错误,后续部分就不再给分。
一、选择题(每小题3分,共36分)二、填空题(本大题共7小题,每小题3分,共21分) 13、0.18 14、答案不定(只要k>0) 15、1000 16、27米17、190)1(5002=-x 18、24 19、3三、(本大题共7小题,满分63分)20.(本小题满分8(1)解:(1)2 x1= 0A=2,b=5,c=﹣1,b -4ac=33>0………………………1分所以4335243351--+-==x x ,. …………4分(2)x 1=2, x 2=1…………4分21. (本小题满分6分)如图所示,光源为交点,线段EF 为红旗的影子.22. (本小题满分8分)解:设五月份增长的百分率为X,根据题意得:……1分40(1+X )(1+5%)=48.3 ……4分解方程得X=0.15 ………………7分 答:五月份增长的百分率为15% ………………8分23.(本小题满分10分)解:(1)∵△OAP 为等腰直角三角形,OP =∴OA=P A=2,即P (2,2). ……2分 设反比例函数表达式xk y ,把P (2,2)代入,得k=4, ∴反比例函数表达式为4y=x ……………5分(2)设Q (m +2,m),代入表达式,得: m(m+2)=4……6分解之得:m1=-1m2=-1舍去)…9分∴Q(1……………………10分 24. (本小题满分10分)证明:(1)∵D 是ΔAB C的BC 边上的中点∴B D=DC∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°又∵BF=CE∴Rt△BFD≌Rt△CED(HL)∴∠B=∠C∴AC=AB即△ABC是等腰三角形 (4)分(2)当∠A=90°时,四边形AFDE是正方形………5分理由:∵∠A=∠AFD=∠AED=90°∴四边形AFDE是矩形又∵AB=AC,BF=CE∴AF=AE∴四边形AFDE是正方形………………………8分24.证明:(1)∵D是ΔABC的BC边上的中点∴BD=DC∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°又∵BF=CE∴Rt△BFD≌Rt△CED(HL)∴∠B=∠C∴AC=AB即△ABC是等腰三角形………………………5分(2)当∠A=90°时,四边形AFDE是正方形………6分理由:∵∠A=∠AFD=∠AED=90°∴四边形AFDE是矩形又∵AB=AC,BF=CE∴AF=AE∴四边形AFDE是正方形 025. 证明①∵四边形ABCD是正方形,AC为对角线,∴BC=DC,∠BCP =∠DCP=45°∵PC=PC∴△PBC≌△PDC(SAS)∴PB=PD, ∠PBC=∠PDC又∵PB=PE, ∴PE=PD……………………………5分②当点E在线段BC上(E与B、C不重合)时∵PB=PE,∴∠PBE =∠PEB∴∠PEB =∠PDC∴∠PEB+∠PEC=∠PDC+∠PEC=180°∴∠DPE=360°—(∠BCD+∠PDC+∠PEC)=90°∴PE⊥PD;当点E与点C重合时,点P恰好在AC中点处,此时PE ⊥PD当点E在BC的延长线上时,∵∠PEC =∠PDC,两个对顶角又相等∴∠DPE =∠DCE=90°,∴PE⊥PD综上所述,PE⊥PD ………………………………10分26.解:(2)设矩形B的两边分别是yx和,由题意得方程组:321x yxy⎧+=⎪⎨⎪=⎩消去y得:22320x x -+= …………2分 2491670b ac -=-=-< ∴矩形B 不存在 ………4分(3)图略。
分别作出y=-x+23及y=x1的图象,因为两图象没有交点,说明满足条件的矩形B 不存在。