(整理)金属材料损坏与变形
第8章 金属高温下的变形与断裂

8
9
典型的蠕变曲线
金属蠕变过程用蠕变曲线来描述。 金属蠕变过程用蠕变曲线来描述。典型的蠕变曲线如图。 (1)Oa线段:是试样在t 温度下承受恒定拉应力σ时所产 线段: 线段 生的起始伸长率δq。 若应力超过金属在该温度下的屈服强度,则δq包括弹性伸长 弹性伸长 塑性伸长率两部分。 率和塑性伸长率 塑性伸长率 此应变还不算蠕变 应变还不算蠕变,而是由外载荷引起的一般变形过程。 应变还不算蠕变
20
(二)扩散蠕变
(二)扩散蠕变 扩散蠕变: 扩散蠕变:是在较高温度(约比温度(T/Tm)远超过0.5)下的 ( 一种蠕变变形机理。 它是在高温下大量原子和空位定向移动造成的 高温下大量原子和空位定向移动造成的。 高温下大量原子和空位定向移动造成的 在不受外力情况下,原子和空位的移动无方向性,因而宏观 上不显示塑性变形。 但当受拉应力σ作用时,在多晶体内产生不均匀的应力场 产生不均匀的应力场。 产生不均匀的应力场
17
刃位错攀移克服障碍的几种模型: 刃位错攀移克服障碍的几种模型: 可见,塞积在某种障碍前的位错通过热激活可以在新的滑移 面上运动(a),或与异号位错相遇而对消(b),或形成亚 晶界(c),或被晶界所吸收(d)。
18
当塞积群中某一个位错被激活而发生攀移时,位错源便可能 再次开动而放出一个位错,从而形成动态回复过程 动态回复过程。 动态回复过程 这一过程不断进行,蠕变得以不断发展。
7
本章介绍内容: 本章介绍内容: 阐述金属材料在高温长时载荷作用下的蠕变现象 蠕变现象。 蠕变现象 讨论蠕变变形和断裂的机理 蠕变变形和断裂的机理。 蠕变变形和断裂的机理 介绍高温力学性能指标及影响因素。 为正确选用高温金属材料和合理制定其热处理工艺提供基础 知识。
(整理)第6章金属及合金的塑性变形

第6章 金属及合金的塑性变形6-1 金属的变形特性金属在外力作用下的变形行为可用拉伸曲线来描述。
设拉力为P ,试样伸长量为dl ,则应力σ和应变ε分别为:A P σ=; ldl ε= 式中,A 为试样的截面积。
在拉伸过程中,A 和l 是变化的,在工程上,为了简化问题,A 常用A 0来代替,ε也用平均值表示ε=(l -l 0)/l 0,这样测得的σ-ε曲线称工程σ-ε曲线。
一、工程σ-ε曲线P161图1是低碳钢拉伸时的工程σ-ε曲线。
当应力低于σs 时,没有残留变形,大于σs 时,开始发生塑性变形。
所以,σs 是发生塑性变形的最小应力,称屈服强度。
屈服强度也是弹性极限σe (弹性变形的最大应力)。
在弹性变形阶段,当应力小于σp 时,σ-ε呈线性,服从虎克定律: εE σ=式中,E 是直线的斜率,称材料的弹性模量。
开始偏离直线的应力σp 称比例极限。
当应力超过σs 时,开始发生塑性变形。
随着塑性变形的增加,应力增大,这种现象称加工硬化。
当应力达到最大值σb 时,开始下降,直到断裂。
最大值σb 称材料的抗拉强度。
超过此值,试样发生局部颈缩,即发生了不均匀塑性变形。
所以,σb 是材料发生均匀塑性变形的最大应力。
注意,应力超过σb 后下降,并不是加工硬化失效。
在结构材料中,我们关心的力学指标是σs 和σb ,它们和硬度一起称做强度指标。
在实际应用中,σs 值是无法测量的,通常用发生0.2%塑性变形时对应的应力值来表示屈服强度,称条件屈服强度。
通常我们所说的材料的力学性能,除了上述强度指标外,还有两个塑性指标,延伸率、断面收缩率。
延伸率是指发生断裂时,试样的伸长率:%10000⨯-=l l l δσσ断面收缩率是指发生断裂时,试样截面积的变化率:%10000⨯-=A A A ψ 二、真应力-真应变曲线(T T εσ-曲线) 工程应力与真实应力之间的不同是容易发现的。
下面看看工程应变与真实应变的不同。
拉伸一个试样,使其伸长一倍,则工程应变1/)2(000=-=l l l ε;若是压缩,要获得同样数值的负应变,理应压缩到原长度的一半。
浅析金属材料热处理过程变形及开裂问题

172管理及其他M anagement and other浅析金属材料热处理过程变形及开裂问题张均红(武汉市汉阳区武汉船舶职业技术学院,湖北 武汉 430050)摘 要:社会经济的迅速发展为机械设备制造行业的发展注入了充足的动力,随着各个行业对金属材料需求量的不断增加,相关企业必须加大金属材料的生产,才能从根本上满足我国工业化发展的需求。
热处理技术作为当前金属材料深加工过程中最常用的改变金属材料结构特点与使用性能的技术,该技术的应用虽然有助于金属材料稳定性能的增强。
但是由于金属材料在热处理的过程中经常出现变形或者开裂的问题,导致金属元件的性能、强度以及硬度等都受到了不同程度的影响。
因此,操作人员必须准确的把握金属材料热处理工艺的温度,才能在提升金属材料整体质量的前提下,降低金属材料的变形量。
文章主要是就金属材料热处理过程中的变形与开裂问题进行了分析与探讨。
关键词:金属材料;热处理;变形;开裂中图分类号:TG156 文献标识码:A 文章编号:11-5004(2020)17-0172-2收稿日期:2020-09作者简介:张均红,男,生于1973年,汉族,湖北红安人,本科,工程师,研究方向:金属材料与热处理。
金属材料热处理实际上采用特定工艺对金属材料进行加热,保温或者冷却,改变固态金属的形态,然后在机械或化学的作用下,优化和改善金属材料内部结构与性能,从而达到提高金属产品制造质量的目的[1]。
1 金属材料热处理工艺的优点为了达到提升金属材料性能的目的,工作人员必须通过对金属材料进行热处理加工的方式,在多种方式的淬炼下,降低金属材料中可能出现的网状碳化物等杂质,然后通过对金属材料颗粒的细化,消除金属材料的内应力,促进金属材料强度与韧性的全面提升,才能发挥出金属材料在工业生产中应用的效果。
通过对金属材料进行热处理,帮助金属材料塑形,然后在热应力与重力势能的双重作业下,破坏原子结构,从而达到降低金属材料塑型难度的目的。
金属在使用过程中形变发生的因素

金属,在日常生活和工业生产中被广泛使用。
然而,在使用过程中,金属往往会发生形变。
形变是指金属在外力作用下,发生尺寸、形状和结构的变化。
这些形变可能会影响金属的使用性能,并最终导致金属零部件的破坏。
了解金属形变发生的因素对于避免金属零部件失效具有重要意义。
本文将从以下几个方面探讨金属在使用过程中形变发生的主要因素。
1. 外力作用:金属在受到外力作用下会发生形变。
外力可以是拉力、压力、剪切力等,这些外力会使金属内部原子结构重新排列,从而导致金属形变。
在拉伸金属材料时,原子之间的键将被撕裂,金属材料会发生延长,产生塑性变形。
压缩金属材料时,原子之间的键将受到挤压,金属材料会发生压缩,产生塑性变形。
剪切金属材料时,原子间的键将被切断,金属材料会产生滑移,从而发生形变。
2. 温度变化:金属在不同温度下会发生形变。
温度的变化会影响金属原子的热运动,进而影响金属的强度和韧性。
一般来说,温度升高会使金属变软,易于发生形变,而温度降低会使金属变硬,难以发生形变。
温度的变化还会引起金属内部晶格结构的变化,从而影响金属的塑性变形性能。
3. 冷加工和热加工:金属在冷加工和热加工过程中都会发生形变。
冷加工是指在常温下对金属材料进行塑性变形加工,如冷拔、冷轧、冷挤压等。
冷加工会使金属产生塑性变形,但也容易造成金属的工艺性能下降。
热加工是指在高温下对金属材料进行塑性变形加工,如热锻、热轧、热挤压等。
热加工可以降低金属的强度和硬度,提高金属的塑性变形性能,但也容易使金属产生晶粒长大和组织松散等问题。
4. 疲劳和腐蚀:金属在长期使用过程中会发生疲劳和腐蚀,从而导致形变。
疲劳是指金属在受到交变应力作用下,经历多次应力变化后发生裂纹和破坏。
腐蚀是指金属与周围介质发生化学反应而导致表面金属被侵蚀和损坏。
疲劳和腐蚀都会降低金属的强度和韧性,使金属产生形变,并最终导致金属零部件的失效。
5. 内部缺陷:金属在生产过程中可能存在内部缺陷,如夹杂、气泡、晶界错位等。
金属材料的微观结构与变形行为

金属材料的微观结构与变形行为金属材料是日常生活中广泛使用的一种材料,它具有很高的强度、韧性和导电性能。
它们可以用来制造各种家具、建筑结构、机械和电子设备等。
金属材料的应用如此广泛,是因为它们具有非常特殊的微观结构,可以通过加工过程进行调整以达到设计要求。
一. 微观结构金属材料的微观结构由晶粒、晶界和位错组成。
晶粒是金属材料中的基本单元,它是由原子结构规则堆积而成的。
晶界是相邻的晶粒之间的边界,它们的原子结构不同,存在一些缺陷和杂质元素。
位错是晶体结构中的一种缺陷,是由于反向或错位而引起的局部应变。
有时,通过控制位错,可以在金属材料中引入更多的弹性和塑性,从而使它们更适合特定的应用环境。
二. 变形行为金属材料的变形行为是由微观结构的性质和应变率决定的。
当金属材料向外施加力时,所有的原子和分子会受到刺激,从而引起局部的位移。
随着原子的移动,由于晶格的协调,势能会逐渐降低,因此,位错会在晶体中引起一些局部塑性变形。
在材料的应变率较低时,金属材料的晶粒可以通过变形和位错扩散轻松地将形变向周围传导。
但是,当应变率达到某个临界值时,晶粒的自由运动会受到限制,晶粒的形变将变得更加困难。
此时,应变率增加会导致晶粒的形变之间发生着重大的互动,最终导致金属材料的局部破坏。
三. 塑性加工金属材料的微观结构和变形行为对于塑性加工非常重要。
塑性加工是一种将金属材料变形并制造成物体的过程。
在塑性加工过程中,金属材料的微观结构会发生改变,从而影响材料的性质。
在这个过程中,位错并被引入到金属材料之中,这是为了增加金属材料的弹性和塑性。
在塑性加工过程中,金属材料中的晶粒会逐渐变形。
在一定程度上,这种变形可以增加金属材料的强度和塑性。
但是,如果变形过度,位错过多,金属材料可能会发生塑性流动失控,失去原有的完整性。
小结:金属材料的微观结构和变形行为是控制其性能和应用的关键。
晶粒、晶界和位错是金属材料的基本结构单元,控制这些结构单元的变化可以用于改善材料的性能。
金材-第二章

二、锻压性能
用锻压成形方法得优良锻件的难易程度。常 用塑性 变形抗力 塑性和变形抗力 塑性 变形抗力两个指标来综合衡量。
三、焊接性能
金属材料对焊接加工的适应性,也就是在一定焊接工 艺条件下,获得优质焊接接头的难易程度。 对碳钢和低合金钢而言,焊接性能主要与其化学成分 化学成分 有关(其中碳的影响最大)。
金属的塑性变形,在外形变化的同时,晶粒 的形状也会发生变化。通常晶粒会沿变形方向压 扁或拉长。
塑性变形后的金属组织
§2-2 金属的力学性能
一、强度 二、塑性 三、硬度 四、冲击韧性 *五、疲劳强度
任何机械零件或工具,在使 用过程中,往往要受到各种形式 外力的作用,这就要求金属材料 必须具有一种承受机械载荷而不 超过许可变形或不破坏的能力, 这种能力就是材料的力学性能 力学性能。 力学性能
FeL ReL = S0
ReL ——试样的下屈服强度,N/mm2; FeL ——试样屈服时的最小载荷,N; S0 ——试样原始横截面面积,mm2。
规定产生0.2%残余伸长时的应力为条件屈服强度 p0.2, 条件屈服强度R 条件屈服强度 替代ReL,称为条件(名义)屈服强度 条件( 条件 名义)屈服强度。
载荷的作用形式
2.内力
内力——工件或材料在受到外部载荷作用时,为保持 内力 其不变形,在材料内部产生的一种与外力相对抗的力,称 为。
3.应力 3
应力——假设作用在零件横截面上的内力大小均匀分 应力 布,单位横截面积上的内力。
F R= S
R:应力,Pa; F:外力,N; S:横截面面积,m2。
二、金属的变形
2.热处理性能
淬透性 淬硬性 过热敏感性 变形开裂倾向 回火脆性倾向 氧化脱碳倾向
金属材料的晶体缺陷与塑性变形

金属材料的晶体缺陷与塑性变形金属材料是我们日常生活中使用最广泛的材料之一,它们具有出色的强度、导电性和耐腐蚀性能。
然而,这些材料中经常会出现各种各样的晶体缺陷,比如空位、过垫、位错等。
这些缺陷对于材料的力学性能和物理性质会产生深远影响,尤其是对于金属材料的塑性变形来说,晶体缺陷更是至关重要的因素。
1. 晶体缺陷的分类晶体缺陷是指晶体中由于各种因素导致的结构上的缺陷或变异。
从不同角度来进行分类,晶体缺陷可以分为以下类型:1.1 点缺陷点缺陷是指晶体中的空位、过垫和杂质原子等点状缺陷。
其中空位是最常见的一种点缺陷,其可以影响晶体的热力学性质,例如分子扩散、热导率和蒸发等。
1.2 线缺陷线缺陷是指晶体中的位错和螺旋线等。
位错是晶体中空间中某些原子排列错误的位置,随着应力的作用,位错可以在晶体中移动,导致晶体的塑性变形。
螺旋线则是由于晶体的外在形状而形成的缺陷,对于晶体的磁学性能有一定的影响。
1.3 面缺陷面缺陷是指而晶体中的晶粒边界和晶体表面等面状缺陷。
晶粒边界是不同晶粒之间的界面,晶体形成时会存在不同的晶粒之间的排列错误,从而形成晶粒边界。
晶粒边界有利于调整晶体中不同晶粒的方向和结构,从而达到材料强度和硬度之间的平衡。
2. 晶体缺陷与塑性变形晶体缺陷在材料的机械性能中起着至关重要的作用,其中最重要的是晶体缺陷与塑性变形之间的关系。
塑性变形是指材料结构的变形过程中一个结构单元从一种能量状态变为另一种,通常是由于位错的滑移或形成使受力部分发生塑性变形。
塑性变形取决于材料的塑性机制,即材料中塑性形变所依赖的机制,和材料的内部结构。
晶体缺陷会影响材料内部的塑性机制和材料的内在结构,从而影响材料的强度、韧性和延展性等力学性质。
2.1 种类与数量晶体缺陷的种类和数量是影响材料塑性变形的关键因素。
通常情况下,材料中的晶体缺陷越多越多样化,材料的塑性变形就越容易发生。
例如,在晶体中形成许多杂质原子可以增加位错的丰度,从而使材料的塑性发生改变。
金属材料的高温材料损伤与失效

金属材料的高温材料损伤与失效随着工业化的不断发展,许多重要的机械和设备需要在高温环境下使用。
比如,高温炉、蒸汽炉、发电厂、汽车引擎等都需要长期在高温环境下运行。
这种高温环境下运行的设备对材料的性能和寿命提出了很高的要求。
因此,我们必须深入了解金属材料在高温环境下的损伤与失效机理,以便调整材料结构和制造工艺,提高材料的使用性能和寿命。
首先,高温材料的损伤形式大致分为两类:塑性变形和蠕变变形。
塑性变形发生在较低的温度下,通常在簇晶粒界或晶粒内部发生。
这种塑性变形通常以非晶化、晶粒生长等方式发生,并且会导致材料的硬度下降、强度下降和塑性下降。
而蠕变变形则是发生于较高温度下,在高温下金属结晶体内原子的扩散会越来越明显,会导致材料分子之间的交互作用加强,从而会发生持续性的变形和滞后变形,最终导致材料失效。
其次,高温环境下金属材料失效的主要原因是氧化和热蠕变。
氧化是指热金属材料在高温环境下与氧气接触,发生氧化反应,形成金属氧化物层,并且在此过程中释放出热量。
金属氧化物层通常是一种薄膜,它能够抵御进一步的氧化和化学侵蚀。
但是,如果氧化速率很快,或者氧化层中存在缺陷,那么氧化将会加速,并可能导致材料失效。
热蠕变则是指在高温下,金属材料会不断变形,导致材料最终失效。
这种变形通常既包括塑性变形,又包括蠕变变形。
为了避免高温环境下金属材料的失效,我们可以采用多种方法。
一种方法是改变材料的结构,使其在高温环境下能够更好地抵御氧化和热蠕变的影响。
例如,增加合金元素的含量、增加晶粒的尺寸、制造金属纳米复合材料等方法,都可以使金属材料在高温环境下具有更好的耐蚀性和耐热性。
另一种方法是改变材料的制备工艺,使其在高温环境下的性能更加优异。
例如,通过控制热处理和热变形的过程,可以产生定向的织构和晶粒边界,从而增强材料的抗变形和蠕变变形的性能。
除此之外,我们也可以运用先进的材料测试技术来研究高温材料的损伤与失效机理。
例如,电子显微镜、原子力显微镜、X光衍射、红外热成像等技术,都可以用来观察材料内部的微观变化,以便更好地理解其损伤和失效的原因。
金属工艺学复习笔记(最新整理)

金属工艺学:是一门研究有关制造金属机件的工艺方法的综合性技术学科常用以制造金属机件的基本工艺方法:铸造压力加工,焊接,切削加工,热处理。
第一编金属材料导论合金:以一种金属为基础,加入其它金属或非金属,经过熔炼,烧结或其他方法而制成的具有金属特性的材料。
金属材料主要机械性能有:弹性塑性刚度强度硬度冲击韧性疲劳度和断裂韧性弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。
弹性变形:这种随着外力消失而消失的变形,叫弹性变形,其大小与外力成正比。
塑性:金属材料在外力作用下,产生永久变形而不致引起破坏的性能。
塑性变形:在外力消失后留下来的这部分不可恢复的变形,叫塑性变形,其大小与外力不成正比。
σe 弹性极限材料所能承爱的不生产永久变形的最大应力σs 屈服极限出现明显塑性变形时的应力σ0.2 产生0.2%塑性变形时的应力作为屈服极限时金属材料的塑性常用延伸率来表示δ=(l-l0)/l *100%也可用断面收缩率来表示ψ=(F0-F)/F0 *100%Δψ越大,塑性越好刚度:金属材料在受力时抵抗弹性变形的能力。
弹性模数:在弹性范围内,应力与应变的比值。
它相当于引起单位变形时所需要的应力。
弹性模数越大,表示在一事实上应力作用下能发生的弹性变形越小。
弹性模数的大小主要决定于金属材料本身,同一类材料中弹性模数的差别不大。
弹性模数被认为是金属材料最稳定的性质之一。
强度:是金属材料在外力作用下抵抗塑性变形和断裂的能力。
按作用力的不同,可以分为抗拉强度,抗压强度,抗弯强度和抗扭强度。
在工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。
屈服强度σs:金属材料发生屈服现象时的屈服极限,亦抵抗微量塑性变形的应力。
σs =P S/F0(Pa帕斯卡)抗拉强度σb:金属材料在拉断前所能随的最大应力。
σb =P b /F0(Pa帕斯卡)硬度:金属材料抵抗更硬的物体压入其内的能力。
布氏:HB圆球压头。
一般只用于测定其值小于450的材料。
(完整版)金属材料学知识整理(经典版)

第一章 合金化原理主要内容:概念:⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。
⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。
⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。
⑷合金钢:在碳钢基础上加入一定量合金元素的钢。
①低合金钢:一般指合金元素总含量小于或等于5%的钢。
②中合金钢:一般指合金元素总含量在5~10%范围内的钢。
③高合金钢:一般指合金元素总含量超过10%的钢。
④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。
1.1 碳钢概论一、碳钢中的常存杂质1.锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8% ①固溶强化 ②形成高熔点MnS 夹杂物(塑性夹杂物),减少钢的热脆(高温晶界熔化,脆性↑);⑵Si :W Si %<0.5% ①固溶强化 ②形成SiO2脆性夹杂物;⑶Mn 和Si 是有益杂质,但夹杂物MnS 、SiO2将使钢的疲劳强度和塑、韧性下降。
2.硫(S )和磷(P )⑴S :在固态铁中的溶解度极小, S 和Fe 能形成FeS ,并易于形成低熔点共晶。
发生热脆 (裂)。
⑵P :可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。
磷可以提高钢在大气中的抗腐蚀性能。
⑶S 和P 是有害杂质,但可以改善钢的切削加工性能。
3.氮(N )、氢(H )、氧(O )⑴N :在α-铁中可溶解,含过饱和N 的钢析出氮化物—机械时效或应变时效(经变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变)。
N 可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。
⑵H :在钢中和应力的联合作用将引起金属材料产生氢脆。
⑶O :在钢中形成硅酸盐(2MnO•SiO2、MnO•SiO2)或复合氧化物(MgO•Al2O3、碳钢中的常存杂质 碳钢的分类 碳钢的用途 1.1 碳钢概论 主要内容 1.2 钢的合金化原理: ①Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响 1.3合金钢的分类MnO•Al2O3)。
金属材料的损伤和断裂(韧性、脆性)

原创小刘-LZP08-07原文一、“彗星号”大型客机失事惨剧促发金属断裂行为研究史的开端1954年1月10日,一架英国海外航空公司(BOAC)的一架“彗星”1型客机(航班编号781号)从意大利罗马起飞,飞往目的地是英国伦敦。
飞机起飞后26分钟,机身在空中解体,坠入地中海,机上所有乘客和机组人员全部遇难。
这次事故震惊了全世界,英国成立了专门的调查组调查事故。
该型客机停飞两个月。
就在英国海外航空公司总裁保证该机型不会再出事并复飞后不久,另一架“彗星”型客机也发生了同样的空中解体事故,坠毁在意大利那不勒斯附近海中。
在此一年的时间里,共有3架“彗星”型客机在空中先后解体坠毁。
此惨剧令当时英国为之骄傲的“彗星号”大型客机寿终正寝,也促发了科学家研究低应力断裂的“裂纹力学”,此即断裂力学诞生的由来。
“彗星号”大型民航客机对事故的调查发现,“彗星”客机采用的是方形舷窗。
经多次起降后,在方形舷窗拐角(直角)处会出现金属疲劳导致的裂纹(裂隙)。
正是这个小小的裂纹引起了灾难事故。
后来,所有客机舷窗均采用圆形或设计有很大的圆角,以减小应力集中,提高金属疲劳强度;延缓疲劳裂纹的发生,此系后话。
进一步研究证明,裂纹的存在,引起飞机结构发生低应力破坏,通行的设计准则遇到极大挑战。
这个研究孕育了断裂力学的诞生,并促进了其快速发展。
到1957年,美国科学家欧文(G.R.Irwin)提出应力强度因子的概念,从此线弹性断裂力学基本建立起来。
断裂力学诞生并用于结构设计后,源于裂纹引发的灾难事故大大减少,可见断裂力学是破解结构低应力破坏的金钥匙。
再看一组图片所有的工程结构都是由工程材料制造而成;所有的断裂事故,均源于材料的微、细、宏观的损伤和断裂。
材料与结构的损伤断裂引发的事故实在太多。
二、材料的力学性能参数:强度、塑性、韧性、脆性、弹性从应力应变曲线上也可看出脆性或韧性材料材料的力学性能指的是材料在给定的外界条件下所表现的行为,完全由材料的微观组织结构决定。
长期在高温条件下工作的钢材,会产生哪些损坏-

长期在高温条件下工作的钢材,会产生哪些损坏?
关键词:
工作
高温
钢材
火力发电厂的锅炉、汽轮机、主蒸汽管道等部件,是长期在高温'>高温条件下工作'>工作的。
金属材料长期处于高温'>高温、高应力和高速转动的状态下,由于外部介质的腐蚀与磨损,金属内部组织与性能的劣化,会导致设备部件的失效损坏。
长期在高温条件下工作'>工作的钢材'>钢材,主要产生以下形式的损坏:
(1)脆性断裂:金属材料在外载荷的作用下,当应力达到材料的断裂强度时,发生断裂,且断裂前没有明显的塑性变形,称为脆性断裂。
(2)蠕变损伤:由于金属产生过量的蠕变变形,致使部件不能使用甚至爆裂的损坏,叫做蠕变损伤。
(3)氧化与腐蚀:金属由于长期接触高温烟气或汽水,以及一些腐蚀介质,金属的表面不断受到各种浸蚀,有时还会侵入金属内部,造成部件的破裂损坏。
(4)金属内部显微组织变劣:由于金属材料长期处于高温状态,其内部显微组织发生变化,如珠光体球化、石墨化、固溶体中合金元素的贫化等。
金属内部显微组织的变劣,也使材料的综合性能变差。
(5)疲劳损坏:机械部件在交变载荷的作用下,经较长时间的工作而发生断裂损坏的现象,称为金属材料的疲劳损坏。
冶金物理化学教案中的金属材料损伤与断裂行为

冶金物理化学教案中的金属材料损伤与断裂行为金属材料是工程领域中广泛应用的材料之一,而金属材料的损伤与断裂行为是冶金物理化学教学中需要重点关注的内容。
本文将介绍金属材料的损伤与断裂的相关知识,并探讨其在教学中的应用。
一、金属材料的损伤行为1.1 金属材料的损伤形式金属材料可以发生多种不同形式的损伤,其中包括:(1) 塑性变形:金属在受力下发生塑性变形,即原子间的排列位置发生变化,从而导致材料的形状和性能的改变。
(2) 疲劳:长期受循环载荷作用,材料内部的缺陷会逐渐积累,导致金属材料的疲劳破坏。
(3) 腐蚀:金属材料接触到腐蚀介质时,会发生物理和化学反应,导致材料表面的腐蚀损坏。
(4) 氢脆:在氢气环境中,金属材料吸收氢原子,从而导致材料的脆性增加,容易发生断裂。
(5) 热膨胀:金属在温度变化下,由于热膨胀系数不同,会发生形变和应力集中,导致损伤行为的发生。
1.2 损伤评估与预测金属材料的损伤评估和预测是冶金物理化学教学中的重要环节。
常用的损伤评估方法包括非破坏性检测、疲劳寿命预测、腐蚀速率测量等。
其中,非破坏性检测技术如超声波检测、X射线检测等可以帮助学生观察材料损伤的情况,了解损伤形式和程度。
而通过建立损伤预测模型,可以预测金属材料在不同工况下的寿命和损伤程度,为工程设计提供参考。
二、金属材料的断裂行为2.1 断裂的分类金属材料的断裂行为可以分为静态断裂和疲劳断裂两类。
静态断裂是指在恒定载荷作用下,金属材料发生的断裂行为;疲劳断裂是指金属材料在循环载荷作用下,经过多次循环后的破坏。
2.2 断裂的机理金属材料的断裂机理主要包括两种:脆性断裂和延性断裂。
脆性断裂是指材料在低温或高应变速率下发生的断裂,其特点是断口平整、没有明显的塑性变形。
而延性断裂是指材料在高温或较低应变速率下发生的断裂,断口呈现出较大的塑性变形。
三、冶金物理化学教案中的应用冶金物理化学教学中,金属材料的损伤与断裂行为是重要的课程内容,具有以下应用:3.1 增强学生实践能力通过实验教学,学生可以亲自操作金属材料的损伤与断裂实验,观察不同材料在不同条件下的变形和破坏过程,培养学生的实践能力和科学观察力。
第六章 金属材料性能与塑性变形

???
减震
恒力碟簧支吊架
第二节 弹性变形
1.2.5 滞弹性
(1)突然加载OA,产生瞬时应 变Oa ,而后产生附加应变Ah (2)快速卸载Be,产生瞬时应 变He 而后产生附加应变eO
滞弹性
在弹性范围内快速加载或卸载后,随时间延长产生附 加弹性应变的现象。
产生原因:可能与金属中点缺陷的移动有关。 在仪表和精密机械中,选用重要传感元件的材料时,需要考虑滞弹性问题。
P 载 荷 (N)
b
e p Pp s
(MPa) k
Pk
0
lk b (低碳钢的拉伸力-伸长曲线)
l
lu
l伸长 0 (mm)
p
b
k
u
(低碳钢的应力-应变曲线)
k
(%)
低碳钢的应力-应变曲线 (M Pa) b k
a
a′
0a段 aa ′段 a ′b段
弹性变形 阶段 塑性变形 阶段
但是,通常拉开n分之一个原子间距就发生了塑性变形——塑性变 形机理取代弹性变形
第二节 弹性变形
1.2.2 胡克定律
(一) 简单应力状态的胡克定律 1.单向拉伸
y
y
2.剪切和扭转
x z y
E
y
E
(1-1)
G
E G 3.E、G的关系 2(1 )
断口特征
第一节 应力-应变曲线
1.1.1 脆性材料的拉伸性能
在拉伸时只产生弹性变形,不产生或产生微量的塑性变形 强度高、塑性差的材料:玻璃、陶瓷、高强钢、铸铁
材料完全脆性的- 曲线
弹性变形阶段 应力-应变成正比
E G
分析金属材料热处理变形问题及开裂问题的解决措施

分析金属材料热处理变形问题及开裂问题的解决措施摘要:金属材料性能全面提升的最为有效途径就是热处理,但是在实际的热处理过程中,最不可避免的问题,就是热处理变形和开裂问题,其对工件的加工和后续的交付非常不利。
基于此,本篇文章对金属材料热处理变形问题及开裂问题的解决措施进行深入的分析和探讨。
关键词:金属材料热处理变形问题开裂问题前言:所谓金属材料的热处理,其主要就是以固态金属具体的工艺制造需求,将相应的加热和保温以及冷却处理实施进来,与此同时,还要将相应的机械作用和化学作用辅助配合进来,改变金属材料的内部结构,改变其性能,进而将符合工艺需求的金属产品制造出来。
1.热处理变形开裂的主要原因在金属材料的热处理中,主要存在两种类型的变形,首先就是尺寸变形,其次就是形状变形,而对于大部分的类型而言,其都是金属材料本身在接受热处理的过程中,工件内部的应力进一步导致。
而实际的内应力不同,则又分为两种应力类型,一种为组织应力,另一种为热应力。
而金属材料工件本身会出现变硬的问题,主要原因就是这两种应力因素结合到一起的成果,远远的超出了应力自身的变形极限,进而出现永久变形的问题。
1.1.热处理引起的开裂与变形因素在金属材料的热处理中,主要包含冷却和加热这两个过程中。
而且在实际的热处理过程中,相应的金属工件要经过热胀冷缩处理,而实际的体积变化非常明显。
对于金属材料工件而言,其在达到相应的淬火温度时,会明显的降低工件屈服强度,提高工件塑性,在热处理金属的过程中,金属屈服强度无法超越内应力,则实际的塑性变性进一步发生。
1.1.组织应力引起的变形和开裂因素对于金属材料工件而言,相应的组织应力具备两个非常明显的特点:首先,就是实际的切向应力要远远的大于轴向应力,而且与金属工件表层十分贴近;其次,就是对于金属工件表面而言,其本身主要会受到拉应力的影响,与此同时,内部则受到压应力。
对于组织应力而言,其本身在经历工件淬火的过程中,之所以会发生形变和开裂的问题,其根本原因就是在实际的热处理过程中,受到了组织应力和热应力的综合影响。
钢铁材料常见缺陷(图谱)及产生原因

科普知识钢铁材料常见缺陷(图谱)及产生原因我们在材料采购、生产加工以及试验检测过程中,经常发现材料中存在这样那样不同程度的缺陷,有的缺陷可能直接影响到使用。
为了进一步了解和识别缺陷成因及其对构件的影响,与大家共同学习,共同提高,第一部分为“钢铁材料常见缺陷及产生原因” ; 第二部分为“缺陷图谱”;“ 图谱” 部分是笔者多年收集、整理、编写而成,供大家参考。
(一)钢铁材料常见缺陷及产生原因型钢常见缺陷缺陷名称缺陷特征型钢表面上的疤状金属薄块。
其大小、深浅不等,外形极不规则,常呈指甲状、鱼鳞状、块状、舌头状无规律地分布在钢材表面上,结疤下常有非金属夹杂物。
产生原因结疤由于钢坯未清理,使原有的结疤轧后仍残留在钢材表面上。
表面夹杂暴露在钢材表面上的非金属物质称为表面夹杂,一颜色有暗红、型钢表面上,坑,其大小、般呈点状、块状和条状分布,淡黄、灰白等,机械的粘结在夹杂脱落后出现一定深度的凹形状无一定规律。
分层此缺陷在型钢的锯切断面上呈黑线或黑带状,严重的分离成两层或多层,分层处伴随有夹杂物。
(1)钢坯带来的表面非金属夹杂物。
其(2)在加热或轧制过程中,偶然有非其金属夹杂韧(如加热炉的耐火材料及炉渣等),炉附在钢坯表面上,轧制时被压入钢材,冷却经矫直后部分脱落(1) 主要是由于镇静钢的缩孔或沸腾钢的气囊未切净。
(2) 钢坯的皮下气泡,严重疏松,在轧制时未焊台,严重的夹杂物也会造成分层。
(3) 钢坯的化学成份偏析严重,当轧制较薄规格时,也可能形成分层。
气泡(凸包) 型钢表面呈现的一种无规律分布的园形凸起称为凸包,凸起部分的外缘比较园滑, 包破裂后成鸡爪形裂口或舌形结疤,叫气泡。
多产生于型钢的角部及腿尖。
凸钢坯有皮下气泡,轧制时未焊合。
裂纹顺轧制方向出现在型钢表面上的线形开裂,一般呈直线形,有时呈“ Y”形,多为通长出现,有时局部出现。
尺寸超差(尺寸不合、规格不合) 尺寸超差是指型钢截面几何尺寸不符标准规定要求的统称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属材料与热处理陈健
晶体的缺陷第二章金属材料的性能
⑴了解金属材料的失效形式,
⑵了解塑性变形的基本原理,
⑶提高对金属材料的性能的认识。
正确理解载荷,内力、应力的含义。
应力的应用意义。
⑴与变形相关的概念
⑵金属的变形
讲授、提问引导、图片展示、举例分析、
一,晶体的缺陷:
1点缺陷:间隙原子,空位原子,置代原子,在材料上表现为:使材料强度,硬度和电阻增加。
2线缺陷:刃位错(如图:P-6),在材料上表现为:使得金属材料的塑性变形更加容易。
3面缺陷:有晶界面缺陷和亚晶界面缺陷,表现为金属的塑性变形阻力增大,内部具有更高的强度和硬度。
因此晶界越多,金属材料的力学性能越好。
第二章金属材料的性能
导入新课:
我们经常见到一些机械零件因受力过大被破坏,而失去了工作能力。
大家能否举些身边的例子呢?
——如:弯曲的自行车辐条,断掉的锯条、滑牙的螺栓等。
机械零件常见的损坏形式有三种:
变形:如铁钉的弯曲。
断裂:如刀具的断崩。
磨损:如螺栓的滑扣。
本次课给大家介绍金属材料损坏的形式、变形概念与本质等等,
精品文档
一、与变形相关的概念
㈠、载荷
1、概念
金属材料在加工及使用过程中所受的外力。
2、分类:根据载荷作用性质分,三种:
⑴、静载荷:大小不变或变化过程缓慢的载荷。
——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。
⑵、冲击载荷:突然增加的载荷。
——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。
⑶、变交载荷:大小、方向或大小和方向随时间发生周期性变化的载荷。
——如:通过在黑板上绘图分析自行车轮转动时辐条的受力。
根据载荷作用形式分,载荷又可以分为拉伸载荷、压缩载荷、弯曲载荷、剪切载荷和扭曲载荷等。
拉伸载荷压缩载荷弯曲载荷
见车工工艺书
P32,
图2—20
精品文档
车削一般轴类工件,尤其是较重的工件时,可将工件的一端用三爪卡盘或四爪单动卡盘夹紧,另一端用后顶尖支顶(见图1),这种装夹方法为一夹一顶装夹。
有两装夹方法如下:
① 为防止进给力的作用使工件产生轴向位移,在主轴前锥孔内装限位。
② 利用工件的台阶进行限位。
4、两顶尖装夹
图2
这种装夹方法适用于较长的工件或必须经过多次装夹才能加工好的工件。
优点 : 装夹方便,不需找正,装夹精度高。
缺点: 刚度低,影响切削用量的提高。
使用一夹一顶装夹和用两顶尖装夹工件时应注意事项: (1) 轴线要一至。
(2) 尾座套筒尽量缩短
(3) 中心孔形状要正确,粗糙度小
精品文档
(6)
见车工工艺书P33
图2——22
. .
二中心钻及顶尖
1、中心孔的形状和作用
A型圆锥孔和圆柱孔组成,锥角为60度
B型在A型上加一个120度护锥。
C型在B型上加一个螺孔。
R型A型相似,把圆锥面改成60度圆弧面。
中心孔折断的原因和预防:
①轴线与旋转中心不一致。
②工件端面不平。
③切削用量选用不合适
④中心钻磨钝
⑤没有充分浇注切削液或排屑不及时。
2、顶尖
常用的顶尖有死顶尖和活顶尖两种,如图3所示。
(固定顶尖)图3 (回转顶尖)
①前顶尖工作时前顶尖随同工件一起旋转,与中心孔无相对运动,因此不产生摩擦。
②后顶尖有固定和回转两种,固定顶尖适用低加工精度较高的工件。
回转顶尖能高速工作,但有积累误差。
.
车工工艺
08数控(1),(2)
2
轴类工件的检测
1.掌握游标卡尺和千分尺的使用。
2.了解游标卡尺和千分尺的结构。
1.游标卡尺的读数方法。
2.分千尺的读数方法。
读数的三个步骤
游标卡尺和千分尺
习题集P17—19
1.游标卡尺和千分尺的检测要求。
2.游标卡尺上量爪和下量爪的应用。
3.读数主法。
讲授与示范
.
一长度单位
国家标准规定,在机械工程图样中所标注的线性尺寸一般以毫米(mm)为单位..
二游标卡尺
游标卡尺是车工最常用的中等精度的通用量具,其结构简单,使用方便。
游标卡尺可分为三用游标尺和双面游标卡尺。
1、游标卡尺的结构:
①由上量爪、下量爪、紧固螺钉、游标、尺身、深度尺、微调查装置、等组成的。
②使用范围:使用时,旋松紧固螺钉即可测量。
下量爪
测量外径和长度,上量爪测量孔径和槽宽,深度尺是测量工件的深度和台阶。
.
2、游标卡尺的读数方法
测量范围分为0 ~125;0 ~150;0 ~200;0 ~300等,以游标的“0”线为基准进行读数的。
分为三个步骤:
①首先读出尺身上游标“0”线左边的整数毫米值。
②用与尺身某刻线对齐的游标上的刻线格数乘以游
标的读数值。
③整数加小数既为被测表面的尺寸。
三千分尺
1、千分尺的结构:
它是由尺架、固定测砧、测微螺杆、测力装置和锁紧装置组成的。
2、千分尺的读数方法
.
千分尺的固定套管上刻基准线,在基准线的上下侧有两排刻线,上下两条相邻刻线的间距为每格0.5mm。
微分筒的外圆锥面上刻有50格刻度,微分筒每转动一格,测微螺杆移动0.01mm,所以千分尺的分度值为0.01mm。
千分尺的读数分为三个步骤:
①读出固定套筒上露出刻线的整数毫米数和半毫米
数。
②读出与固定套管基准线对准的微分筒上的格数,
并乘以分度值0.01mm.
③两项相加即为被测量表面的尺寸。