人教版七年级下册数学不等式 的性质

合集下载

人教版七年级数学下册教案:9.1.2不等式的性质

人教版七年级数学下册教案:9.1.2不等式的性质
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解不等式的基本概念。不等式是表示两个数之间大小关系的式子。它是数学中非常重要的一部分,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了不等式在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调不等式的性质及其应用这两个重点。对于难点部分,如不等式的传递性和乘法性质,我会通过举例和比较来帮助大家理解。
人教版七年级数学下册教案:9.1.2不等式的性质
一、教学内容
人教版七年级数学下册教案:9.1.2不等式的性质
1.不等式的定义与符号;
2.不等式的性质:
(1)传递性:若a>b,b>c,则a>c;
(2)对称性:若a>b,则b<a;
(3)加法性质:若a>b,c为任意实数,则a+c>b+c;
(4)乘法性质:若a>b,c为正实数,则ac>bc;若a>b,c为负实数,则ac<bc;
-解决实际问题,如已知一组数的大小关系,求另一组数的大小关系,训练学生将现实问题转化为数学问题。
2.教学难点
本节课的难点内容包括:
(1)不等式的传递性理解与应用;
(2)不等式乘法性质的灵活运用,特别是负数情况;
(3)将现实问题抽象为不等式问题。
举例解释:
-不等式的传递性,如a>b,b>c,推导出a>c的过程,让学生理解这一性质的应用;
3.培养学生的数学建模能力:引导学生将现实生活中的问题转化为数学不等式问题,培养数学建模能力,增强数学在实际生活中的应用意识。
4.培养学生的数学运算能力:通过不等式的性质进行推导和运算,提高学生的数学运算速度和准确性,增强数学运算能力。

人教版数学七年级下册-不等式的性质

人教版数学七年级下册-不等式的性质

9.1.2不等式性质的性质第一课时一、教学内容解析(一)内容人教版《义务教育数学课程标准(2011版)》七年级下册“9.1.2不等式的性质”(第一课时)(二)内容解析本节课程是在学生学习了等式的性质,掌握了一元一次方程解法的基础上,研究不等式的性质。

不等式的性质是解不等式的重要依据。

因此它是不等式解法的核心内容之一,是本章的基础。

通过类比等式性质,观察具体数值、归纳不等式的性质,既能让学生感受运算中的不变性,获得猜想,又能让学生从具体到抽象,用符号语言表述结论。

理解不等式性质,一是辨析,特别是不同于等式的性质;二是应用,即利用不等式的性质将不等式逐步化为x>a或x<a的形式,解简单的不等式。

基于以上分析,本节课的教学重点为不等式的三个性质二、教学目标设置(一)教学目标1、知识与技能:(1)记住不等式性质(2)能熟练说出不等式变形的依据(3)会用不等式性质对不等式进行合理变形2、过程与方法:(1)通过不等式性质的探索,培养学生的观察,猜想,分析,归纳,概括的逻辑思维能力:(2)通过探索过程,渗透类比,分类讨论的数学思想;3、情感态度与价值观:(1)培养学生的钻研精神,同时加强同学间的合作与交流;(2)让学生获得亲自参与探索研究的情感体验,从而增强学习数学的热情,(二)目标解析达到目标1是:学生通过观察、比较具体数字运算的大小、联系等式性质,归纳出不等式的性质。

达到目标2,3是,学生通过归纳和类比的思想,对性质加深理解,对于变形后的式子,能利用不等式性质判断它们的大小。

三、学生学情分析学生认知基础有:第一,会比较数的大小;第二,理解等式性质;三、知道不等式的概念;第四具备“通过观察、操作并抽象概括等活动获得数学结论”的经验,有一定的抽象概括能力和合情推理能力。

学生认知的主要障碍是:第一,探索不等式性质时,如何与等式性质进行类比;第二,探索不等式性质2,3时,由于学生思维的片面性,会产生考虑不到不等式两边乘或除以同一个负数的情况;第三,运用不等式性质时,由于已有知识经验产生负迁移,学生不理解运用性质3时,为什么要改变不等号的方向,以及在不等式的等价变形时,什么时候要改变不等号的方向。

人教版数学七年级下册第九章《不等式和绝对值不等式》优质课课件

人教版数学七年级下册第九章《不等式和绝对值不等式》优质课课件

=
(x
1)( x
1)(2 x 2
2x
1)
=
(x
1) 2
2( x
1 )2 2
1 2
0
∴A>B
例.求证:如果a>b>0,c>d>0,那么ac>bd。 证明:因为a>b>0, c>d>0, 由不等式的基本性质(3)可得ac>bc, bc>bd, 再由不等式的传递性可得ac>bc>bd
例. 已知a>b>0,c>d>0,求证: a b
3⑴已知 0 x 3 ,求函数 y x(3 2x) 的最大值.
2
⑵求函数 y 2x2 (x 3) 的最小值. x3
⑶求函数 y x2 3 的最小值. x2 2
解: ⑶∵ y x2 3 x2 2 1 x2 2 1
x2 2 x2 2
x2 2
又∵ x2 2 ≥2 ,又∵函数 y t 1 在 t [1, ) 时是增函数.
1.⑴已知 0 x 3 ,求函数 y x(3 2x) 的最大值.
2
⑵求函数 y 2x2 (x 3) 的最小值.⑶求函数 y x2 3 的最小值.
x3
x2 2
解⑴(重要不等式法)∵ 0 x 3 ,∴ x 0且3 2x 0, 2
∴ x(3 2x) = 1 2x(3 2x) ≤ 1 2x 3 2x = 3 2
t
∴当 x 0 时,函数 y x2 2 1 取得最小值 3 2 .
x2 2
2
3⑶求函数 y x2 3 的最小值. x2 2
4
例.某居民小区要建一个八边形的休闲场所,它的主体造 型平面图是由两个相同的矩形ABCD和EFGH构成的面积为

9.1.2 不等式的性质(课件)七年级数学下册(人教版)

9.1.2 不等式的性质(课件)七年级数学下册(人教版)

D.-2m>-2n
2.【数形结合思想】实数a,b,c满足a>b且ac<bc,它们在数轴上的位置可
能是( A )
迁移应用
3.如果a>b,那么下列不等式一定成立的是( D )
A.a+c>b-c
B.ac-1>bc-1
4.用“>”或“<”填空:
(1)若a-b<c-b,则a____c;

(2)若3a>3b,则a____b;
如果 a>b,c>0,那么 ac>bc

(或 >


).
不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
如果 a>b,c<0,那么 ac<bc

(或 <


).
比较上面的性质2和性质3,指出它们有什么区别.再比较等式的性
质和不等式的性质,它们有什么异同?
考点解析
重点
例1.根据不等式的性质,用不等号填空:
在数轴上表示解集如图所示.
迁移应用
3.用不等式表示下列语句并写出解集,并在数轴上表示解集:
(1) x与3的和是非负数;
解:(1) x+3≥0,解集为x ≥-3.
在数轴上表示解集如图所示.
(2)1Biblioteka y≤-4,解集为y≤-12.
3
在数轴上表示解集如图所示.
(2)
1
y的 小于或等于-4.
3
考点解析
难点
a<-1


自学导航
用“>”或“<”填空,并总结其中的规律:




不变
当不等式两边加或减同一个数(正数或负数)时,不等号的方向______.

人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件

人教版数学七年级下册第九章《不等式的性质及绝对值不等式》优课件
方法 2:设 f(x)=x-1+x-2, 则 f(x)=-1,2x1≤+x3≤,2 x<1
2x-3,x>2 画出此函数的图象可知,f(x)≥1, ∴要使关于 x 的不等式x-1+x-2≤a2+a+1 的解 集为空集,则需 a2+a+1<1,解得-1<a<0.
规律总结
1.运用不等式的性质时,一定要注意不等式成立的条 件,若弱化了条件或强化了条件都可能得出错误的结论.使 用不等式性质解题时,要搞清性质成立的条件,明确各步推 理的依据,以防出现解题失误.
命题趋势
本单元的内容,是对必修5的补充和深化,预计2011年, 考查的重点一是绝对值不等式的解法;二是利用不等式的 性质求最值;三是柯西不等式和数学归纳法的应用.考查 知识面比较广,有一定的技巧.
使用建议
本单元内容是作为高考的选考内容,在考试中所占的 分值较少,但对提高同学们的逻辑思维能力、分析解决问 题的能力、数形结合的能力和抽象思维能力作用很大.为 此,在复习中建议注意以下几点:
【点评】 本例较好地体现了利用基本不等式求 最值时应充分考虑成立条件,即一正二定三等.不过 首先需由三点共线推出a、b的关系式,利用斜率公式 可得.
变 式 题 已 知 cos2α + cos2β + cos2γ = 1 , 则 sinαsinβsinγ 的最大值为________.
【思路】利用均值不等式求最值时,一定要注意 “一正二定三相等”,同时还要注意一些变形技巧, 积极创造条件利用均值不等式.常用的初等变形有均 匀裂项、增减项、配系数等. 利用均值不等式还可以证 明条件不等式,关键是如何恰当地利用好条件.本题 中目标函数为积式,而cos2α+cos2β+cos2γ=1为隐含 的条件等式,故需创造条件使各因式之和为定值.

人教版七年级数学下册《不等式的性质》不等式与不等式组PPT优秀课件

人教版七年级数学下册《不等式的性质》不等式与不等式组PPT优秀课件

第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
4.(人教7下P119)用不等式表示下列语句并写出解集,并在数 轴上表示解集: (1)x的3倍大于或等于1; (2)x与3的和不小于3; (3)y与1的差不大于0;
(4)y 的1小于或等于-2.
4
(1)3x≥1,即 x≥1
3
(3)y-1≤0,即 y≤1
数轴略.
(2)x+3≥3,即 x≥0 (4)1y≤-2,即 y≤-8
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q

人教版数学七年级下册《不等式的性质1》教学设计2

人教版数学七年级下册《不等式的性质1》教学设计2

人教版数学七年级下册《不等式的性质1》教学设计2一. 教材分析人教版数学七年级下册《不等式的性质1》是初中数学的重要内容,主要介绍了不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,以及不等式的两边同时乘除同一个负数等。

这些性质为解决实际问题提供了有力的工具。

二. 学情分析学生在七年级上学期已经学习了不等式的基本概念和简单的运算,对于不等式的性质有一定的认知基础。

但学生对于不等式的性质的理解和应用还不够深入,需要通过本节课的学习进一步巩固和提高。

三. 教学目标1.了解不等式的性质,并能运用不等式的性质解决实际问题。

2.培养学生的逻辑思维能力和解决问题的能力。

3.激发学生学习数学的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:不等式的性质及应用。

2.教学难点:不等式的性质的理解和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握不等式的性质。

六. 教学准备1.准备相关的不等式性质的案例和练习题。

2.准备多媒体教学设备,制作课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的性质,例如:“小明比小红高,如果小明再长高5cm,那么他比小红高多少?”引导学生思考不等式的性质。

2.呈现(10分钟)呈现不等式的性质,引导学生观察和总结不等式的性质。

同时,通过多媒体课件展示不等式的性质,加深学生对性质的理解。

3.操练(15分钟)让学生通过小组合作,解决一些关于不等式性质的实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些关于不等式性质的练习题,检验学生对不等式性质的掌握程度。

教师选取部分学生的作业进行讲解和分析。

5.拓展(10分钟)引导学生思考不等式性质在实际生活中的应用,例如:“如何在购物时 maximize your savings?”,让学生体会数学与生活的紧密联系。

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1

人教版数学七年级下册9.1.2《不等式的性质》教学设计1一. 教材分析《不等式的性质》是人教版数学七年级下册9.1.2的内容,本节内容是在学生已经掌握了不等式的概念和基本运算的基础上进行教学的。

本节课的主要内容是让学生了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

这些性质在解决实际问题和进行不等式运算中具有重要作用。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和基本运算,对于不等式的符号和基本运算规则有一定的了解。

但是,对于不等式的性质还没有接触过,需要通过本节课的学习来掌握。

学生的思维方式主要以直观形象思维为主,因此,在教学过程中需要通过具体的例子和实际问题来帮助学生理解和掌握不等式的性质。

三. 教学目标1.了解和掌握不等式的性质,包括不等式的两边同时加减同一个数或式子,不等式的两边同时乘除同一个正数,不等式的两边同时乘除同一个负数,以及不等式的传递性质。

2.能够运用不等式的性质解决实际问题和进行不等式运算。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:不等式的性质及其应用。

2.教学难点:不等式的传递性质的理解和应用。

五. 教学方法1.情境教学法:通过具体的例子和实际问题,引导学生理解和掌握不等式的性质。

2.互动教学法:通过教师提问和学生回答,引导学生主动参与课堂,巩固所学知识。

3.练习法:通过大量的练习题,让学生巩固不等式的性质,提高解题能力。

六. 教学准备1.教学PPT:制作教学PPT,包括不等式的性质的讲解和练习题。

2.练习题:准备一些关于不等式的性质的练习题,用于课堂练习和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,例如:“小明比小红高,小红比小华高,请问小明比小华高吗?”让学生思考并回答,引导学生了解不等式的性质。

人教七年级数学下册-不等式的性质(附习题)

人教七年级数学下册-不等式的性质(附习题)

4
1 y≤-2
4
y≤-8
-8 0
知识点2 不等式的实际应用
某长方体形状的容器长 5cm, 宽学3c习m了,用高不10等cm式.容的性器质解 内原有水不的等高式度,为你3c现m在,能现解准决这 备 向 它 继个续问注题水了.吗用?V ( 单 位 cm3)表示新注入水的体积, 写出 V 的取值范围.
分析 要求新注入水的体积范围,那就要
x+5-5>-1-5 x>-6
(2)4x<3x-5;
4x-3x<3x-5-3x x<-5
-6
0
-5 0
(3)1 .7
7×17
x<6 ; (4) -8x>10
7
x<7×76
8x <10 =- 5 8 -8 4
x<6
x<- 5 4
0
6
-5
0
4
2.用不等式表示下列语句并写出解集,并 在数轴上表示解集.
3
分析
解不等式,就是借助不等式的性质使不
等式逐步化为 x>a 或 x<a(a为常数)的
形式.
(1)x-7>26
解这个不等式要利 用哪个性质?
要利用不等式的性质1.
(1)x-7>26
根据不等式的性质1,不等式两
边加7,不你等能号把的不方等向式不的变解,集所用以:
数x轴-7表+7示>出2来6+吗7?
实心圆表示不等式的取值范围包括这两个数空心圆表示不等式的取值范围不包括这两个数
9.1.2 不等式的性质 第1课时 不等式的性质
情景导入
简单的不等式我们可以直接写 出它的解集. 那复杂的不等式 我们应该怎么办呢?
这节课我们就来学习不等式的 性质,并用它来解不等式.

人教版初一数学下册:不等式及其性质(基础)知识讲解

人教版初一数学下册:不等式及其性质(基础)知识讲解

附录资料:不等式及其性质(基础)知识讲解【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)(3)x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画. 注意:在表示a 的点上画空心圆圈,表示不包括这一点.【高清课堂:一元一次不等式370042 不等式的基本性质】 要点三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<). 要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会. (2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】类型一、不等式的概念1.用不等式表示: (1)x 与-3的和是负数;(2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式. 【答案与解析】解:(1)x -3<0;(2)28%(x+5)≤-6;(3)34m+≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x -y >0;若x 小于y ,则有x -y <0等.举一反三: 【变式】(2015春•陕西校级期末)下列式子:①﹣2<0;②2x+3y <0;③x=3;④x+y 中,是不等式的个数有( ) A .1个 B .2个 C .3个 D .4个【答案】B.类型二、不等式的解及解集2.对于不等式4x+7(x-2)>8不是它的解的是()A.5 B.4 C.3 D.2【思路点拨】根据不等式解的定义作答.【答案】D【解析】解:当x=5时,4x+7(x-2)=41>8,当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.【总结升华】不等式的解的定义与方程的解的定义是类似的,其判定方法是相同的.3.不等式x>1在数轴上表示正确的是()【思路点拨】根据不等式的解集在数轴上表示出来的方法画数轴即可.【答案】C【解析】解:∵不等式x>1∴在数轴上表示为:故选C.【总结升华】用数轴表示解集时,应注意两点:一是“边界点”,如果边界点包含于解集,则用实心圆点;二是“方向”,相对于边界而言,大于向右,小于向左,同时还应善于逆向思维,通过读数轴写出对应不等式的解集.【高清课堂:一元一次不等式370042练习2】举一反三:【变式】如图,在数轴上表示的解集对应的是( ).A.-2<x<4 B.-2<x≤4 C.-2≤x<4 D.-2≤x≤4【答案】B类型三、不等式的性质4.(2015•浙江模拟)若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>【思路点拨】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案. 【答案】C . 【解析】解:A 、不等式的两边都减3,不等号的方向不变,故A 正确; B 、不等式的两边都加3,不等号方向不变,故B 正确; C 、不等式的两边都乘﹣3,不等号的方向改变,故C 错误; D 、不等式的两边都除以3,不等号的方向改变,故D 正确; 故选:C .【总结升华】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 举一反三:【变式】三角形中任意两边之差与第三边有怎样的关系? 【答案】解:如图,设c ,b ,a 为任意一个三角形的三条边,则:b ac ,a c b ,c b a >+>+>+移项可得:a b c ,c a b ,b c a ->->-> 即:三角形两边的差小于第三边.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集. 【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2. 其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①②解①得:4x < 解②得:12x ≥-故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x名学生,根据题意,得:437611 4376132x xx x+>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案. 【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元); 方案2:2000×6+1300×4=17200(元); 方案3:2000×7+1300×3=17900(元). ∴方案1运费最少,应选方案1.。

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计

人教版七年级数学下册9.1.2.2《不等式的性质(2)》教学设计一. 教材分析《不等式的性质(2)》是人教版七年级数学下册第9.1.2节的一部分,主要介绍不等式的性质。

本节课主要让学生了解不等式的性质,掌握不等式的基本性质,并能够运用不等式的性质解决实际问题。

教材通过具体的例子和练习题,帮助学生理解和掌握不等式的性质。

二. 学情分析学生在七年级上册已经学习了不等式的基本概念和性质,对不等式有一定的了解。

但是,对于不等式的性质的深入理解和灵活运用还存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,通过具体的例子和练习题,引导学生深入理解和掌握不等式的性质。

三. 教学目标1.让学生了解不等式的性质,掌握不等式的基本性质。

2.培养学生运用不等式的性质解决实际问题的能力。

3.培养学生逻辑思维和解决问题的能力。

四. 教学重难点1.不等式的性质的理解和运用。

2.解决实际问题时的不等式应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和解决问题,深入理解和掌握不等式的性质。

2.使用多媒体教学手段,通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。

3.采用小组合作学习的方式,让学生在讨论和合作中,共同解决问题,提高学生的合作能力和解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生回顾不等式的基本概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)呈现不等式的性质(2),通过动画和图形,生动形象地展示不等式的性质,帮助学生理解和记忆。

3.操练(15分钟)让学生通过解决实际问题,运用不等式的性质,巩固所学知识。

在此过程中,引导学生运用不等式的性质,解决实际问题,培养学生的应用能力。

4.巩固(10分钟)让学生完成一些练习题,检查学生对不等式的性质的掌握程度,并对学生的错误进行指导和纠正。

人教版-数学-七年级-下册-不等式的性质

人教版-数学-七年级-下册-不等式的性质

C. a<1
D. a<0
a<1
拓展提升
2.将物体“▲”的质量用 a 表示,物体“●”的质量用 b 表示, 现已知 a<b,则下列四个天平的倾斜度一定正确的是( B )
b+a
a+a
拓展提升
3.若实数 a,b,c 在数轴上的位置如图所示,则下列不
等式成立的是( B )
c<0<a<b
A. ab<ac c<b,a>0 B. ac>bc a<b,c<0 C. a+c>b+c b>a,c<0 D. a+b<c+b a>c,b>0
拓展提升
-1 0
拓展提升
3.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟” 即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物. 2020年,某省谷子种植面积已达 324 万亩,平均亩产量约为 320 kg.2021年,若该省谷子的平均亩产量仍保持 320 kg 不变,则要 使谷子的年总产量不低于 108 万吨,该省至少应再多种植多少万 亩的谷子?
我们知道解方程需要依据等式的性质,同样解不等式也 可以依据不等式的性质进行,本节课我们就来学习怎样 利用不等式的基本性质解不等式.
新知探究
知识点:不等式的性质的应用
分析:解不等式,就是要借助不等式的性质使不等式逐 步化为 x>a 或 x<a (a 为常数)的形式.
新知探究
(1) x-7>26; 解:(1)根据不等式的性质1,不等式两边加 7,不等号 的方向不变, 所以 x-7+7>26+7, 即 x>33. 这个不等式的解集在数轴上的表示如图所示:

人教版七年级数学下册《一元一次不等式》知识点

人教版七年级数学下册《一元一次不等式》知识点

不等式知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。

2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4.解不等式:求不等式的解集的过程,叫做解不等式。

5.用数轴表示不等式的解集。

二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。

2.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。

3.当x 时,代数式52+x 的值不大于零4..若x <1,则22+-x 0(用“>”“=”或“”号填空)5.不等式x 27->1,的正整数解是6.不等式x ->10-a 的解集为x <3,则a7.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质 的含量为 _____ g三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2.解一元一次不等式的一般步骤: (1)去分母 (2)去括号 (3)移项(4)合并同类项 (5)将x 项的系数化为1例:一、 判断题(每题1分,共6分)1、 a >b ,得a +m >b +m ( )2、 由a >3,得a >23 ( ) 3、 x = 2是不等式x +3>4的解 ( )4、 由-21>-1,得-2a >-a ( ) 5、 如果a >b ,c <0,则ac 2>bc 2 ( )6、 如果a <b <0,则ba <1 ( ) 二、 填空题(每题2分,共34分)1、若a <b ,用“>”号或“<”号填空:a -5 b -5; -2a -2b ;-1+2a -1+2b ;6-a 6-b ; 2、x 与3的和不小于-6,用不等式表示为 ;3、当x 时,代数式2x -3的值是正数;4、代数式41+2x 的不大于8-2x 的值,那么x 的正整数解是 ; 5、如果x -7<-5,则x ;如果-2x >0,那么x ; 6、不等式ax >b 的解集是x <a b ,则a 的取值范围是 ; 7、一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为 ;8、点A (-5,y 1)、B (-2,y 2)都在直线y = -2x 上,则y 1与y 2的关系是 ;9、如果一次函数y =(2-m )x +m 的图象经过第一、二、四象限,那么m 的取值范围是 ;易错点分析:例 解关于x 的不等式(12-a )x >1-2a . 错解:去分母,得(1-2a )x >2(1-2a ).将不等式两边同时除以(1-2a ),得x >2. 错因剖析:在利用不等式的性质解不等式时,如果不等式两边同乘(或除以)的数是含字母的式子,应注意讨论含字母的式子的符号.本例中不等式两边同乘(或除以)的(1-2a ),在不确定取值符号的情况下进行约分,所以出错.正解:将不等式变形,得(1-2a )x >2(1-2a ).(1)当1-2a >0时,即a <12时,x >2; (2)当1-2a =0时,即a =12时,不等式无解; (3)当1-2a <0时,即a >12时,x <2.。

_第九章 9-1-2 不等式的性质 第2课时 含“≤”“≥”的不等式 课件(共1七年级下册数学人教版

_第九章 9-1-2 不等式的性质 第2课时 含“≤”“≥”的不等式 课件(共1七年级下册数学人教版

例2 某长方体形状的容器长 5 cm,宽 3 cm,高 10 cm,容器
内原有水的高度为 3 cm,现准备向它继续注水.用V(单位:
cm3)表示新注入水的体积,写出 V 的取值范围. 容器的总体积为: 3×5×10 被占用的容器的体积为: 3×5×3
根据题意有: V+3×5×3≤3×5×10
解:新注入水的体积 V 与原有水的体积的和
9.1.2 不等式的性质 第2课时 含“≤≥”的不等式
1.进一步了解不等式的概念,认识 几种不等号的含义;
2.学会并准确运用不等式表示数量 关系,形成在表达中渗透数形结合的思。
目标导学:含“≤”“≥”的不等式
在表示两个数量大小关系时,我们会经常用到 像 a≥b 或 a≤b 这样的式子,如一天内的温度变化 t≥19℃ 且 t≤28℃.
课堂练习
1.用不等式的性质解下列不等式,并在 数轴上表示解集:
(1)x+5>–1; (2)4x<3x–5;
(3) 17x<67;
(4)– 8x>10.
解:(1)根据不等式的性质1,不等式两边减5,不等号的方向不变,
x+5–5>–1–5 x>–6
–6
0
2. 小鸣就读的学校上午第一节课的上课时间是 8 点. 小鸣家距学校有 2 千米,而他的步行速度为每小时 10 千米. 那么,小鸣上午几点从家里出发才能保证不迟到?
不等式的 基本性质1

如果a>b,那
么a+c>b+c,
应 用 性
a-c>b-c

不等式
不等式 如果 a b, c 0,

的基本 性质
基本性 质2

那么ac

人教版数学七年级下册 9-1-2不等式的性质-课件(1)

人教版数学七年级下册 9-1-2不等式的性质-课件(1)

解: (4)根据不等式的性质1,两边都加上x得:
-4x+x<3-x+x
即-3x<3
根据不等式的性质3,两边同时除以-3得:
x>-1
学习小结
• 通过本节课的学习,谈谈你 的收获?(知识、方法、感悟 等)
作业:
1、课本P120第3题、第4题、第5 题、第6题 2、大册P74 3、小册P51
得 x ﹥< -1
第一关:牛刀小试
1、如果x+5>4,那么两边都减__去__5_可得x >-1 .
2、在-7<8的两边都加上9可得__2_<__1_7___. 3、在-8<0的两边都除以8可得_-__1_<__0____.
4、在不等式-8<0的两边都除以-8可得1_>___0__.
5、在不等式-3x<3的两边都除以-3可得__x___.1
2.由mx<m,得x>1,则m应满足( A )
A. m<0
B. m>0 C.m≤0 D.m≥0
3.若m是有理数,则-7m与3m的大小关系应( D )
A.-7m<3m B.-7m>3m C.-7m≤3m D.不能确定
第五关:身轻如燕
根据不等式的基本性质,你能把下列不等
式化成 x< a或 x> a的形式吗?
(3)1 x >5
2
(4) -4 x < 3 - x
解: (2)根据不等式的性质3,两边都除以-2得:
2x 2
<
3 2
即 :x 3 2
第五关:身轻如燕
根据不等式的基本性质,你能把下列不等
式化成 x< a或 x> a的形式吗?
(1) x -5 >-1 (2) - 2 x > 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1.2不等式的性质教学设计
里耶民中向顺艳
一、教材分析
(一)本节课在教材中的地位和作用:
本节课是人教版第九章9.1.2不等式的性质第一课时的内容.它是在数(式)及其运算的系统中,在掌握等式的基本性质的基础上,类比等式的基本性质,通过考察“运算中的不变性”而获得不等式的基本性质的过程,本课时是本章重要基础性内容之一.
生活中的数量关系不外乎两种:相等关系与不等关系,通过这堂课的学习,学生将对数量关系的基本性质有一个完整的认识,形成一个知识体系.
(二)教学目标
1:知识与技能:
经历探索不等式的基本性质的过程,理解并掌握不等式的基本性质.
2:过程与方法:
在不等式基本性质的探索过程中,渗透类比思想方法,培养合情推理能力.初步体会不等式与等式的异同。

3:情感态度与价值观:
通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性。

(三)教学重点与难点
教学重点:理解并掌握不等式的基本性质.
教学难点:正确运用不等式的性质。

(四)课时安排:一课时新授课
二、学情分析:
学生的认知基础有:第一,,理解等式性质并知道等式性质是解方程的依据;第二具备“通过观察、操作并抽象概括等活动获得数学结论”的体会,有一定的抽象概括能力和数学建模能力和合情推理归纳能力.
三、教法:引导探究法
教法分析:
本节课的教学设计意在让学生通过与旧知识——等式的基本性质的类比中,通过自主探索与合作交流获得新知.所以,在教学过程中,要特别注意安排学生经历猜想——验证——归纳的完整的数学思维过程,让学生在独立思考的基础上进行交流活动,并注重合情推理能力的培养.
学法分析:自主探究、合作交流
四、教学过程
师:生活中的数量关系不外乎两种:相等关系与不等关系,不等关系在我们现实生活中普遍存在着.通过上一节课的学习,我们知道在数学中通常用不等式来表示不等关系,今天我们所要研究的内容——不等式的性质.
一、复习引入
回忆思考
1、观察下面这几个式子,完成下面的填空。

∵a=b
∴a±3=b±3
a±(x?+2y )=b±(x?+2y )
等式的基本性质1:等式的两边都加上(或减去)_____或_____,等式仍然成立。

2、继续观察下面的这几个式子,完成下面的填空。

∵a=b
∴3a=3b
a/4=b/4
等式的基本性质2:等式的两边都乘以(或除以)_____(不为0的数),等式仍然成立。

师:类比等式的基本性质,不等式有没有类似的性质呢?
二、探究新知:用“>”或“<”填空,并总结其中的规律: 探究1:
不等式的性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

如果a>b ,那么a+c>b+c(或a-c>b-c)
探究2:
不等式的性质2: 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变
如果a>b,c>0 ,那么ac>bc,a/c> b/c
探究3:
不等式的性质3: 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

如果a>b,c<0 ,那么ac<bc,a/c<b/c 讨论:
①不等式的两边都乘以0,会出现什么样的结果?
②比较性质2和性质3的区别?
③不等式的性质与等式的性质有什么相同点、不同点?
三、例题:根据不等式性质,用“>”或“<”填空:
(1)a+3_____b+3;(a<b); (2)2a_____2b;(a>b);
(3) a /-3 _____ b /-3 (a>b); (4)a-4_____b-4 (a -b>0) ;
(5)若a>0,b>0,则ab_____0; (6)若b<0,则a+b______a;
(7)当a<0时,b_____0时,ab>0.
四、练一练,比一比。

如果a>b,那么:(1)a-3_____b-3 (不等式性质____ )
(2)2a____2b (不等式性质____ )
(3)-3a ____-3b (不等式性质____ )
(4)a-b ____ 0 (不等式性质____ )
五、巩固练习1:教材117页练习题
2:拓展延伸
已知a>b,能否推出ac2>bc2?
已知ac2>bc2,能否推出a>b?
六、课堂小结:
不等式的基本性质是什么?
不等式的性质和等式的基本性质相比,有什么相同和不同之处?
本节课你还有什么收获?
七、作业布置教材120页第4题。

相关文档
最新文档