第6、7讲-纳米材料表征方法分析(1)

合集下载

纳米材料的表征方法

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。

纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。

评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征XRD,ED,FT-IR, Raman,DLS2 、成份分析AAS,ICP-AES,XPS,EDS3 、形貌表征TEM,SEM,AFM4 、性质表征-光、电、磁、热、力等UV-Vis,PL,Photocurrent1. TEMTEM为透射电子显微镜,分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构。

TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。

The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1].一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。

High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

2. SEMSEM 表示扫描电子显微镜,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构和电子结构等等。

纳米材料的表征

纳米材料的表征
红外光谱研究发现了季铵化吡啶环的特征吸收峰; 包覆巯基乙酸的CdSe 在1390cm-1 的吸收峰移动到
1377cm-1 处,说明通过静电作用实现了乙烯基吡啶 季铵盐PVPNI 与包覆巯基乙酸的CdSe 两者的有效 复合。
二、纳米材料的粒度分析
1、粒度分析的概念
对于纳米材料,其颗粒大小和形状对材料的性能起着决定 性的作用。因此,对纳米材料的颗粒大小和形状的表征和 控制具有重要的意义。
样品槽
样品台
X射线衍射分析
物质状态鉴别 XRD物相定性分析 物相定量分析 晶粒大小的测定原理 介孔结构测定; 多层膜分析
物质状态的鉴别
不同的物质状态对X射线的衍射作用是不相同的,因 此可以利用X射线衍射谱来区别晶态和非晶态。
不同材料状态以及相应的XRD谱示意图
物相定性分析的基本步骤
(1)制备待分析物质样品; (2)用衍射仪法或照相法获得样品衍射花样; (3)检索标准卡片; (4)核对标准卡片与物相判定。
第七章 纳米材料的测试与表征
一、纳米材料的成份分析 二、纳米材料的粒度分析 三、纳米材料的结构分析 四、纳米材料的形貌分析 五、纳米材料的界面分析
纳米材料分析的意义
纳米技术与纳米材料属于高技术领域,许多研究人员 及相关人员对纳米材料还不是很熟悉,尤其是对如何 分析和表征纳米材料,获得纳米材料的一些特征信息。
电子显微镜图像法,等。
其中激光散射法具有速度快、测量范围广、
数据可靠、重复性好、自动化程度高、便于 在线测量等优点。
3、光散射法(light scattering)
针对粒度范围: 激光衍射式:适用>5m 激光动态光散射式: 使用< 5m
颗粒的形状、分布影响测量结果(模型建立在颗 粒为球形、单分散条件上,实际上被测颗粒多 为不规则形状并呈多分散性)

纳米材料的测试与表征精品PPT课件

纳米材料的测试与表征精品PPT课件
• 因此确定纳米材料的元素组成测定纳米材料中杂质 的种类和浓度是纳米材料分析的重要内容之一。
Advaced Energy Material Lab
6
1核壳结构的CdTe-CdSe 量子点 2 核壳结构的CdSe-CdTe 量子点 3 均相结构的CdSe1-XTeX 量子点 4 梯度结构的CdSe1-XTeX 量子点 上述四种量子点的平均直径为5.9nm 组成为 CdSe0.6Te0.4
同位素分析;
Advaced Energy Material Lab
13
X-射线荧光光谱分析法
• 是一种非破坏性的分析方法,可对固体样品直接 测定。在纳米材料成分分析中具有较大的优点;
• X 射线荧光光谱仪有两种基本类型波长色散型和 能量色散型;
• 具有较好的定性分析能力,可以分析原子序数大 于3的所有元素。
Advaced Energy Material Lab
15
电子探针分析方法
Advaced Energy Material Lab
12
电感耦合等离子体质谱法
• ICP-MS 是利用电感耦合等离子体作为离子源的 一种元素质谱分析方法;该离子源产生的样品离 子经质谱的质量分析器和检测器后得到质谱;
• 检出限低(多数元素检出限为ppb-ppt级) • 线性范围宽(可达7个数量级) • 分析速度快(1分钟可获得70种元素的结果) • 谱图干扰少(原子量相差1可以分离),能进行
谱法TOF-SIMS
能谱分析 主要包括X 射线光电子能谱XPS 和俄歇电子能谱法AES
Advaced Energy Material Lab
9
体相成分分析方法
• 纳米材料的体相元素组成及其杂质成分的分析方 法包括原子吸收原子发射ICP, 质谱以及X 射线 荧光与衍射分析方法;

纳米材料-第二章 纳米材料的表征方法

纳米材料-第二章 纳米材料的表征方法
化学减薄法
1.此法是利用化学溶液对物质的溶解作用达到减薄 样品的目的。
2.通常采用硝酸,盐酸,氢氟酸等强酸作为化学减 薄液,因而样品的减薄速度相当快。
透射电子显微镜样品制备纳米材料 Nanomaterials
制样步骤: a.将样品切片,边缘涂以耐酸漆,防止边缘因溶 解较快而使薄片面积变小; b.薄片洗涤,去除油污,洗涤液可为酒精,丙酮 等; c.将样品悬浮在化学减薄液中减薄; d.检查样品厚度,旋转样品角度,进行多次减薄 直至达到理想厚度,清洗。
透射电子显微镜样品制备纳米材料 Nanomaterials
制样步骤:
a.将样品捣碎; b.将粉末投入液体,用超声波振动成悬浮液,液 体可以是水,甘油,酒精等,根据试样粉末性质 而定; c.观察时,将悬浮液滴于附有支持膜的铜网上, 待液体挥发后即可观察。
透射电子显微镜样品制备纳米材料 Nanomaterials
• 它和物镜一样是短焦距强磁透镜。但是对投影 镜精度的要求不像物镜那么严格,因为它只是 把物镜形成的像做第三次放大。
• 具有很大的场深和焦深.
场深是指在保持象清晰的前提下,试样在物平面上下沿镜 轴可移动的距离,或者说试样超越物平面所允许的厚度。 焦深是指在保持象清晰的前提下,象平面沿镜轴可移动的 距离,或者说观察屏或照相底版沿镜轴所允许的移动距离 。
M M0 MI MP
需要提及的一点是: 增加中间镜的数量,可以增加放大倍数;但当达到显微镜有效放大倍 数时,再增加中间镜的数量已是徒劳的;因为此时显微镜所能提供的 分辨率已经达到极限,纵使继续放大,也无法分辨出更紧密的两点。
(3)投影镜
纳米材料 Nanomaterials
• 投影镜的功能是把中间镜形成的二次像及衍射 谱放大到荧光屏上,成为试样最终放大图像及 衍射谱。

纳米材料的表征方法和工具介绍

纳米材料的表征方法和工具介绍

纳米材料的表征方法和工具介绍随着纳米科技的迅速发展,纳米材料的研究和应用越来越重要。

然而,纳米材料的特殊性质决定了常规材料表征方法的局限性,因此需要采用专门的方法和工具来对纳米材料进行表征。

本文将介绍几种常用的纳米材料表征方法和工具,帮助读者更好地了解纳米材料的特性。

在纳米材料的表征中,最常用的方法之一是透射电子显微镜(TEM)。

TEM利用电子束替代了可见光,可以提供比光学显微镜更高的分辨率。

通过将样品置于电子束中,可以观察纳米材料的形貌、尺寸和结构等。

此外,TEM还常常结合能量散射谱(EDS)分析,用于确定纳米材料的元素成分和组成。

TEM是一种非常强大的工具,可以提供关于纳米材料的详细微观结构信息。

扫描电子显微镜(SEM)是另一种常用的纳米材料表征工具。

不同于TEM,SEM可以提供更大的视野,并且可以用于观察表面形貌和表面组成。

SEM使用电子束扫描样品表面,通过测量电子的反射和散射来生成显微图像。

此外,SEM还可以通过探针激发技术(EDS)分析表面的元素成分。

与TEM相比,SEM更适用于纳米材料的表面形貌和排列的研究。

除了电子显微镜,纳米材料的结构表征也可以借助X射线衍射(XRD)来实现。

XRD是一种基于材料对X射线的散射规律进行分析的技术。

通过测量样品对X射线的散射强度和角度,可以确定纳米材料的结晶结构、晶粒大小和晶格参数等信息。

XRD常用于研究纳米材料的晶体结构和相变行为,对于纳米化材料的结构调控非常有价值。

此外,拉曼光谱也是一种常用的纳米材料表征方法。

拉曼光谱通过测量光的散射来获得样品的振动信息,可以得到纳米材料的分子结构、纳米颗粒的大小以及纳米结构的应变等信息。

相较于其他表征方法,拉曼光谱具有非侵入性、无需样品处理等优点,适用于对纳米材料进行原位、非破坏性的表征。

特别是在研究碳纳米管、纳米颗粒和纳米二维材料时,拉曼光谱被广泛应用。

另外,热重分析(TGA)也是表征纳米材料性质的重要方法之一。

纳米材料的表征方法与技巧

纳米材料的表征方法与技巧

纳米材料的表征方法与技巧纳米材料是一种具有特殊尺寸和结构的材料,其尺寸在纳米级别(10^-9米)范围内。

由于纳米材料具有独特的物理、化学和力学特性,因此对其进行准确的表征是非常重要的。

本文将介绍几种常用的纳米材料表征方法与技巧,以帮助读者更好地了解和研究纳米材料。

1. 扫描电镜(SEM)扫描电镜(Scanning Electron Microscopy,SEM)是一种常用的表征纳米材料形貌和表面形态的方法。

SEM利用电子束照射样品,然后测量样品放出的次级电子、反射电子或散射电子,通过扫描样品的表面,获得高分辨率的表面形貌信息。

SEM能够对纳米材料进行直接观察和分析,可以得到材料的形貌、尺寸、结构以及表面粗糙度等信息。

2. 透射电子显微镜(TEM)透射电子显微镜(Transmission Electron Microscopy,TEM)是一种用于观察纳米材料内部结构的高分辨率技术。

TEM利用电子束通过样品的方式,然后测量透射电子的强度,从而获得材料的原子级别结构和晶格信息。

TEM对于研究纳米材料的晶体结构、晶粒尺寸和界面特性等方面具有很高的分辨率和灵敏度。

3. X射线衍射(XRD)X射线衍射(X-ray Diffraction,XRD)是一种用于分析纳米材料结晶性质的重要手段。

通过照射样品表面的X射线,通过分析和测量样品对X射线的衍射图样,可以确定样品的晶体结构、晶体相对应的晶格参数以及晶粒尺寸等信息。

XRD对于研究纳米材料的晶体结构和晶体相变等方面具有很高的准确性和可靠性。

4. 傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是一种用于表征纳米材料的化学组成和官能团的方法。

通过测量样品在红外区域的吸收和散射光谱,可以确定样品中存在的化学键和官能团类型,并帮助研究者了解纳米材料的结构和表面性质。

FTIR对于研究纳米材料的化学组成、官能团修饰以及材料与其他物质之间的相互作用具有重要意义。

纳米材料的测试与表征

纳米材料的测试与表征
如样品制备的分散性,直接会影响电镜观察质量 和分析结果 • 电镜取样量少,会产生取样过程的非代表性
高分子纳米微球研究
沉降法粒度分析
沉降法的原理是基于颗粒在悬浮体系时,颗粒本 身重力(或所受离心力)、所受浮力和黏滞阻力三 者平衡,并且黏滞力服从斯托克斯定律
(F=6πrηv)来实施测定的,此时颗粒在悬浮体
• STM通常被认为是测量表面原子结构的工具,具 有直接测量原子间距的分辨率。 STM还可以操纵 单个原子和分子
STM像
原子操纵
原子力显微镜AFM
• 原子力显微镜(AFM), 或者扫描力显微镜 (SFM)
• 跟所有的扫描探针显 微镜一样,AFM使用 一个极细的探针在样 品表面进行光栅扫描, 探针是位于一悬臂的 末端顶部,该悬臂可 对针尖和样品间的作 用力作出反应
原子吸收光谱法(AAS)
• 根据蒸气相中被测元素的基态原子对其原子共振 辐射的吸收强度来测定试样中被测元素的含量;
• 适合对纳米材料中痕量金属杂质离子进行定量测 定,检测限低 ,10-10-10-14 g/cm3
• 测量准确度很高 ,1%(3-5%) • 选择性好 ,不需要进行分离检测 • 分析元素范围广 ,70多种 • 不能同时进行多元素分析
• 其特点是样品使用量少,不仅可以获得样品的形 貌,颗粒大小,分布以还可以获得特定区域的元 素组成及物相结构信息
高分辨TEM
• HRTEM是观察材料微观结构的方法。不仅 可以获得晶包排列的信息,还可以确定晶 胞中原子的位置。
• 200KV的TEM点分辨率为0.2nm,1000KV 的TEM点分辨率为0.1nm。
电感耦合等离子体发射光谱法(ICP)
• ICP是利用电感耦合等离子体作为激发源,根据处于激发 态的待测元素原子回到基态时发射的特征谱线对待测元素 进行分析的方法

纳米材料-第二章 纳米材料的表征方法

纳米材料-第二章 纳米材料的表征方法

透射电子显微镜样品制备
纳米材料 Nanomaterials
制样步骤:
a. 将样品手工或机械打磨到30~50μm。 b. 用环氧树脂将铜网粘在样品上,用镊子将大于铜网四周
操作控制系统
纳米材料 Nanomaterials
提供透镜组件线圈的电流电压 保证电流电压稳定,防止因电压波动引起色
差,从而影响分辨率 提供各种操作模式的选择和切换 提供系统的预警和自动保护装置
透射电子显微镜样品制备
纳米材料 Nanomaterials
TEM应用的深度和广度一定程度上取决
透射电子显微镜样品制备
纳米材料 Nanomaterials
化学减薄法的缺点: 1.减薄液与样品反应,会发热甚至冒烟; 2.减薄速度难以控制; 3.不适于溶解度相差较大的混合物样品。
透射电子显微镜样品制备
纳米材料 Nanomaterials
双喷电解减薄法 1.此法是通过电解液对金属样品的腐蚀,达到减薄目的 。 2.减薄步骤: a.用化学减薄机或机械研磨,制成薄片, 并冲成3mm直 径的圆片,抛光; b.将样品放入减薄仪,接通电源; c.样品穿孔后,光导控制系统会自动切断电源,并发出 警报。此时应关闭电源,马上冲洗样品,减小腐蚀和污 染。
纳米材料 Nanomaterials
成像系统
纳米材料 Nanomaterials
材料研究中,希望弄清很小区域的结构和
形貌,既要观察其显微像(形貌),又要 得到其衍射花样(分析结构)。 衍射状态与成像状态的变换是通过改变中 间镜的激磁电流实现的。 先观察显微像,再转换到衍射花样。
电子光学系统 照明系统
M M0 M I M P
需要提及的一点是: 增加中间镜的数量,可以增加放大倍数;但当达到显微镜有效放大倍 数时,再增加中间镜的数量已是徒劳的;因为此时显微镜所能提供的 分辨率已经达到极限,纵使继续放大,也无法分辨出更紧密的两点。

纳米材料的一般表征方法

纳米材料的一般表征方法

纳米材料的一般表征方法纳米材料的表征可以分为以下几个部分:形貌表征:透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM);成份分析:X射线光电子能谱(XPS),电感耦合等离子体原子发射光谱法(ICP-AES),原子吸收分光光度计(AAS);结构表征:红外光谱(FT-IR),拉曼光谱(Raman),动态光散射(DLS)、纳米颗粒跟踪分析(NTA)、X射线衍射(XRD);性质表征-光、电、磁、热、力等:紫外-可见分光光度法(UV-Vis),光致发光(PL)。

1、形貌表征:(1)透射电子显微镜(TEM)是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射,可以形成明暗不同的影像,进而可以用来呈现纳米材料形貌的一种表征方式。

TEM还可以配备高分辨率透射电子显微镜(High-Resolution TEM),可以用于观察纳米材料的晶格参数,进而推断其晶型。

而有的纳米材料由于结构的特殊性,需要使用冷冻电镜(Cryo-TEM)来对其形貌结构进行观察表征。

(2)扫描电子显微镜(SEM)利用聚焦的很窄的高能电子束来扫描样品,通过电子束与样品间的相互作用,来激发各种物理信息,对这些信息进行收集、放大、再成像以达到对样品微观形貌表征的目的。

SEM也广泛用于纳米材料形貌的表征分析。

(3)原子力显微镜(AFM)可以在大气和液体环境下对样品进行纳米区域的物理性质进行探测(包括形貌),以高倍率观察样品表面,而不需要进行其他制样处理,可用于几乎所有样品(对表面光洁度有一定要求),就可以得到样品表面的三维形貌图象。

2、成份分析:(1)X射线光电子能谱(XPS)为化学研究提供分子结构和原子价态方面的信息,纳米材料通过XPS分析其原子价态,这些信息往往与其自身性能密切相关。

(2)ICP-AES主要用来测定岩石、矿物、金属等样品中数十种元素的含量。

(3)AAS可以用来测定样品中的元素含量。

纳米材料的表征方法(1)

纳米材料的表征方法(1)

煤灰/硫化物混合颗粒的TEM图象
Sol-gel法合成羟磷灰石, 可分辨出毛发状、长柱状的晶体 轮廓, 但晶面发育不明显 (TEI)
(a) (b)
❖5.2.3 扫描电镜(Scanning Electronic Microscopy, SEM)
❖JSM-6301F场发射扫描电镜
❖SEM image (beetle)
5.1.2. 粒度测试的常用方法
传统方法:显微镜法(0.8-150μm用光学显微镜,小于0.8微
米用电子显微镜)、筛分法、沉降法、电感应法
新发展的方法:激光衍射法、激光散射法、光子相干光谱法
(1nm-5μm)、电超声粒度分析法(5nm-100μm)、电子显 微镜图像法、基于颗粒布朗运动的粒度测量和质谱法、激 光粒度分析法
Bi-系超导氧化物的堆积缺陷层调整 Stacking fault Layer modulation
Electron Diffraction Pattern
晶体
多晶体
非晶体
一、成像原理
透射电子显微镜中,物镜、中间镜,总的放大倍 数就是各个透镜倍率的乘积。
M = M0.Mi.Mp
透镜的成像作用可以分为两个过程: 第一个过程是平行电子束遭到物的散射作用而分裂成为
TEM简介:
高分辨电镜(HRTEM)
透射扫描电镜(STEM)
分析型电镜(AEM)等等。
入射电子束(照明束)也有两种主要形式:
平行束:透射电镜成像及衍射
会聚束:扫描透射电镜成像、微分析及微衍射
透射电子显微镜由三大部分组成: 电子光学系统、真空系统、供电控制系统。
JEM-2010透射电镜
5.2 纳米材料的电子显微分析
5.2.1 电子显微镜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米科学大体包括纳米电子学、纳米机械学、纳米材料 学、纳米生物学、纳米光学、纳米化学等领域。
2020/1/18
3
纳米材料分析的意义
纳米技术与纳米材料属于高技术领域,许多研究人员及相 关人员对纳米材料还不是很熟悉,尤其是对如何分析和表 征纳米材料,获得纳米材料的一些特征信息。
主要从纳米材料的成份分析,形貌分析,粒度分析,结构 分析以及表面界面分析等几个方面进行了简单的介绍。
2020/1/18
25
电镜法粒度分析
优点是可以提供颗粒大小,分布以及形状的数据,此外, 一般测量颗粒的大小可以从1纳米到几个微米数量级。
并且给的是颗粒图像的直观数据,容易理解。 但其缺点是样品制备过程会对结果产生严重影响,如样品
制备的分散性,直接会影响电镜观察质量和分析结果。
电镜取样量少,会产生取样过程的非代表性。
2020/1/18
15
电子探针分析方法
电子束与物质的相互作用也可以产生特征的X-射线根 据X-射线的波长和强度进行分析的方法称为电子探针 分析法;
微区分析能力,1微米量级; 分析准确度高 ,优于2%; 分析灵敏度高,达到10-15g ,100PPM-1%; 样品的无损性 ;多元素同时检测性; 可以进行选区分析; 电子探针分析对轻元素很不利 。
沉降法的原理是基于颗粒在悬浮体系时,颗粒本身重力 (或所受离心力)、所受浮力和黏滞阻力三者平衡,并且 黏滞力服从斯托克斯定律来实施测定的,此时颗粒在悬 浮体系中以恒定速度沉降,且沉降速度与粒度大小的平 方成正比 ;
10nm~20μm的颗粒 。
2020/1/18
22
光散射法(Light Scattering)
1. CdSe在复合纳米粒子中所占比例为87.8%,其他 12.2%可能为包覆在CdSe 表面的有机修饰层。
2. 红外光谱研究发现了季铵化吡啶环的特征吸收峰; 3. 包覆巯基乙酸的CdSe 在1390cm-1 的吸收峰移动到
1377cm-1 处,说明通过静电作用实现了乙烯基吡 啶季铵盐PVPNI 与包覆巯基乙酸的CdSe 两者的有 效复合。
2020/1/18
30
X射线衍射结构分析
XRD 物相分析是基于多晶样品对X射线的衍射效应,对 样品中各组分的存在形态进行分析。测定结晶情况,晶 相,晶体结构及成键状态等等。 可以确定各种晶态组分 的结构和含量。
灵敏度较低,一般只能测定样品中含量在1%以上的物 相,同时,定量测定的准确度也不高,一般在1%的数 量级。
激光衍射式粒度仪仅对粒度在5μm以上的样品分析较准确, 而动态光散射粒度仪则对粒度在5μm以下的纳米样品分析 准确。
激光光散射法可以测量20nm-3500μm的粒度分布,获得 的是等效球体积分布,测量准确,速度快,代表性强,重 复性好,适合混合物料的测量。
利用光子相干光谱方法可以测量1nm-3000nm范围的粒度 分布,特别适合超细纳米材料的粒度分析研究。测量体积 分布,准确性高,测量速度快,动态范围宽,可以研究分 散体系的稳定性。其缺点是不适用于粒度分布宽的样品测 定。
2020/1/18
8
纳米材料成份分析种类
光谱分析
主要包括火焰和电热原子吸收光谱AAS,电感耦合等离子 体原子发射光谱ICP-OES,X-射线荧光光谱XFS 和X-射线 衍射光谱分析法XRD。 质谱分析
主要包括电感耦合等离子体质谱ICP-MS 和飞行时间二次 离子质谱法TOF-SIMS 。 能谱分析
2020/1/18
16
电镜-能谱分析方法
利用电镜的电子束与固体微区作用产生的X射线进行 能谱分析(EDAX);
与电子显微镜结合(SEM,TEM),可进行微区成 份分析;
定性和定量分析,一次全分析。
2020/1/18
17
纳米成份分析案例
ICP-OES 研究CdSe 纳米粒子的组成。
力图通过纳米材料的研究案例来说明这些现代技术和分析 方法在纳米材料表征上的具体应用。
2020/1/18Fra bibliotek4纳米材料的成份分析
成分分析的重要性
纳米材料的光电声热磁等物理性能与组成纳米材料的 化学成分和结构具有密切关系; 1. TiO2纳米光催化剂掺杂C、N例子说明。 2. 纳米发光材料中的杂质种类和浓度还可能对发光器 件的性能产生影响据报;如通过在ZnS 中掺杂不同 的离子可调节在可见区域的各种颜色。
2020/1/18
18
纳米粒子ICP-MS直接测定
2020/1/18
19
纳米材料的粒度分析
粒度分析的概念
对于纳米材料,其颗粒大小和形状对材料的性能起着决 定性的作用。因此,对纳米材料的颗粒大小和形状的表 征和控制具有重要的意义。
一般固体材料颗粒大小可以用颗粒粒度概念来描述。但 由于颗粒形状的复杂性,一般很难直接用一个尺度来描 述一个颗粒大小,因此,在粒度大小的描述过程中广泛 采用等效粒度的概念。
纳米材料的测试与表征
主要内容
纳米材料分析的特点 纳米材料的成份分析 纳米材料的结构分析 纳米材料的粒度分析 纳米材料的形貌分析 纳米材料的界面分析
2020/1/18
2
纳米材料分析的特点
纳米材料具有许多优良的特性诸如高比表面、高电导、 高硬度、高磁化率等;
纳米科学和技术是在纳米尺度上(0.1nm~100nm之间) 研究物质(包括原子、分子)的特性和相互作用,并且 利用这些特性的多学科的高科技。
因此确定纳米材料的元素组成测定纳米材料中杂质的 种类和浓度是纳米材料分析的重要内容之一。
2020/1/18
6
2020/1/18
图1 不同结构的CdSe1-XTeX 量子点 的结构和光谱性质示意图
1核壳结构的CdTe-CdSe 量子点 2 核壳结构的CdSe-CdTe 量子点 3 均相结构的CdSe1-XTeX 量子点 4 梯度结构的CdSe1-XTeX 量子点
27
粒度分析应用
高分子纳米微球研究
2020/1/18
28
图9 光子相关光谱技术示意图
2020/1/18
水解聚丙烯酰胺溶液的粒度分布图
29
纳米材料的结构分析
不仅纳米材料的成份和形貌对其性能有重要影响, 纳米材料的物相结构和晶体结构对材料的性能也有 着重要的作用。
目前,常用的物相分析方法有X射线衍射分析、激 光拉曼分析以及微区电子衍射分析。
适合电镜法粒度分析的仪器主要有扫描电镜和透射电镜。 普通扫描电镜的颗粒分辨率一般在6nm左右,场发射扫描 电镜的分辨率可以达到0.5nm。
2020/1/18
26
扫描电镜对纳米粉体样品可以进行溶液分散法制样,也可 以直接进行干粉制样。对样品制备的要求比较低,但由于 电镜对样品有求有一定的导电性能,因此,对于非导电性 样品需要进行表面蒸镀导电层如表面蒸金,蒸碳等。一般 颗粒在10纳米以下的样品比较不能蒸金,因为金颗粒的大 小在8纳米左右,会产生干扰的,应采取蒸碳方式。
扫描电镜有很大的扫描范围,原则上从1nm到mm量级均可 以用扫描电镜进行粒度分析。而对于透射电镜,由于需要 电子束透过样品,因此,适用的粒度分析范围在1-300nm 之间。
对于电镜法粒度分析还可以和电镜的其他技术连用,可以 实现对颗粒成份和晶体结构的测定,这是其他粒度分析法 不能实现的。
2020/1/18
XRD物相分析所需样品量大(0.1g),才能得到比较准 确的结果,对非晶样品不能分析。
2020/1/18
31
样品制备
样品的颗粒度对X射线的衍射强度以及重现性有很大的影响。 一般样品的颗粒越大,则参与衍射的晶粒数就越少,并还会 产生初级消光效应,使得强度的重现性较差。
要求粉体样品的颗粒度大小在0.1 ~ 10μm范围。此外,当吸 收系数大的样品,参加衍射的晶粒数减少,也会使重现性变 差。因此在选择参比物质时,尽可能选择结晶完好,晶粒小 于5μm,吸收系数小的样品。
几个纳米到几十微米 的薄膜厚度测定。
2020/1/18
14
表面与微区成份分析
X射线光电子能谱;(10微米,表面) 俄歇电子能谱;(6nm,表面) 二次离子质谱;(微米,表面) 电子探针分析方法;(0.5微米,体相) 电镜的能谱分析;(1微米,体相) 电镜的电子能量损失谱分析;(0.5nm)
2020/1/18
23
光散射粒度测试方法的特点
测量范围广,现在最先进的激光光散射粒度测试仪可以测 量1nm~3000μm,基本满足了超细粉体技术的要求;
测定速度快,自动化程度高,操作简单。一般只需1~1.5min; 测量准确,重现性好; 可以获得粒度分布。
2020/1/18
24
激光相干光谱粒度分析法
多元素分析。
2020/1/18
11
电感耦合等离子体发射光谱法ICP
ICP是利用电感耦合等离子体作为激发源,根据处于 激发态的待测元素原子回到基态时发射的特征谱线对 待测元素进行分析的方法;
可进行多元素同时分析,适合近70 种元素的分析; 很低的检测限,一般可达到10-1~10-5μg/cm-3 ; 稳定性很好,精密度很高,相对偏差在1%以内,定
上述四种量子点的平均直径为5.9nm 组成为CdSe0.6Te0.4
7
成分分析类型和范围
纳米材料成分分析按照分析对象和要求可以分为微 量样品分析和痕量成分分析两种类型;
纳米材料的成分分析方法按照分析的目的不同又分 为体相元素成分分析表面成分分析和微区成分分析 等方法;
为达此目的纳米材料成分分析按照分析手段不同又 分为光谱分析质谱分析和能谱分析。
2020/1/18
10
原子吸收分析特点
根据蒸气相中被测元素的基态原子对其原子共振辐射 的吸收强度来测定试样中被测元素的含量;
相关文档
最新文档