聚乳酸(PLA)的研究进展

合集下载

聚乳酸材料性能改进研究进展

聚乳酸材料性能改进研究进展

收稿日期:2023-04-20基金项目:河北省大学生创新创业训练计划项目(课题号:S202210101005、S202210101008)作者简介:王培(1982-),女,毕业于山西师范大学,讲师,研究方向:可生物降解高分子材料的加工及应用,***************;通讯联系人:冯嘉玮(2002-),女,本科生在读,研究方向:高分子材料,*****************。

聚乳酸材料性能改进研究进展王 培,冯嘉玮,邓祎慧,刘雪微,张 帅(衡水学院 应用化学系,河北 衡水 053000)摘要:聚乳酸(polylacticacid ,PLA )是一种以植物资源为原料合成的聚酯,主要应用于医学、生物、环境保护等领域。

随着科学技术的进步,对聚乳酸材料的性能提出了新的要求和用途,必须通过改性提高其加工与应用性能。

从物理改性、化学改性方面综述了PLA 性能改进的研究进展。

旨在保留PLA 性能的优势,为拓宽PLA 应用市场提供一定参考价值。

关键词:聚乳酸;物理改性;化学改性doi :10.3969/j.issn.1008-553X.2024.02.003中图分类号:O648.17 文献标识码:A 文章编号:1008-553X (2024)02-0009-05安 徽 化 工ANHUI CHEMICAL INDUSTRYVol.50,No.2Apr.2024第50卷,第2期2024年4月聚乳酸(PLA ),又称聚丙交酯或聚羟基丙酸,一种重要的乳酸衍生物,是由乳酸单体缩聚而成的可生物降解的高分子材料[1]。

因其具有可降解性、良好的生物相容性和力学性能及易于加工等特性被认为是最具发展前景的生物可降解材料之一,是唯一具有优良抑菌及抗霉特性的生物可降解塑料。

PLA 广泛应用于医疗卫生、包装材料、纤维、非织造物、建筑、农业等领域。

在医疗卫生方面,PLA 已应用于可降解手术缝合线、缓释药物载体[2]、医用伤口敷料[3]、3D 多孔聚乳酸支架[4]、人工皮肤[5]口腔固定材料、眼科材料等方面。

聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展聚乳酸(Polylactic Acid,简称PLA)是一种由乳酸(Lactic Acid)结合聚合而成的生物可降解高分子材料,在环保、生物医学、包装等领域有着广泛的应用前景。

聚乳酸发泡材料作为PLA的一种特殊形态,具有轻质、降解、低成本等特点,因此在材料科学领域受到了越来越多的关注。

本文将介绍聚乳酸发泡材料的研究进展。

聚乳酸发泡材料的制备方法多种多样,包括物理发泡法、化学发泡法和生物发泡法。

其中,物理发泡法是最常用的方法之一、在物理发泡法中,聚乳酸与发泡剂混合,在高温下加热融化,然后急速降温,使发泡剂在聚乳酸中溶解,并释放出气体,形成气泡,从而得到发泡材料。

而化学发泡法则是通过添加化学发泡剂,在适当的温度下进行发泡反应,从而制备出不同孔隙结构的聚乳酸发泡材料。

研究表明,聚乳酸发泡材料具有较好的力学性能和热稳定性。

与传统塑料发泡材料相比,聚乳酸发泡材料具有更好的生物降解性能和环境友好性,可以有效减少对环境的污染。

此外,聚乳酸发泡材料还具有良好的吸声、隔热和抗震性能,因此在建筑、交通和包装等领域具有广泛的应用前景。

在聚乳酸发泡材料的研究方面,主要集中在改善其力学性能和缩小孔隙结构的研究。

研究人员通过改变聚乳酸的组成、结构和添加剂等方法,改善了聚乳酸发泡材料的力学性能。

例如,可以通过共聚物的添加来改善聚乳酸的韧性和延展性。

同时,通过控制发泡条件和添加适量的发泡剂,可以调节聚乳酸发泡材料的孔隙结构,使其具有更好的绝热性能和吸声性能。

此外,研究人员还对聚乳酸发泡材料进行了多方面的应用研究。

例如,聚乳酸发泡材料可以用于制备轻质隔热材料,用于建筑和交通领域,可以有效提高建筑物和交通工具的能源效率。

此外,聚乳酸发泡材料还可以用于包装领域,制备环保的包装材料,用于食品保鲜和保护产品等方面。

总的来说,聚乳酸发泡材料具有广阔的应用前景,并且在材料科学领域的研究也取得了一定的成果。

未来,随着技术的发展和研究的深入,相信聚乳酸发泡材料的性能将进一步提升,应用范围也会更加广泛。

聚乳酸的研究进展

聚乳酸的研究进展

聚乳酸的研究进展摘要乳酸主要应用于食品保健、医药卫生和工业等方面。

聚乳酸是以乳酸为主要原料的聚合物,聚乳酸作为生物可降解材料的一种,对环境友好、无毒害,可应用于组织工程、药物缓释等生物医用材料,以及石油基塑料的替代材料。

本文综述了聚乳酸在可降解塑料,纤维,医用材料,农用地膜,和纺织等领域的应用,并对其发展方向进行了展望。

关键词:聚乳酸聚乳酸纤维生物医药生物降解AbstractLactic acid green chemistry is the basic structure of one of the unit ,Mainly used in food, medicine, sanitation and health care industry, etc。

Poly lactic acid is lactic acid as the main raw material polymer,Poly lactic acid as biodegradable material of a kind,Friendly to environment, non-toxic, can be applied to tissue engineering, drugs such as slow release of biomedical materials,And instead of the petroleum base plastic material。

This paper reviewed the biodegradable polylactic acid in plastic, fiber and medical materials, agricultural plastic sheeting, and textile application in the field, and its developing prospects。

聚乳酸纳米复合材料的研究进展

聚乳酸纳米复合材料的研究进展

聚乳酸纳米复合材料的研究进展曹 丹,吴林波3,李伯耿,黄 源(浙江大学化工系高分子工程研究所,聚合反应工程国家重点实验室,杭州 310027) 摘要:聚乳酸是一种重要的可生物降解Π吸收高分子材料,广泛地用作可降解塑料、纤维和生物材料,市场前景广阔。

它具有与聚烯烃相当的力学强度和加工性能,但耐热性和抗冲性较差。

为满足各种应用的需要,其热性能、力学性能和气体阻隔性等尚需进一步提高。

通过与无机纳米材料复合的方法,可以明显地提高聚乳酸的性能。

本文介绍了近年来聚乳酸有机2无机纳米复合材料的制备、结构与性能等方面的研究进展,对三者的相互关系进行了评述,并对今后的研究方向进行了展望。

关键词:聚乳酸;纳米复合材料;蒙脱土;二氧化硅;碳纳米管;羟基磷灰石聚乳酸(polylactic acid,P LA)是一种重要的可生物降解高分子材料。

它以玉米或薯类淀粉经发酵制得的乳酸为基本原料、经缩聚反应或其二聚体丙交酯的开环聚合反应而制得,在自然界中可生物降解生成二氧化碳和水[1],因而是一种来自自然界、使用后又回归自然界的环境友好材料,也是近年来研究开发最活跃的可生物降解材料之一[2],广泛地应用于包装材料、纤维、农膜、生物医用材料等领域。

但是,聚乳酸耐热性较差,制约了它的应用,同时,其力学性能和气体阻隔性亦有待于进一步提高,以满足不同应用的要求。

这促使人们对聚乳酸进行改性研究,各种聚乳酸改性方法和材料相继出现,如共混、共聚、纳米复合等。

自1984年R oy[3]首次提出纳米复合材料的概念以来,聚合物基纳米复合材料已得到广泛的研究和应用。

由于纳米粒子具有小尺寸效应、大比表面积、强界面结合效应等特性,使纳米复合材料具有优异的性能。

1997年Ogata[4]首次报道聚乳酸纳米复合材料,发现加入蒙脱土可使聚乳酸的结晶性和杨氏模量提高;之后,聚乳酸纳米复合材料得到了很大的发展,相继出现了聚乳酸Π蒙脱土纳米复合材料、聚乳酸Π羟基磷灰石纳米复合材料、聚乳酸Π纳米二氧化硅复合材料、聚乳酸Π纳米碳管复合材料,纳米复合的方法也从溶液共混法、熔融共混法发展到原位聚合法,其耐热、结晶、力学以及气体阻隔等性能得到显著的提高。

聚乳酸基纳米复合材料的研究现状及其发展前景

聚乳酸基纳米复合材料的研究现状及其发展前景

聚乳酸基纳米复合材料的研究现状及其发展前景聚乳酸基纳米复合材料是一种由聚乳酸 (PLA) 和其他纳米材料组成的复合材料。

目前,聚乳酸基纳米复合材料的研究现状及其发展前景非常广阔,具体如下:
一、研究现状
1. 材料制备技术:目前,聚乳酸基纳米复合材料的制备技术主要包括溶剂热反应、溶胶 - 凝胶法、电化学沉积法等。

这些方法不仅可以控制复合材料的组成和结构,还可以提高复合材料的性能。

2. 材料性能:聚乳酸基纳米复合材料具有优异的力学性能、光学性能、生物相容性和降解性等。

其中,PLA 纳米复合材料的力学性能比纯 PLA 提高了近10 倍,光学性能也得到了显著提高。

3. 应用领域:聚乳酸基纳米复合材料的应用领域非常广泛,包括生物医学、光学、电子学、环保等领域。

例如,PLA 纳米复合材料可以用于生物传感器、生物医学材料、光学器件等方面。

二、发展前景
1. 生物医学应用:聚乳酸基纳米复合材料在生物医学领域具有广泛的应用前景。

例如,PLA 纳米复合材料可以用于生物传感器、生物医学材料、药物释放系统等。

2. 光学应用:聚乳酸基纳米复合材料在光学领域具有广泛的应用前景。

例如,PLA 纳米复合材料可以用于光学器件、太阳能电池等。

3. 电子学应用:聚乳酸基纳米复合材料在电子学领域具有广泛的应用前景。

例如,PLA 纳米复合材料可以用于电子器件、半导体器件等。

4. 环保应用:聚乳酸基纳米复合材料在环保领域具有广泛的应用前景。

例如,PLA 纳米复合材料可以用于水处理、大气污染治理等方面。

总的来说,聚乳酸基纳米复合材料具有优异的性能和良好的发展前景,将成为未来材料领域的研究热点之一。

生物医用材料聚乳酸的合成及其改性研究进展

生物医用材料聚乳酸的合成及其改性研究进展

化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2020年第39卷第1期开放科学(资源服务)标识码(OSID ):生物医用材料聚乳酸的合成及其改性研究进展詹世平1,2,万泽韬1,2,王景昌1,2,阜金秋1,2,赵启成1,2(1大连大学环境与化学工程学院,辽宁大连116622;2辽宁省化工环保工程技术研究中心,辽宁大连116622)摘要:聚乳酸是一种具有良好生物相容性的可降解生物材料,被广泛应用于医药、医疗和食品包装等领域。

随着科学技术的进步,对聚乳酸材料的性能提出了新的要求和用途,研究者在合成方法和改性研究方面也取得了新的成果。

本文阐述了聚乳酸的化学结构和基本特性,常用合成方法,包括阳离子聚合、阴离子聚合和配位聚合的基本概念和应用实例,介绍了近年来发展的酶催化聚合、超临界二氧化碳中聚合等绿色合成方法,着重介绍了聚乳酸亲水改性、pH 响应改性和分支结构改性等几种用于医用方面的改性方法,最后对聚乳酸材料研究发展方向进行了展望,提出在聚乳酸基体中添加极低含量的无机纳米粒子填充物,可显著改善复合材料的性能,指出生物纳米复合包装材料的技术开发是未来几年着重研究的方向。

关键词:聚乳酸;合成方法;改性;生物相容性中图分类号:TB34文献标志码:A文章编号:1000-6613(2020)01-0199-07Synthesis and modification of biomedical material polylactic acidZHAN Shiping 1,2,WAN Zetao 1,2,WANG Jingchang 1,2,FU Jinqiu 1,2,ZHAO Qicheng 1,2(1College of Environmental and Chemical Engineering,Dalian University,Dalian 116622,Liaoning,China;2Chemical andEnvironmental Protection Engineering Research Technology Center,Dalian 116622,Liaoning,China)Abstract:Due to its good biocompatibility and biodegradability,polylactic acid is widely used in thefields of the drug,medicine and food packing and so on.With the progress of science and technology,some new requirements and purposes have been put forward for the properties of polylactic acid materials.Researchers have also made some new achievements in the synthesis methods and the modification research.The chemical constitution and basic properties of polylactic acid were described and the common synthetic methods of polylactic acid were discussed,including the basic concepts and application examples on cationic polymerization,anionic polymerization and coordination polymerization.The green synthetic methods such as enzymatic catalytic polymerization and polymerization in supercritical carbon dioxide developed in recent years were introduced.The hydrophilic modification,pH response modification and branch structure modification of polylactic acid were also emphatically introduced.Finally,the development directions of polylactic acid material research were prospected.It was proposed that adding very low content of inorganic nanoparticles filler into polylactic acid matrix can significantly improve the properties of composite materials.It was pointed out that the development of bio-nanocomposite packaging materials was a development direction of emphasis on research in the next few years.Keywords:polylactic acid;synthetic method;modification;biocompatibility综述与专论DOI :10.16085/j.issn.1000-6613.2019-0656收稿日期:2019-04-24;修改稿日期:2019-06-16。

PLA微球的研究进展

PLA微球的研究进展

PLA微球的研究进展PLA微球,也称为聚乳酸微球,是一种微米级别的粒子,由聚乳酸(PLA)材料制成。

近年来,PLA微球在药物传递系统、组织工程、仿生材料等多个领域中的应用不断取得了突破性进展。

本文将从制备方法、药物传递系统及应用领域等方面,对PLA微球的研究进展进行详细介绍。

首先,制备方法是PLA微球研究的重点之一、常用的制备方法包括单相溶剂蒸发法、水油乳化法、硅油乳化法和控制释放方法等。

研究人员通过改变溶剂的选择、浓度和温度等条件,优化了制备工艺,提高了PLA微球的产率和质量。

同时,采用控制释放方法可以进一步调节微球药物的释放速率和时间。

其次,PLA微球在药物传递系统中的应用也备受关注。

药物可以通过各种方式包裹在PLA微球内部,然后在体内释放。

通过调节PLA微球的粒径和壳厚,可以控制药物的释放速率和时间。

此外,研究者还可以在PLA 微球表面包覆特定的功能性分子,实现针对性的药物传递。

这些创新的设计有望提高药物的生物利用度和治疗效果。

此外,PLA微球还在组织工程领域发挥着重要作用。

由于PLA微球具有良好的生物相容性、生物降解性和可塑性,它们被广泛应用于组织修复和再生。

PLA微球可以用作载药支架,促进细胞生长和组织再生;在组织工程模板中,可以提供细胞定植的支撑结构和3D空间;还可以用于组织工程皮肤的构建,帮助创面愈合。

最后,PLA微球还在仿生材料领域表现出潜力。

仿生材料是模仿自然界的设计原理和结构特点,应用于工程和制造领域。

PLA微球作为仿生材料的一种,可以通过变化处理方式和组织结构,实现一系列机械性能、物化性能和生物性能的调控。

这使得PLA微球在仿生材料应用中具有广泛的应用前景,如人工骨骼、人工心脏瓣膜等。

综上所述,近年来PLA微球的研究进展迅猛,不仅在药物传递系统中表现出优异的性能,而且在组织工程和仿生材料领域也具有广泛的应用前景。

虽然还存在一些挑战,如制备工艺的优化、药物释放机制的研究和大规模生产的难题,但随着科技的进步和研究者的努力,相信PLA微球将在未来发展中扮演更加重要的角色。

《2024年聚乳酸纳米复合材料的制备与性能研究》范文

《2024年聚乳酸纳米复合材料的制备与性能研究》范文

《聚乳酸纳米复合材料的制备与性能研究》篇一一、引言随着人类对环保意识的提高和可持续发展战略的推进,生物可降解塑料已成为研究热点。

聚乳酸(PLA)作为一种生物相容性好、可降解的环保材料,广泛应用于医疗、包装、农业等领域。

然而,为了进一步提高聚乳酸的性能,纳米复合材料的研究备受关注。

本文将详细探讨聚乳酸纳米复合材料的制备方法及其性能研究。

二、聚乳酸纳米复合材料的制备1. 材料选择制备聚乳酸纳米复合材料,首先需要选择合适的纳米填料。

常见的纳米填料包括纳米碳酸钙、纳米二氧化硅、纳米粘土等。

这些纳米填料具有优异的物理、化学性能,可有效提高聚乳酸的力学、热学等性能。

2. 制备方法聚乳酸纳米复合材料的制备方法主要包括熔融共混法、原位聚合法等。

其中,熔融共混法操作简便,适用于大规模生产;原位聚合法则可在纳米填料表面引入官能团,提高填料与聚乳酸的相容性。

本文采用熔融共混法,将聚乳酸与纳米填料在高温下熔融共混,制备出聚乳酸纳米复合材料。

三、性能研究1. 力学性能通过拉伸试验、冲击试验等方法,研究聚乳酸纳米复合材料的力学性能。

实验结果表明,纳米填料的加入可显著提高聚乳酸的拉伸强度、冲击强度等力学性能。

此外,纳米填料的种类和含量对力学性能的影响也进行了详细分析。

2. 热学性能采用热重分析(TGA)、差示扫描量热法(DSC)等方法,研究聚乳酸纳米复合材料的热学性能。

实验结果表明,纳米填料的加入可提高聚乳酸的热稳定性,降低其熔点和结晶温度。

此外,纳米填料的分散性对热学性能的影响也进行了探讨。

3. 生物相容性聚乳酸作为一种生物相容性好的材料,其生物相容性是评价其性能的重要指标。

通过细胞毒性试验、血液相容性试验等方法,研究聚乳酸纳米复合材料的生物相容性。

实验结果表明,纳米填料的加入对聚乳酸的生物相容性影响较小,仍具有良好的生物相容性。

四、结论本文通过熔融共混法制备了聚乳酸纳米复合材料,并对其性能进行了深入研究。

实验结果表明,纳米填料的加入可显著提高聚乳酸的力学性能和热学性能。

聚乳酸材料在3D打印中的研究与应用进展

聚乳酸材料在3D打印中的研究与应用进展

聚乳酸材料在3D打印中的研究与应用进展一、本文概述随着科技的不断发展,3D打印技术已经成为现代制造业的重要组成部分。

作为一种创新的增材制造技术,3D打印在多个领域都展现出了巨大的应用潜力。

而聚乳酸(PLA)材料,作为一种生物降解塑料,因其良好的生物相容性、环保性以及优良的加工性能,在3D 打印领域得到了广泛的应用。

本文旨在概述聚乳酸材料在3D打印中的研究与应用进展,分析其在不同领域的应用现状,探讨其面临的挑战及未来发展趋势。

通过深入了解聚乳酸材料在3D打印中的应用,我们可以更好地把握这一技术的发展方向,为未来的研究和应用提供有益的参考。

二、聚乳酸材料的特性聚乳酸(PLA)是一种生物降解塑料,由可再生植物资源(例如玉米)提取出的淀粉原料制成。

它具有一系列独特的特性,使得它在3D打印领域中得到了广泛的应用。

PLA具有良好的生物相容性和生物可降解性。

这意味着它在人体内不会产生有害物质,且在自然环境中能够被微生物分解,从而有助于减少环境污染。

因此,PLA在医疗和生物领域的应用中表现出巨大的潜力。

PLA具有良好的加工性能。

在3D打印过程中,PLA具有较高的熔融温度和较低的熔融粘度,使得打印出的模型具有较高的精度和表面质量。

PLA的打印温度适中,不需要过高的打印温度,这有助于延长3D打印机的使用寿命。

PLA还具有优异的机械性能。

虽然其强度和硬度相对较低,但PLA 具有较高的抗拉伸强度和抗弯曲强度,能够满足大多数3D打印应用的需求。

同时,PLA还具有较好的热稳定性和化学稳定性,能够在一定的温度范围内保持其性能稳定。

PLA材料还具有良好的环保性。

由于它是从可再生植物资源中提取的,因此在使用过程中不会对环境造成负担。

PLA的降解产物为乳酸,可以被自然界中的微生物分解为水和二氧化碳,从而实现真正的循环利用。

聚乳酸材料的优良特性使其在3D打印领域具有广阔的应用前景。

随着科技的不断发展,PLA材料在3D打印中的研究与应用将会取得更多的突破和进展。

聚乳酸生物降解的研究进展

聚乳酸生物降解的研究进展

聚乳酸生物降解的研究进展一、本文概述随着全球环境问题的日益严峻,特别是塑料废弃物对环境的污染问题,生物降解材料的研究与应用越来越受到人们的关注。

聚乳酸(PLA)作为一种重要的生物降解材料,因其良好的生物相容性、可加工性和环保性,在包装、医疗、农业等领域具有广泛的应用前景。

本文旨在综述聚乳酸生物降解的研究进展,包括其生物降解机制、影响因素、改性方法以及应用现状,以期为聚乳酸的进一步研究和应用提供参考。

本文首先介绍了聚乳酸的基本性质,包括其分子结构、合成方法以及主要性能。

接着,重点分析了聚乳酸的生物降解机制,包括酶解、微生物降解和动物体降解等过程,并探讨了影响聚乳酸生物降解的主要因素,如结晶度、分子量、添加剂等。

在此基础上,本文综述了聚乳酸的改性方法,包括共聚、共混、填充和表面改性等,以提高其生物降解性能和机械性能。

本文总结了聚乳酸在包装、医疗、农业等领域的应用现状,并展望了其未来的发展趋势。

通过本文的综述,旨在为聚乳酸生物降解的研究与应用提供有益的参考,同时为推动生物降解材料的发展贡献一份力量。

二、聚乳酸的生物降解机理聚乳酸(PLA)的生物降解主要依赖于微生物的作用,这些微生物包括细菌和真菌,它们能够分泌特定的酶来降解PLA。

生物降解过程通常包括两个主要步骤:首先是微生物对PLA表面的附着和酶的产生,然后是酶对PLA的催化水解。

在降解过程中,微生物首先通过其细胞壁上的特定受体识别并附着在PLA表面。

随后,微生物开始分泌能够降解PLA的酶,这些酶主要包括聚乳酸解聚酶和酯酶。

聚乳酸解聚酶能够直接作用于PLA的酯键,将其水解为乳酸单体;而酯酶则能够水解PLA链末端的乳酸单体。

水解产生的乳酸单体可以被微生物进一步利用,通过三羧酸循环等途径转化为二氧化碳和水,或者用于微生物自身的生长和代谢。

这个过程中,微生物扮演了关键的角色,它们不仅能够降解PLA,还能够将降解产生的乳酸完全矿化为无害的物质。

值得注意的是,PLA的生物降解速率受到多种因素的影响,包括PLA的分子量、结晶度、形态、微生物的种类和活性、环境温度和湿度等。

《2024年聚乳酸纳米复合材料的制备与性能研究》范文

《2024年聚乳酸纳米复合材料的制备与性能研究》范文

《聚乳酸纳米复合材料的制备与性能研究》篇一一、引言随着科技的不断进步,聚乳酸(PLA)作为一种可生物降解的聚合物材料,在环保和可持续性方面得到了广泛的关注。

而纳米复合材料以其优异的物理和化学性能,为聚乳酸的改进提供了新的可能。

本文旨在研究聚乳酸纳米复合材料的制备方法及其性能表现,以期为该领域的研究和应用提供参考。

二、聚乳酸纳米复合材料的制备1. 材料选择制备聚乳酸纳米复合材料,首先需要选择合适的纳米填料。

常见的纳米填料包括纳米二氧化硅、纳米碳酸钙、纳米粘土等。

本文选择纳米二氧化硅作为主要研究对象。

2. 制备方法制备聚乳酸纳米复合材料,主要采用熔融共混法。

该方法通过将聚乳酸与纳米填料在高温下熔融共混,使纳米填料均匀地分散在聚乳酸基体中,从而得到聚乳酸纳米复合材料。

三、性能研究1. 力学性能通过拉伸试验和冲击试验,对聚乳酸纳米复合材料的力学性能进行了研究。

实验结果表明,添加纳米二氧化硅后,聚乳酸纳米复合材料的拉伸强度和冲击强度均有所提高。

这主要是由于纳米填料的加入,增强了聚乳酸基体的分子间作用力,提高了材料的力学性能。

2. 热稳定性通过热重分析(TGA)实验,对聚乳酸纳米复合材料的热稳定性进行了研究。

实验结果表明,添加纳米二氧化硅后,聚乳酸纳米复合材料的热稳定性得到了显著提高。

这主要是因为纳米填料的加入,提高了材料的热传导性能,降低了材料的热分解速率。

3. 生物降解性虽然聚乳酸本身具有良好的生物降解性,但纳米复合材料的生物降解性仍需进行研究。

通过实验发现,聚乳酸纳米复合材料在特定条件下的生物降解性与纯聚乳酸相比,并未发生明显变化。

这表明纳米填料的加入并未对聚乳酸的生物降解性产生负面影响。

四、结论本文研究了聚乳酸纳米复合材料的制备方法和性能表现。

实验结果表明,通过熔融共混法将纳米二氧化硅与聚乳酸共混,可以成功制备出聚乳酸纳米复合材料。

该材料在力学性能和热稳定性方面得到了显著提高,而生物降解性未受影响。

聚乳酸的改性及应用研究进展

聚乳酸的改性及应用研究进展

近年来,随着技术的不断发展,聚乳酸在各个领域的应用也在不断拓展。例如, 通过共聚改性等方法,聚乳酸在高性能纤维和医用材料等领域取得了重要进展。 此外,聚乳酸在3D打印技术中也表现出良好的应用前景,为个性化医疗和产品 定制提供了新的可能。
环境保护及其挑战聚乳酸作为一种生物降解材料,具有较好的环境友好性。然 而,在聚乳酸的制备和使用过程中,仍存在一些环境保护问题。首先,聚乳酸 的制备需要大量的有机溶剂,这些溶剂在使用后往往会产生大量废液,对环境 造成一定压力。其次,聚乳酸的降解过程中可能会产生一些有污染性的降解产 物,如何有效控制这些产物对环境的影响是一个重要问题。
1、改进生产工艺,降低聚乳酸的生产成本,提高产量和质量。 2、深入探讨聚乳酸的改性技术,以便更好地满足不同领域的应用需求。
3、在应用研究方面,应聚乳酸在生物医学、纺织、包装和建筑材料等领域的 新应用模式的探索和现有应用问题的优化。
总之,聚乳酸作为一种环保材料,其改性和应用研究具有重要的理论和实践意 义。随着技术的不断进步和应用领域的拓展,我们有理由相信聚酸将在未来 的可持续发展中发挥更加重要的作用。
研究PLA阻燃改性后的生物相容性和降解性能;4)优化加工过程中的阻燃保护 措施。随着聚乳酸阻燃改性研究的深入,有望为拓宽PLA的应用领域提供重要 支持。
聚乳酸(PLA)是一种由可再生资源——乳酸合成的生物降解材料,被广泛应 用于包装、医疗、纤维等领域。由于其良好的生物相容性和可降解性,聚乳酸 在现代社会中具有广泛的应用前景。本次演示将重点探讨聚乳酸的制备方法、 应用领域、环境保护问题以及研究进展。
聚乳酸纤维的应用领域与优势聚乳酸纤维具有许多优点,如环保可降解、良好 的力学性能和化学稳定性等,使得它在许多领域都有广泛的应用。首先,在服 装领域,聚乳酸纤维具有优异的透气性、吸湿性和保暖性,适合制作各种服装, 如运动服、户外服装和内衣等。其次,在建筑领域,聚乳酸纤维可以用于制作 建筑保温材料、装饰材料和土工布等。此外,在农业领域,聚乳酸纤维可用于 制作农用膜、包装材料和生物降解的农用无人机等。

pla聚乳酸研究报告

pla聚乳酸研究报告

PLA聚乳酸研究报告1.引言PLA(聚乳酸)是一种可生物降解的聚合物材料,因其良好的可降解性、生物相容性和可加工性受到了广泛的关注和研究。

近年来,随着环境保护意识的日益增强,PLA作为一种可替代传统塑料的材料,受到了更多的关注。

本研究旨在通过对PLA的综述,并探讨其应用领域以及未来的发展方向,进一步推动PLA的应用和研究。

2. PLA聚乳酸的性质和特点PLA属于聚羟基酸类聚合物,由乳酸经聚合反应得到。

其主要性质和特点如下:•可降解性:PLA是一种可生物降解的聚合物材料,能够在自然环境中被微生物降解,减少对环境的污染。

•生物相容性:PLA具有良好的生物相容性,对人体无毒无害,可广泛应用于生物医学领域。

•可加工性:PLA可以通过注塑、挤出、吹塑等传统塑料加工工艺进行成型,加工性能优越。

•机械性能优异:PLA具有良好的刚度、强度和耐热性能,可满足各种应用需求。

3. PLA聚乳酸的应用领域3.1 包装材料由于PLA具有良好的可降解性和生物相容性,被广泛应用于包装材料领域。

PLA包装材料可以替代传统的塑料包装材料,减少对环境的污染。

此外,PLA还具有较好的物理性质和耐热性能,能满足不同包装需求。

3.2 生物医用材料由于PLA具有良好的生物相容性,被广泛应用于生物医学领域。

PLA可以制备成各种生物医用材料,如PLA纳米纤维膜、PLA显微球等。

这些材料可以用于组织工程、药物缓释等方面,为生物医学研究和应用提供了新的可能。

3.3 3D打印材料PLA由于其良好的可加工性和机械性能,成为了广泛应用于3D打印领域的材料之一。

PLA可以通过3D打印技术制备出复杂的结构和器件,应用于建筑、工业制品等领域。

4. PLA聚乳酸的制备方法4.1 乳酸聚合法乳酸聚合法是目前制备PLA的主要方法之一。

该方法主要通过乳酸的缩聚反应得到PLA。

乳酸聚合法的优点是反应条件温和,产率高,制备过程简单。

4.2 乳液聚合法乳液聚合法是另一种常用的制备PLA的方法。

PLA微球的研究进展

PLA微球的研究进展

PLA微球的研究进展PLA微球是一种由聚乳酸(Polylactic acid,PLA)材料制成的微小球状纳米材料,近年来备受关注并在多个领域展示出了广泛的应用前景。

它具有环境友好、生物可降解、生物相容性良好等特点,以及可调控大小、形状和表面性质的优势,使得PLA微球在催化、药物传递、组织工程和能源储存等方面具有广泛的应用前景。

本文将对PLA微球的研究进展进行综述。

首先,PLA微球在药物传递领域展现出了巨大的潜力。

由于PLA微球具有较高的负载药物能力和良好的控释性能,它可以用作药物传递系统的载体。

研究人员通过调节PLA微球的孔隙结构和表面性质,可以实现不同药物在体内的延时释放,提高药物的生物利用度和治疗效果。

同时,PLA微球本身也具有良好的生物相容性,对人体无毒副作用,因此被广泛应用于肿瘤治疗、基因传递和细胞治疗等研究领域。

其次,PLA微球在催化领域也受到了越来越多的关注。

由于PLA微球具有较高的比表面积和可调控的孔隙结构,它可以用作催化剂的载体材料。

研究人员通过制备PLA微球-金属催化剂复合体系,可以提高催化剂的稳定性和活性,从而提高催化反应的效率和选择性。

此外,PLA微球还可以用作光催化材料的载体,通过调控PLA微球的形状和表面性质,可以实现光催化材料对特定波长光的选择性吸收和转换。

此外,PLA微球在组织工程领域也具有广泛的应用前景。

由于PLA微球具有与人体组织相似的生物相容性和可降解性,它可以用作组织工程材料的载体。

研究人员通过制备多孔的PLA微球支架,可以提供细胞侵入和组织再生所需的三维支撑结构。

同时,PLA微球还可以通过改变其表面性质和结构,实现对细胞黏附和增殖的调控,进一步促进组织工程修复的效果。

最后,PLA微球在能源储存方面也展示出了巨大的潜力。

由于PLA微球具有较高的比表面积和导电性能,它可以用作电化学储能材料的载体。

研究人员通过制备PLA微球-导电材料复合体系,可以提高电化学储能材料的能量密度和循环稳定性。

聚乳酸在医学领域应用研究进展

聚乳酸在医学领域应用研究进展

聚乳酸在医学领域应用研究进展一、本文概述随着全球对可持续发展和环保意识的日益增强,生物可降解材料在众多领域,特别是在医学领域的应用受到了广泛关注。

其中,聚乳酸(PLA)作为一种生物相容性良好且可降解的高分子材料,其在医学领域的应用研究进展尤为引人注目。

本文旨在综述聚乳酸在医学领域的应用研究进展,包括其在药物载体、组织工程、手术缝合线以及医疗器械等方面的应用,以期为进一步推动聚乳酸在医学领域的应用提供理论参考和实践指导。

本文将首先简要介绍聚乳酸的基本特性,包括其生物相容性、可降解性以及在医学领域的应用潜力。

随后,重点综述聚乳酸在药物载体、组织工程、手术缝合线以及医疗器械等方面的应用研究进展,分析其在不同医学领域的应用优势及存在的问题。

在此基础上,本文还将探讨聚乳酸在医学领域未来的发展趋势,展望其在生物医学材料领域的应用前景。

通过本文的综述,旨在为读者提供一个全面、系统的了解聚乳酸在医学领域应用研究进展的平台,为推动聚乳酸在医学领域的深入研究和广泛应用提供有益的参考。

二、聚乳酸的生物相容性与可降解性聚乳酸(PLA)作为一种生物可降解的高分子材料,在医学领域的应用中,其生物相容性与可降解性成为了研究的热点。

生物相容性是指材料与生物体之间相互作用后产生的相容程度,是评价生物材料能否在人体内安全使用的关键指标。

而可降解性则是指材料在生物体内能够被分解、代谢并最终排出体外的能力,这对于减少植入材料对人体的长期影响至关重要。

聚乳酸的生物相容性得到了广泛的研究和认可。

其分子结构中的酯键能够被人体内的酶所水解,生成乳酸并进入三羧酸循环,最终转化为二氧化碳和水排出体外。

这种生物降解过程避免了植入材料长期留存于体内可能引发的炎症、感染等风险。

聚乳酸的生物相容性还表现在其对细胞的粘附、增殖和分化行为的影响上。

研究表明,聚乳酸材料表面能够支持细胞的生长,且与周围组织具有良好的结合能力,这对于组织工程、药物载体等领域的应用具有重要意义。

生物可降解聚乳酸的改性及其应用研究进展

生物可降解聚乳酸的改性及其应用研究进展

聚物橡胶、对乙烯基苯酚(PVPh) 、聚甲基丙烯酸甲酯(PMMA) 、聚丙烯酸甲
酯(PMA) 、线性低密度聚乙烯(LLDPE) 组成部分生物降解共混体系,这类体系 不能从根本上解决环境污染问题。
16
2.4
复合改性
将聚乳酸与其它材料复合旨在解决聚乳酸的脆性问题,达到增强 的目的,使其能满足于作为骨折内固定材料的用途。目前可以分为
22
把药物包埋于高分子聚合物基质中形成微球或微粒有多种技 术:凝聚法、乳液聚合法及界面聚合法、界面沉积法、乳液— 溶剂蒸发法等。其中乳液—溶剂蒸发法是应用最为普遍的一 种,对于含油性药物微球大都采用OPW乳化溶剂挥发P抽提 法。制备亲水性的多肽、蛋白质、疫苗微球通常采用相分离 法 和W1POPW2 复乳法溶剂挥发法。界面沉积法也可称
酯GA 的共聚物已商品化。
9
2.2.2
聚乳酸与聚乙二醇(PEG) 的嵌段共聚物
聚乙二
醇(PEG) 是最简单的低聚醚大分子,具有优良的生物相容性
和血液相容性、亲水性和柔软性。朱康杰等以辛酸亚锡作为
催化剂的条件下,通过开环聚合合成了PLA2PEG2PLA 的
三嵌段共聚物。这类嵌段共聚物具有亲水的PEG链段和疏水
8
2.2.1
丙交酯与乙交酯共聚
聚乙交酯(PGA) 是最简
单的线型脂肪族聚酯,早在1970 年,PGA 缝合线就已以 “Dexon”商品化,但PGA 亲水性好,降解太快,目前用单体 乳酸或交酯与羟基乙酸或乙交酯共聚得到无定型橡胶状韧性 材料,其中通过调节LLAPGA 的比例可控制材料的降解速 度,作为手术缝合线已得到临床应用,其中L2丙交酯与乙交
为自发乳化P溶剂扩散法,是制备均匀的纳米级微球的一种方
法。

聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展

聚乳酸发泡材料研究进展聚乳酸(Polylactic acid,PLA)是一种可生物降解的聚合物材料,由乳酸单体经过聚合反应而得。

由于其天然可再生的特性和良好的生物降解性能,聚乳酸作为一种绿色材料,在包装、医疗、纺织品等领域应用广泛。

与此同时,研究人员也在不断探索聚乳酸的新应用领域,其中发泡材料是一个备受关注的研究方向。

聚乳酸发泡材料具有良好的力学性能和低密度特点,适用于各种领域。

近年来,关于聚乳酸发泡材料的研究集中在研究其发泡工艺、改性以及复合材料的制备方面。

例如,通过改变发泡工艺参数,如发泡温度、发泡时间等,可以调控聚乳酸发泡材料的孔隙结构和密度。

此外,添加不同的发泡剂、增强剂等可以改善其力学性能和热稳定性。

发泡工艺是实现聚乳酸发泡材料的关键。

目前,常用的方法包括物理发泡法、化学发泡法和生物发泡法。

物理发泡法主要是通过在聚乳酸中加入发泡剂,利用发泡剂的汽化产生空气或其他气体使聚乳酸膨胀形成泡沫结构。

化学发泡法是通过在聚乳酸中添加化学反应剂,使其发生化学反应产生气体从而实现发泡。

生物发泡法是利用微生物或酵素的作用来降解聚乳酸并产生气体进行发泡。

同时,为了进一步提高聚乳酸发泡材料的力学性能和热稳定性,研究人员还进行了聚乳酸与其他材料的复合研究。

例如,将聚乳酸与纳米粒子、碳纳米管等进行复合,可以提高聚乳酸发泡材料的机械强度和导热性能。

此外,使用聚乳酸与其他可生物降解材料如淀粉、蛋白质等进行复合,可以改善聚乳酸发泡材料的降解性能和可塑性。

此外,研究人员还对聚乳酸发泡材料进行了改性研究。

通常的改性方法包括聚乳酸链段延长、改变聚乳酸的分子量分布以及添加增韧剂等。

这些改性方法可以改善聚乳酸发泡材料的柔韧性和抗冲击性能。

总而言之,聚乳酸发泡材料的研究进展主要集中在改进发泡工艺、进行复合研究以及进行材料改性等方面。

未来,随着人们对环境友好材料需求的增加,聚乳酸发泡材料有望得到更多应用和进一步提高。

聚乳酸PLA的文献报告

聚乳酸PLA的文献报告

THANKS
感谢观看
竞争格局
中国聚乳酸PLA市场主要由国内 企业主导,但外资企业也在逐步 进入市场。
区域分布
中国聚乳酸PLA市场主要集中在 东部沿海地区,其中江浙沪地区 占比最高。
市场前景预测
技术发展
随着技术的不断进步,聚乳酸PLA的性能将 得到进一步提升,应用领域也将不断扩大。
市场需求
随着环保意识的提高和可降解塑料市场的不断扩大 ,聚乳酸PLA市场需求将继续保持增长态势。
02 03
聚乳酸PLA的制备
制备过程中,需要控制聚合温度、压力、催化剂种类和浓 度等参数,以确保获得高分子量和高结晶度的聚乳酸PLA 。
聚乳酸PLA的性能
聚乳酸PLA具有良好的生物相容性和可降解性,能够在人 体内逐步分解为二氧化碳和水,并被人体代谢排出体外。 此外,聚乳酸PLA还具有较高的机械强度和加工性能,可 广泛应用于医疗、包装、纺织等领域。
加工性能
01
02
03
加工温度
聚乳酸PLA的加工温度较 高,需要严格控制加工条 件。
加工流动性
聚乳酸PLA的加工流动性 较好,有利于加工成型。
加工收缩率
聚乳酸PLA的加工收缩率 较低,有利于控制产品尺 寸精度。
04
聚乳酸PLA的市场分析
全球市场分析
市场规模
全球聚乳酸PLA市场规模持续增长,预计未来几年将保持稳定增 长态势。
详细描述
直接酯化法具有工艺简单、反应条件温和、产物纯度高等优 点,但反应过程中需要使用有机溶剂,且副反应较多,影响 了聚乳酸PLA的分子量和产率。
丙交酯开环聚合法
总结词
丙交酯开环聚合法是聚乳酸PLA生产中的另一种常用方法,通过开环聚合丙交 酯得到预聚物,再经过结晶、分离等步骤得到聚乳酸PLA。

聚乳酸的结构、性能与展望

聚乳酸的结构、性能与展望

聚乳酸的结构、性能与展望聚乳酸是一种由乳酸分子聚合而成的生物降解性高分子材料,具有优良的生物相容性和可降解性。

近年来,随着环保意识的增强和生物医学领域的需求,聚乳酸的研究和应用越来越受到。

本文将探讨聚乳酸的结构、性能及其在各个领域的应用前景,同时分析当前研究中面临的挑战和问题,并提出相应的解决方案。

聚乳酸的分子结构由乳酸分子中的羟基与另一个乳酸分子中的羧基之间进行缩聚反应形成。

其分子链中存在大量的酯键,使得聚乳酸具有较好的生物降解性。

聚乳酸具有较好的机械性能,如高强度、高模量等,同时具有优异的热稳定性和绝缘性能。

聚乳酸还具有较好的耐油性和耐化学腐蚀性。

聚乳酸具有良好的生物相容性和可降解性,在体内可被分解为水和二氧化碳,最终排出体外。

聚乳酸还具有较低的免疫原性和较好的生物活性,使其在生物医学领域中具有广泛的应用前景。

在生物医学领域,聚乳酸被广泛应用于药物载体、组织工程、人工器官等方面。

例如,利用聚乳酸制备的药物载体能够实现药物的定向传输和可控释放,提高药物的疗效并降低副作用。

由于聚乳酸具有优异的可降解性和环保性,其在包装材料领域的应用越来越受到。

利用聚乳酸制备的包装材料能够有效地保护商品,同时减少对环境的污染。

在建筑领域,聚乳酸可用于制备建筑材料,如塑料门窗、防水材料等。

这些材料不仅具有较好的物理性能,还可实现资源的有效利用和环境保护。

聚乳酸的制备需要使用大量的乳酸原料,导致其成本较高。

为降低成本,可考虑采用廉价的原材料替代部分乳酸,如淀粉、纤维素等。

提高生产工艺的效率也是降低成本的重要途径。

聚乳酸的降解速率过快,可能导致其在某些领域的应用效果不佳。

为解决这一问题,可通过对聚乳酸进行改性处理,如添加交联剂、引入长支链结构等,以调节其降解速率。

聚乳酸的加工成型较困难,对其应用范围造成一定限制。

为此,可研发新型的加工设备和工艺,提高聚乳酸的加工成型效率和质量。

聚乳酸作为一种生物降解性高分子材料,具有优良的生物相容性和可降解性,在生物医学、包装材料、建筑等领域具有广泛的应用前景。

聚乳酸(PLA)结晶过程影响因素研究进展

聚乳酸(PLA)结晶过程影响因素研究进展

聚乳酸(PLA)结晶过程影响因素研究进展刘广军【摘要】Poly lactic acid ( PLA) is a non-petroleum-based biodegradable environment-friendly material, with certain mechanical strength and physical properties, is widely used in packaging, bio-pharmaceutical and textile industry and other fields. PLA is a crystalline polymer, and it can crystallize in the process, which can be controlled in crystallization rate by structural conditions, molding conditions, and nucleating agents, to improve its macroeconomic performance. Since PLA has better material properties and does not pollute the environment, it is now widely used in various fields, and has broad prospects in the future.%聚乳酸( Poly lactic acid,简称为PLA)是一种非石油基可生物降解的环境友好型材料,具备一定的机械强度与物理性能,被广泛应用于包装、生物医药以及纺织工业等领域。

PLA是结晶性聚合物,在加工过程中会出现结晶现象,可以通过控制结构条件、成型条件以及选择结晶成核剂,控制其结晶速率,改善PLA的宏观性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(五)聚乳酸的发展状况
三、聚乳酸的改性
随着PLA应用的深入开展,PLA在电子电器、汽车、建筑 材料等领域作为耐久性工程塑料的应用已有报道,因此增 强PLA的研究和应用具有很好的发展前景。但是,由于纯 PLA树脂结晶速度慢,成型制品收缩大、尺寸,本身稳定 性差,本身质脆、加工热稳定性差,以及制品耐久性差等 缺点,限制了其作为工程塑料的应用。因此,对聚乳酸的 改性十分必要。
2、乳酸的制备
乳酸(2-羟基丙酸)可由化学途径或生物途径生产。乳酸 分子中有一个不对称碳原子,具有旋光性,因此有两种旋光异 构体,命名为L、S或(+)乳酸(左旋的),以及D、R或(—) 乳酸(右旋的)。化学合成法只能制备L-乳酸和D-乳酸的混合物 或外消旋乳酸,记作DL-乳酸。 因此PLA也存在聚-D-乳酸(PDLA),聚-L-乳酸(PLLA)和 聚-L,D-乳酸(PDLLA)等几种旋光异构体。微生物发酵法可以 制备光学纯L-乳酸或D-乳酸,并且以再生资源为原料,是乳酸 生产的主要方法。
(一)聚乳酸的增强改性
PLA强度改善的研究刚刚起步,目前主要方法是采用 玻璃纤维增强、天然纤维增强、纳米复合及填充增强等技 术。 表3-1 PLA的主要增强材料
经过增强改性以及耐热性、耐久性、阻燃性改性的 PLA材料已经开展了商业应用。例如,2005年爱知博士会 使用了PLA材料做墙板,东丽和丰田汽车公司开发了PLA 车用脚垫和备用轮胎盖板,日本NEC、富士通等公司制造 了以PLA为主材料的电脑外壳,其他还有PLA在随声听、 DVD机,手机外壳上的应用等。
2、 洋麻纤维增强PLA
洋麻(kenaf)是自然界吸收二氧化碳水平最高的一种 植物,其生长速度非常快,光合作用的速度是普通植物的 3~9倍,具有卓越的固碳作用,1t洋麻能够吸收1.5tCO2,因 此普遍认为它具有极高的防止地球温室效应的功能
图 3-1 洋麻
PLA/洋麻复合材料的特点 ①刚性和耐热性 洋麻纤维增强PLA是具有优异的耐热性、刚 性和成型加工性的高性能复合材料。长度小于5mm的洋麻 和PLA混炼,制备洋麻纤维增强PLA复合材料。洋麻纤维改 性效果见表3-7。
(二)聚乳酸的耐热改性
提高PLA耐热性的主要技术是改善PLA的结晶性能,提 高PLA的结晶度。另外还有与高Tg高分子共混、引入交联 结构、纤维增强以及纳米复合等技术。
二、聚乳酸的概述
聚乳酸是一种新型的、对环境友好且性能优良的高分子 材料。它所用的原料是天然产物乳酸(酸奶的主要成分), 可以由玉米或薯类经加工成淀粉并经发酵,大批量廉价制 得。而聚乳酸本身又无毒、无刺激性,还具有很好的生物 相容性和人体体内可吸收性,它在环境中能被微生物或在 酸碱性水溶液介质中被降解为乳酸并最终被完全分解成二 氧化碳和水,对环境不造成任何的污染与危害。
30%的短玻璃纤维增强PLA的拉伸强度、弯曲强度分别比纯 PLA提高了27.5%、10.2%,弯曲模量比纯PLA提高了148.5%,冲 击强度比纯PLA提高了53.3%,热变形温度提高了10℃左右。
表3-3 30%玻璃纤维增强PLA力学性能比较
2、天然植物纤维增强聚乳酸的改性
天然植物纤维增强高分子能够提高材料的强度和硬度。常用 的天然植物纤维可以分为3类,见表3-4。
表3-7表明,洋麻纤维增强PLA复合材料热变形温度和刚性随 着洋麻纤维含量增加明显地提高。研究表明,这是因为一 方面是洋麻纤维本身的防止材料变形的作用,另一方面洋 麻纤维促进了PLA基体树脂的结晶。
②韧性 洋麻纤维改性后,PLA材料的弯曲强度和冲击强度 降低。观察复合材料的冲击断面发现冲击时洋麻纤维大部 分不会断碎,因此推测,如果脱除短纤维,只保留长纤维 ,会增加受冲击时纤维从基体树脂中拔出的能量,或者提 高纤维与基体树脂的界面结合力,能够改善复合材料的冲 击强度。结果表明(表3-8),除去洋麻纤维中的短纤维部 分,或者添加一种同时能够提高界面黏合力的聚乳酸-脂肪 族聚酯共聚物的增韧剂,复合材料的冲击强度得到改善。
1、玻璃纤维增强聚乳酸的改性
玻璃纤维(GF)具有高强度、耐候、耐热、绝缘性好等特 点,与其他纤维比较,玻璃纤维的价格很低,是廉价高性能增 强材料。玻璃纤维增强PLA能够提高PLA的力学性能和热变形温 度。 如表3-2所示,40%的长玻璃纤维增强PLA的拉伸强度、弯曲 强度分别是纯PLA的1.6倍、1.7倍,弯曲模量是纯PLA的3.1倍 ,冲击强度是纯PLA的5.2倍,热变形温度由纯PLA的58℃提高 到167℃; 表3-2 40%玻璃纤维增强PLA力学性能比较
3、纳米复合材料增强改性聚乳酸
PLA纳米复合材料具有十分突出的特征。利用纳米 材料改性PLA的最大优点是纳米材料用量很小,却能使PLA 的性能产生很大的变化,既能提供PLA的耐热性、力学性 能,又能提高其生物降解速度。 不同种类的纳米材料的微结构不同,出现不同的特 征,这种不同的特性对聚合物改性产生下列作用:具有优 良的增强增韧双重功能;赋予聚合物优良的耐热性;具有 良好的气体阻隔性;④赋予聚合物优良的加工性;⑤改善 聚合物表面的吸水性与尺寸稳定性;⑥改善与提高聚合物 的电、磁等性能。 公开的资料中主要采用共混法制备PLA/LS纳米复合材 料,有熔融共混,也有溶液共混。制备的PLA/LS纳米复合 材料性能优于纯PLA,特别是结晶速率加快,耐热性提高 ,这是其他改性方法无法比拟的。
丙交酯开环聚合 第一步是乳酸经脱水环化制得丙交酯。
第二步是丙交酯经开环聚合制得聚丙交酯。
优点:可以使用纯度不高的乳酸为原料,并且得到的是高 分子量的PLA。 缺点:提纯丙交酯工艺复杂,技术要求高,设备投资大, 产品成本高。
4、聚乳酸的性质
(三)聚乳酸的降解
PLA在高温和应力作用下成型时,PLA大分子由于受热和应力 作用或在高温下受微量水分、酸、碱等杂质及空气中氧的作 用而发生分子量降低或大分子结构改变等化学变化。 在细菌、真菌、藻类等自然界存在的微生物作用下能发生化 学、生物或物理作用而降解或分解。其特点是在失去作为塑 料的利用价值而变成垃圾之后,不但不会破坏生态环境,反 而会提高土壤的生物活性,这种降解也称为生物降解。
(一)聚乳酸的发展历史
1、Pelouze首先发现了乳酸线性二聚体——乳酰乳酸的形成; 2、Nef证实乳酸在低压和高温下发生脱水反应可形成3~7聚合度的低聚物。 3、Carothers等提出使用乳酸二聚物聚合的二部法,合成出高分子量的PLA。 4、20世纪60年代后期,研究者开始研究PLA及其共聚物在生物医学方面的运 用,如手术缝合线。 5、De Santis等分析了等规的PLLA(聚L-乳酸)和它们的共聚物在制药学上的 运用,如作为药物释放系统的基材等。 7、1986年,Battelle公司和杜邦公司各自开始了把PLA作为日用塑料应用的 生产和加工技术的研究。 8、2005年1月,目前世界上最大的PLA生产公司Natureworks LLC,拥有11~12 种不同等级的PLA,适用于吹膜、双轴取向膜、热膜、注塑成型、瓶子及纤 维等不同用途。 9、Natureworks公司的PLA纤维2004年开始进入我国市场,非纤维用途的PLA 树脂2005年2月进入我国市场。我国目前工业用聚乳酸的制备主要处于在实 验室及中试研究生产阶段。
玻璃纤维和天然植物纤维的特点比较
以前天然材料在塑料中的应用大多采用作为填充料的木 粉,制备价格便宜的“木塑材料”。然而,以韧皮纤维为主的 麻纤维可比木粉对塑料提供更好的力学增强作用,而且成本也 更低。这种“麻塑材料”在代替一些玻璃纤维复合材料时具有 很大的潜力,已在建筑行业如建筑构架和屋顶等,汽车行业如 轿车的门板、车厢内衬板、行李箱、顶棚、座椅背板、衣帽架 、仪表盘、发动机罩和变速箱盖等部件逐步得到应用。 如德国R+S公司生产的天然纤维复合材料门板用于的1999版 SAAB9S轿车;Visteon采用一步模压成型方法生产了福特公司 Mondeo牌汽车的门板;荷兰的供应厂商为福特公司的Focus牌 汽车生产采用大麻纤维增强PP材料的发动机护照,其重量比用 玻璃纤维轻30%;2000年德国大众奥迪(Audi)公司展出了一 辆用麻纤维毡增强聚氨酯树脂作为车门内饰板的Audi Az中型 轿车,该车是世界上第一款批量生产的全铝合金车身汽车,它 的重量比一般的轿车轻得多。今后,天然植物纤维复合材料在 汽车、电子电器、建筑工业等领域具有更广阔的应聚乳酸(PLA)等 生物基高分子,又有以石化资源为原料合成的高分子,如 聚己内酯(PCL)等。以市场规模统计,生物基高分子大约 占生物降解高分子的80%~90%。 其中,根据来源不同,生物降解高分子可分为三种:微 生物合成生物降解高分子、天然物合成生物降解高分子和 化学合成生物降解高分子。
(四)聚乳酸的应用
卫生医药领域 聚乳酸安全无毒,其生物相容和可吸收的 特点使其应用于医用成骨材料、敷料、医用缝合线、药物 运载和释放系统的药物基质,以及组织工程等方面。 农业领域 聚乳酸韧性好,适合加工成高附加值薄膜,代替 目前易破碎的农用地膜。此外,还可用于缓释农药、肥料 等,不仅低毒长效,还可在使用几年后自动分解而不导致环 境的污染。 工业领域 聚乳酸在工业领域中有诸多用途,如制造一次 性饭盒,作为各种饮料、食品的外包装材料,生产仿丝绸纤 维、仿棉纤维、仿羊毛等,另外可以单独纺丝,或者与其他 天然纤维混纺用以生产各种纺织物品。
PLA能够同普通高分子一样进行各种成型加工,如挤出、 流延制膜、吹膜、注塑、吹瓶、纤维成型等。 制备的各种薄膜、片材、纤维经过热成型、纺丝等二次 加工后得到的产品可以广泛应用在服装、纺织、无纺布、包 装、农业、林业、土木建筑、医疗卫生用品、日常生活用品 等领域。 PLA制品使用后的回收方式有有机资源回收(堆肥化)、 物理回收、掩埋、热回收(焚烧)或化学回收等多种。
糖化
发酵
乳酸的提取和纯化
3、聚乳酸的合成 直接缩聚法
通过直接缩聚很难获得高分子量的聚酯,因此需要共沸蒸馏、扩链反应、酯化 促进剂和交联剂用于羧酸的缩合。 优点: 原料来源充足,大大降低了成本,有利于聚乳酸材料的普及; 流程短、产率高。 缺点: 后期聚合过程中从粘稠熔融状态中除去水很困难,因此限制了最终产物的相 对分子质量在10000~20000之间;需要较大的反应器及蒸发设备,溶剂需要 回收、反应温度过高导致产物带色以及消旋化等问题。
相关文档
最新文档