分式单元测试题
分式与分式方程单元测试题(带答案)知识讲解
只供学习与交流分式与分式方程单元测试题 (满分 150分 时间 120分钟)一、选择题(每小题3分,满分30分) 1.若分式x-32有意义,则x 的取值范围是………………………………………( )A .x ≠3B .x =3C .x <3D .x >32.当a 为任何实数时,下列分式中一定有意义的一个是………………………( )A .21aa +B .11+aC .112++a aD .112++a a 3.下列各分式中,最简分式是……………………………………………………( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 4.若把分式2x y x y+-中的x 和y 都扩大3倍,那么分式的值……………………( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍 5.分式方程313-=+-x mx x 有增根,则m 为……………………………………( )A .0B .1C .3D .66.若xy y x =+,则yx11+的值为…………………………………………………( )A .0B .1C .-1D .27.某农场开挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是………( ) A .448020480=--xx B .204480480=+-x x只供学习与交流C .420480480=+-x xD .204804480=--xx8.下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有……………()A .1个B .2个C .3个D .4个9.下列各式的约分运算中,正确的是…………………………………………( )A .326x xx = B .b ac b c a =++ C .0=++b a b a D .1=++b a b a10.把分式2222-+-+-x x x x 化简的正确结果为……………………………………( )A .482--x xB .482+-x xC .482-x xD .48222-+x x二、填空题(每小题3分,满分24分) 1.当x = 3± 时,分式35-x 没有意义. 2.已知432z y x ==,则=+--+z y x z y x 232 43. 3.xyzx y xy 61,4,13-的最简公分母是 yz x 312 .4.分式392--x x 当x 3-= 时分式的值为零.5.若关于x 的分式方程3232-=--x m x x 有增根,则m 为 3± .6.已知2+x a 与2-x b 的和等于442-x x,则a = 2 ,b = 2 .只供学习与交流7.要使15-x 与24-x 的值相等,则x = 6 .8.化简=-+-a b bb a a 1 . 三、解答题:(每题8分,共48分)1.22221106532xy x y y x ÷⋅ 2.mn nn m m m n n m -+-+--23.(22+--x x x x )24-÷x x 4.2232342⎪⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-a b a b a b只供学习与交流5.231341651222+-++--+-x x x x x x6.xx x x x x +-÷-+-2221112四、解方程:(每题8分,共32分)1.141-22-=x x只供学习与交流2.13132=-+--xx x3.5221332-=-x xx4.71618151+++=+++x x x x五、应用题(每题8分,共16分)1.八年级(11)班的学生周末乘汽车到游览区游览,游览区距学校120km,一部分学生乘慢车先行,出发1h后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.5倍,求慢车的速度.只供学习与交流2.某商店销售一种衬衫,4月份的营业额为5000元,为了扩大销售,在5月份将每件衬衫按原价的8折销售,销量比4月份增加了40件,营业额比4月份增加了600元,求4月份每件衬衫的售价.只供学习与交流只供学习与交流分式与分式方程单元测试题参考答案一、选择题(每小题3分,满分30分) 1-5 ADCBC 6-10 BCBDA二、填空题(每小题3分,满分24分)1.3±; 2.43; 3.yz x 312; 4.3-=; 5.3±. 6.2,2 . 7.6 8.1三、解答题:(每题8分,共48分)1..67102165323222yx y x x y y x =⋅⋅=解:原式只供学习与交流2..22m n m m n n m n m m n n m n m m n n m -=-+--=-+----=解:原式 3..2142)2)(2(442)2)(2()2()2(+=-⋅-+=-⋅-+--+=x x x x x x x x x x x x x x 解:原式 4..4164642233ab b a a b a b =⋅⋅-=解:原式.)3)(1(1)3)(2)(1(2)3)(2)(1()3()2()1()2)(1(1)3)(1(1)3)(2(1--=----=----+---=--+-----=x x x x x x x x x x x x x x x x x x 解:原式5.6..1)1()1)(1()1(2x x x x x x x =-+⋅-+-=解:原式 四、解方程:(每题8分,共32分)1.解:方程两边同时乘以最简公分母12-x 得4)1(2=+x①解①得1=x经检验:1=x 为原分式方程的增根. 2.解:方程两边同乘以3-x 得312-=--x x①解①得2=x经检验:2=x 为原分式方程的解.3.解:原方程可化为整式方程只供学习与交流)13(2)52(32-=-x x x解之得215=x 经检验:215=x 为原分式方程的解. 4.解:原方程可化为51617181+-+=+-+x x x x 整理后得)5)(6()6(5)7)(8()8(7+++-+=+++-+x x x x x x x x 即)5)(6(1)7)(8(1++-=++-x x x x 即)5)(6()7)(8(++=++x x x x即3011561522++=++x x x x解之得213-=x 经检验:213-=x 为原分式方程的解. 五、应用题(每题8分,共16分)1.解:设慢车的速度为x km/h ,则快车的速度为x 5.1km/h.依题意可得分式方程此文档仅供收集于网络,如有侵权请联系网站删除只供学习与交流 x x 5.11201120=-解之得40=x经检验:40=x 为所列分式方程的解. 答:慢车的速度为40km/h 。
分式单元测试题及答案
分式单元测试题学生______ 日期_______ 得分_______一、填空题(每小题2分,共24分)1.将2()a b c ÷-写成分式的形式:________.2.用22,,1a x -+中的任意两个代数式组成一个分式:________.3.当x ________时,分式12x 有意义. 4.若2x =-,则分式22x-=________. 5.当x ________时,分式1x x -无意义. 6.当x ________时,分式32x x-的值为零. 7.计算:b a a b⋅=________. 8.化简:222a ab a=+________. 9.计算:232233-⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭________. 10.计算:511212x x+=________. 11.用科学记数法表示:0.0000056-=____________________.12.写成不含有分母的式子,323()a b a b -=- ________. 二、选择题(每小题3分,共12分)13.下列各式中,是分式的是 ( ).(A )12; (B )23a ; (C )222x x + ; (D )212x x +.14.下列方程中,2x =不是它的一个解的是( )(A )152x x +=;(B )240x -=;(C )2122x x x +=--;(D )22032x x x -=++.15.下列分式中,是最简分式的是( ).(A )x xy 2; (B )a xy 2; (C )221++x x ; (D )222yxy y x ++ .16.下列化简过程正确的是( ).(A )421262x x x =; (B )y x y x y x +=-+122; (C )x x x x x 3123222+=+ ; (D )2362+=---x x x x .三、计算题(每小题7分,共28分)17.22226543425x x x x x x x -++⋅+-- . 18.22562321x x x x x x -+-÷+++ .19.223123x x x ----2223x x x +--221223x x x -+--. 20.221x x y x y --+.四、解方程(每小题7分,共28分)21.213121x x =+-. 22.5155x x x -+=++.23.23856x x x -=-+2456x x x --+. 24.12x x -=+23x x -+.五、应用题(共8分)25.小丽、小明练习打字,小丽打字速度是小明的1.2倍,同样打600个字,小丽比小明少用1分钟,问小丽每分钟打字多少个?答案:1. 2a b c - .2. 2a -等. 3. 0x ≠. 4. 12. 5.1x =. 6.3x =. 7.1.8. 11b +. 9. 23 .10. 12x.11. 65.610--⨯ .12. 1323()a b a b ----. 13.(D ). 14.(C ). 15.(B ). 16.(D ).17.5x x + . 18.32x x -+ .19.23x x --. 20.22y x y -. 21.3x =. 22.无解. 23.无解.24.12x =-. 25.小丽每分钟打字120个.。
八年级数学分式单元测试卷
一、选择题(每题4分,共20分)1. 下列分式值为1的是()A. 1/2B. 2/3C. 3/4D. 4/52. 若a、b、c是互不相等的实数,则下列分式中值为0的是()A. a/bB. b/cC. c/aD. a/b + c/c3. 分式2x/(x+1)的定义域为()A. x ≠ 0B. x ≠ -1C. x ≠ 1D. x ≠ 0且x ≠ -14. 若x > 0,则下列分式中值最大的是()A. 1/xB. xC. x^2D. 1/x^25. 分式(2x+3)/(x-1)的增减性为()A. 在x < 1时递增,在x > 1时递减B. 在x < 1时递减,在x > 1时递增C. 在整个定义域内递增D. 在整个定义域内递减二、填空题(每题4分,共16分)6. 分式3/(x-2)的值域为______。
7. 若分式f(x) = (x-1)/(x+2)在x = -1时的值为1,则f(x)的定义域为______。
8. 分式(2x+5)/(x-3)的分子分母同时乘以3后,其值为______。
9. 若a、b是实数,且a+b=0,则分式a/b的值为______。
10. 分式(1/x)的倒数是______。
三、解答题(共64分)11. (12分)已知分式f(x) = (x^2-4)/(x-2),求f(x)的定义域和值域。
12. (12分)若分式g(x) = (2x+3)/(x-1)的值在x=3时为5,求g(x)的表达式。
13. (20分)已知函数f(x) = (x^2+2x+1)/(x+1),求f(x)的定义域、值域和f(-1)的值。
14. (20分)若分式h(x) = (x-1)/(x^2-4)在x=2时的值为-1/3,求h(x)的定义域和h(0)的值。
注意:本试卷满分100分,考试时间为60分钟。
请将答案填写在答题卡上相应的位置。
答案:一、选择题1. B2. D3. B4. D5. A二、填空题6. x ≠ 27. x ≠ -28. 29. 010. x三、解答题11. 解:f(x)的定义域为x ≠ 2,值域为实数集R。
八年级数学上册《分式》单元测试卷(含答案解析)
八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。
分式单元测试题(含答案)
(时间:60分钟,满分:100分)一、填空题:(每题2分,共22分)1.当x_______时,分式13x x +-有意义,当x_______时,分式23x x -无意义. 2.当x_______时,分式293x x --的值为零. 3.分式311,,46y xy x xyz-的最简公分母是_______. 4.222bc a a b c =_______;32243x x y y ÷=_______;23b a a b-=_______;21x y x y -+-=_______. 5.一件工作,甲单独做ah 完成,乙单独做bh 完成,则甲,乙合作______h 完成.6.若分式方程1x x a ++=2的一个解是x=1,则a=_______. 7.若分式13x-的值为整数,则整数x=_______. 8.已知x=1是方程111x k x x x x +=--+的一个增根,则k=_______. 9.某商场降价销售一批服装,打8折后售价为120元,则原销售价是_____元.10.已知224(4)4A Bx C x x x x +=+++,则B=______. 11.若1x +x=3,则421x x x ++=______. 二、选择题(每题2分,共14分) 12.下列各式:3,7a b a +,x 2+12y 2,5,1,18x x π-其中分式有( ) A .1个 B .2个 C .3个 D .4个13.如果把分式2x x y+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .缩小6倍 D .不变14.下列约分结果正确的是( )A .2222881212x yz z x y z y =B .22x y x y --=x-yC .2211m m m -+--=-m+1D .a m a b m b+=+ 15.与分式x y x y-++相等的是( ) A .x y x y +- B .x y x y -+ C .-x y x y -+ D .x y x y+-- 16.下列分式一定有意义的是( )A .21x x +B .22x x +C .22x x -- D .23x x + 17.已知a 2+b 2=6ab 且a>b>0,则a b a b+-的值为( )A B C .2 D .±218.某农场开挖一条480m 的渠道,开工后,每天比原计划多挖20m ,结果提前4天完成任务,若设原计划每天挖xm ,那么所列方程正确的是( )A .48048020x x --=4 B .4804804x x -+=20 C .48048020x x -+=4 D .4804804x x --=20 三、计算题;(每题3分,共12分)19.2224422a a a a a a +-+-+ 20.11a --1-a21.2242()4422x x x x x x x ---÷-++-; 22.1-22244x y x y x y x xy y--÷+++.四、解答题(每题4分,共8分)23.321(1)x x x x +---=0 24.5425124362x x x x -+=---五、解答题(每题6分,共18分)25.先化简,再用你喜爱的数代入求值:2232214()2442x x x x x x x x x+---÷--+-26.若235x y z ==,且3x+2y-z=14,求x ,y ,z 的值.27.阅读下列材料: x+1x =c+1c 的解是x 1=c ,x 2=1c; x-1x =c-1c (即x+1x -=c+1c -)的解是x 1=c ,x 2=-1c; x+2x =c+2c 的解是x 1=c ,x 2=2c; x+3x =c+3c 的解是x 1=c ,x 2=3c ; ……(1)请观察上述方程与解的特征,猜想方程x+m x =c+m c (m ≠0)的解,并验证你的结论;(2)利用这个结论解关于x 的方程:x+2211a x a =+--.六、解决问题(共26分)28.(8分)甲,乙两地相距19km ,某人从甲地出发去乙地,先步行7km ,•然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.29.(8分)甲,乙两组学生去距学校4.5km的敬老院打扫卫生,•甲组学生步行出发半小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,•如果步行的速度是骑自行车的速度的13,求步行和骑自行车的速度各是多少.30.(10分)一个批发兼零售的文具店规定:凡一次购买铅笔300•枝以上(•不包括300枝),可以按批发价付款:购买300枝以下(包括300枝),只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元.(1)这个学校八年级的学生总数在什么范围内(2)若按批发价购买6枝与按零售价购买5枝的价格相同,那么这个学校八年级学生有多少人参考答案1.≠3 =322.=-3 3.12x 3yz 4.222222332326x y b a x y ab ab x y --- 5.ab a b+ 6.0 7.2或4 8.-1 9.150 10.-•1 •11.1812.B 13.D 14.C 15.C 16.A 17.A 18.C19.22a - 20.221a a -- 21.82x + 22.-y x y + 23.无解 24.无解 25.2x x - 26.x=4,y=6,z=10 27.(1)x 1=c ,x 2=m c (2)x 1=a ,x 2=11a a +- 28.•步行速度为5km/h ,骑自行车速度为20km/h29.步行速度为6km/h ,•骑自行车速度为18km/h •30.(1)人数多于240人,不大于300人 (2)300人第7章测试卷讲评课Ⅰ.本题针对第7题●反馈 若31a +表示一个整数,则整数a 可以取哪些值 Ⅱ.本题针对第11题●反馈 已知x=12,求351x x x ++的值. Ⅲ.本题针对第26题●反馈1 已知1x -1y=3,求55x xy y x xy y +---的值. ●反馈2 已知234x y z ==,求2222323x y z xy yz xz -+-+的值. ●反馈3 已知4x-3y-6z=0,2x+4y-14z=0,求22222223657x y z x y z ++++的值. Ⅳ.本题针对第28,29题●反馈 某商场家电部送货人员与销售人员人数之比为1:8,今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有送货人员和销售人员多少名.参考答案Ⅰ.反馈:2,0,-2,-4Ⅱ.反馈:由x=12,得, 所以(2x-1)2=5,即x 2-x-1=0,x 2=x+1, 所以33322255532331(1)(1)11x x x x x x x x x x x x x x xx x x +++++++========Ⅲ.反馈1:72反馈2:173反馈3:1Ⅳ.反馈:原来送货人有14人,销售人员有112人.&。
分式单元测试一(附答案)
分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。
5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
八年级分式单元测试题
八年级分式单元测试题一、选择题(每题3分,共15分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(2)C. (1)/(x + 1)D. (x)/(π)解析:分式的定义是分母中含有字母的式子。
A选项分母为2,是常数;B选项分母为2,是常数;C选项分母为x + 1,含有字母x,是分式;D选项分母为π,π是常数。
所以答案是C。
2. 若分式(x 1)/(x + 2)的值为0,则x的值为()A. 1.B. 1.C. 2.D. -2.解析:分式的值为0的条件是分子为0且分母不为0。
由分子x 1 = 0,解得x = 1,当x = 1时,分母x+2=1 + 2 = 3≠0。
所以答案是A。
3. 化简frac{a^2-b^2}{a b}的结果是()A. a bB. a + bC. (a + b)/(a b)D. (a b)/(a + b)解析:根据平方差公式a^2-b^2=(a + b)(a b),所以frac{a^2-b^2}{a b}=((a + b)(ab))/(a b)=a + b。
答案是B。
4. 计算(2)/(x 1)+(3)/(1 x)的结果是()A. -1.B. 1.C. (1)/(x 1)D. (5)/(x 1)解析:先将(3)/(1 x)化为-(3)/(x 1),则(2)/(x 1)+(3)/(1 x)=(2)/(x 1)-(3)/(x 1)=(2 3)/(x 1)=-(1)/(x 1)=-1。
答案是A。
5. 若分式方程(x)/(x 3)=2+(k)/(x 3)有增根,则k的值为() A. 3 B. 0 C. -3 D. 1 解析:分式方程有增根,就是分母为0,即x 3 = 0,解得x = 3。
方程两边同时乘以x 3得到x = 2(x 3)+k,把x = 3代入得3 = 2×(3 3)+k,解得k = 3。
答案是A。
二、填空题(每题3分,共15分)6. 当x=______时,分式\frac{1}{x 2}\)无意义。
分式单元复习测试题
324332⎪⎭⎫⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y y x 分式单元测试题一、填空题(39分)1、在)(1y x m -、23xx 、212+x 、πxy 3、y x +3、m 23+、3-x 中分式的有 个。
2、要使分式1(1)(2)x x x ++-有意义,则x 应满足 。
3、将分式yx yx 5.15.01.0+-的分子分母各项系数化为整数,其结果为 。
4、计算x x -++1111的结果是 。
5、方程04142=----xx x 的解是 6、分式22m m 1m 2m -+-约分后的结果是 。
7、一工作,甲独做a 天完成,乙独做b 天完成,则两人合作一天的工作量是 8、若分式方程231x x -=1m x -有增根,则m 的值为9、某工厂原计划a 天完成b 件产品,由于情况发生变化,要求提前x 天完成任务,则现在每天要比原计划每天多生产 件产品.10、已知113x y -=,则代数式21422x xy yx xy y ----的值为11、若分式34922+--x x x 的值为零,则x 的值为 12、当m = 时,关于x 的分式方程213x mx +=--无解. 13、某市今年计划修建一段全长1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.若设原计划每天修路x 米,则根据题意可列方程 . 二、解答题(1每小题4分,5-9每题7分,其余每题5分)1、计算:(1)b a a b a b --- (2)(3))1(1a a a a -÷- (4))(22a bb a aab a -÷-2、化简:(1)aa a a a 21)242(22+∙--- (2)4)22(2-÷+--a a a a a a3、解分式方程: (1)21221-=+--x x x (2)512552x x x +=-- (3)21x x +-211x -=0.4、先化简121)11(2+-÷--a a a a ,然后选择一个合适的你最喜欢的a 的值,代入求值.5、甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?6、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年1月份的水费是36元,已知小明家今年1月份的用水量比去年12月份的用水量多6m 3.求该市今年居民用水的价格.7.某项工程需在规定日期内完成,若甲队单独做,恰好如期完成;若乙队单独做,则要延期3天完成。
《分式与分式方程》单元测试卷含答案精选全文完整版
可编辑修改精选全文完整版《分式与分式方程》单元测试卷班级:姓名:得分:一.选择题(共10小题)1.(2020•衡阳)要使分式有意义,则x的取值范围是()A.x>1B.x≠1C.x=1D.x≠0 2.(2020•雅安)分式=0,则x的值是()A.1B.﹣1C.±1D.0 3.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=4.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.5.(2016•来宾)当x=6,y=﹣2时,代数式的值为()A.2B.C.1D.6.(2020•随州)÷的计算结果为()A.B.C.D.7.(2020•天津)计算+的结果是()A.B.C.1D.x+1 8.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.9.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3B.1C.0D.﹣1 10.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59二.填空题(共10小题)11.(2020•柳州)分式中,x的取值范围是.12.(2019•内江)若+=2,则分式的值为.13.(2020•河池)方程=的解是x=.14.(2020•济南)代数式与代数式的值相等,则x=.15.(2020•潍坊)若关于x的分式方程+1有增根,则m=.16.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.17.(2019•襄阳)定义:a*b=,则方程2*(x+3)=1*(2x)的解为.18.(2017•沈阳)•=.19.(2020•济宁)已知m+n=﹣3,则分式÷(﹣2n)的值是.20.(2019•齐齐哈尔)关于x的分式方程﹣=3的解为非负数,则a的取值范围为.三.解答题(共7小题)21.(2020•宜宾)(1)计算:()﹣1﹣(π﹣3)0﹣|﹣3|+(﹣1)2020;(2)化简:÷(1﹣).22.(2020•西宁)先化简,再求值:,其中.23.(2020•郴州)解方程:=+1.24.(2019•西宁)若m是不等式组的整数解,解关于x的分式方程+1=.25.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?26.(2020•贵港)在今年新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3800元,则增加购买A型口罩的数量最多是多少个?27.(2020•山西)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.参考答案一.选择题(共10小题)1.B;2.A;3.D;4.D;5.D;6.B;7.A;8.B;9.C;10.B;二.填空题(共10小题)11.x≠2;12.﹣4;13.﹣3;14.7;15.3;16.﹣=2;17.x=1;18.;19.;20.a≤4且a≠3;三.解答题(共7小题)21.;22.;23.;24.;25.;26.;27.三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;。
分式单元测试题7套
分式单元测试题1一、选择题 1.在式子,,,,中,分式有( )A .1个B .2个C .3个D .4个2.分式无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=3 3.下列各分式中与分式的值相等是( ) A . B . C . D .—4.计算(—)·的结果是( )A . 4B . -4C .2aD .-2a5.分式方程的解是( ) A .x=-2 B .x=2 C . x=±2 D.无解 6.把分式中的,都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的C .扩大为原来的9倍D .不变 7.若分式的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .B .C .D . 二、填空题 9.当x= 时,分式值为零. 10.计算.= . 11.用科学记数法表示0.002 014= .12.分式的最简公分母是____ ______.13.若方程无解,则__________________. 14.已知-=,则的值为________________.15.若=+(R 1≠R 2),则表示R 1的式子是________________. 16.某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________. 三、解答题17.计算:(1)(2x -3y 2)-2÷(x -2y )3; (2) ÷ +.x y 3πa 13+x 31+x aa 232+x xb a a --b a a --b a a +-a b a -ab a-2-a a 2+a aaa 24-2114339x x x +=-+-(0)xyx y x y+≠+x y 1334922+--x x x 72072054848x -=+72072054848x +=+720720548x -=72072054848x-=+22x x --2323()a b a b --÷222439xx x x --与322x mx x -=--m =a 1b 121ba ab-R 111R 21R 21+-x x 41222-+-x x x 11-x18.先化简,再求值:,其中. 19.解方程.20.先仔细看(1)题,再解答(2)题. (1)a 为何值时,方程= 2 + 会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3. (2)当m 为何值时,方程-=会产生增根?25.贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路 的长度.26.荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案. (1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.211122x x x -⎛⎫-÷ ⎪++⎝⎭2x =21124x x x -=--3x x -3ax -1y y -2m y y -1y y-分式单元测试题2一、选择题 1.在,,,中,是分式的有( ). A .1个 B .2个 C .3个D .4个2.如果把分式中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍3.分式有意义的条件是( ). A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠0 4.下列分式中,计算正确的是( ).A .B .C .D . 5.化简的结果是( ). A . B .a C .a -1 D .6.化简·(x -3)的结果是( ). A .2B .C .D . 7.化简,可得( ).A .B .C .D . 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .B .C .D .二、填空题9.当x =__________时,分式无意义.10.化简:=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2.12.已知x =2 012,y =2 013,则(x +y )·=__________. 13.观察下列各等式:,,,…,根据你发现的规律计算:=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.2a b -(3)x x x +5πx +a ba b+-2xx y+22x yx y-+2()23()3b c a b c a +=+++222a b a b a b +=++22()1()a b a b -=-+2212x y xy x y y x -=---211a a a a --÷1a 11a -21131x x x +⎛⎫- ⎪--⎝⎭21x -23x -41x x --1111x x -+-221x -221x --221xx -221xx --80705x x=-80705x x =+80705x x=+80705x x =-13x -22x y x y x y---2244x y x y+-1111212=-⨯1112323=-⨯1113434=-⨯2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+三、解答题17.化简:.18.已知x -3y =0,求·(x -y )的值. 19.(1); (2).20.已知y =.试说明不论x 为任何有意义的值,y 的值均不变.21.为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?32322222b b ab b a b a a b ab b a ++÷--+-2222x yx xy y+-+271326x x x +=++11222x x x-=---222693393x x x x x x x+++÷-+--分式单元测试题31. 当x=______时,分式212+-x x 有意义;当 x=_____时,分式)2)(1(12+--x x x 的值为0.2.根据分式的性质填空 (1)22()()x yy x y -=-; (2) 22()1a a a a -=--- 3.约分:21545x x -=_________;ayax yx --=_____________.4.分式21,,234y x x y xy的最简公分母是______________. 5.用科学记数法表示: 0.00000980 =____________________. 6. 计算:222x xy y ⎛⎫÷= ⎪-⎝⎭______________. 7.在3x π-,2a b +,13m +,2a a 中分式的个数是________个. 8. 关于x 的方程311x m x x -=--产生增根,则m 的值为 。
分式单元测试题(附参考答案)
分式测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x10÷x5=x2B.x-4·x=x-3C.x3·x2=x6D.(2x-2)-3=-8x62. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1abC.1a b+D.aba b+3.化简a ba b a b--+等于( )A.2222a ba b+-B.222()a ba b+-C.2222a ba b-+D.222()a ba b+-4.若分式2242xx x---的值为零,则x的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+6.分式:①22 3a a ++,②22a ba b--,③412()aa b-,④12x-中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222x x xx x x⎛⎫-÷⎪-+-⎝⎭的结果是( )A. -12x+B.12x+C.-1D.18.若关于x的方程x a cb x d-=-有解,则必须满足条件( )A. a≠b ,c≠dB. a≠b ,c≠-dC.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( )A.a<3B.a>3C.a≥3D.a≤3 10.解分式方程2236111x x x+=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上.(1)-3x;(2)yx;(3)22732xyyx-;(4)-x81;(5)35+y;(6)112--xx;(7)-π-12m;(8)5.023+m.12.当a时,分式321+-aa有意义. 13.若则x+x-1=__________.14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷-⎪⎝⎭的结果是_________.16.已知u=121s st--(u≠0),则t=___________.17.当m=______时,方程233x mx x=---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x时,分式xx--23的值为负数. 20.计算(x+y)·2222x yx y y x+--=____________.三、计算题:(每小题6分,共12分)21.23651xx x x x+----; 22.2424422x y x y xx y x y x y x y⋅-÷-+-+.四、解方程:(6分)23.21212339x x x-=+--。
七年级数学下册《分式》单元测试卷(附带答案)
七年级数学下册《分式》单元测试卷(附带答案)一、选择题(共10小题)1. 下列方程中,x=2不是它的一个解的是( )A. x+1x =52B. x2−4=0C. xx−2+1=2x−2D. x−2x2+3x+2=03. 已知方程:①xx +x24=6②2x+2+x=3③1x2−9=0④(x+38)(x+6)=−1这四个方程中,分式方程的个数是( )A.1B. 2C. 3D. 47. 为了绿化环境,需要在一块矩形场地上移植草皮.已知矩形场地的宽为x米,矩形的长比宽多14米,恰好铺满场地所需草皮的面积是3200平方米.根据题意,可以列出关于x的方程是( )A. x(x−14)=3200B. x(x+14)=3200C. 2x(x+14)=3200D. 2x(x−14)=32008. 若分式x2−4x2+x−2的值为零,则x的值为( )A. 2B. −2C. 1D. 2或−29. 用换元法解分式方程x+1x2+x2x+1=2时,若设x+1x2=y,那么原方程可化为关于y的方程是( )A. y2−2y+1=0B. y2+2y+1=0C. y2+y+2=0D. y2+y−2=010. 两车在两城间不断往返行驶:甲车从A城开出,乙车从B城开出,且比甲车早出发1小时,两车在途中距A,B两城分别为200公里和240公里的C处相遇;相遇后乙车改为按甲车速度行驶,而甲车却提速若干公里/时,两车恰巧又在C处相遇;然后甲车再次提速5公里/时,乙车则提速50公里/时,两车恰巧又在C处相遇.那么从起行到第3次相遇,乙车共行驶了( )小时.二、填空题(共6小题)11. 分式aa2+2ab+b2和ba+b的最简公分母是.12. 已知甲乙两人共同完成一件工作需12天.若甲乙两人单独完成这件工作,则乙所需的天数是甲所需天数的1.5倍,设甲单独完成这件工作需x天,则可列方程.13. 分母中含有,叫做.14. 当x时,分式x+5x+2有意义.15. 同分母分式加减法则:同分母分式相加减,分母,分子相.16. 若用去分母的方法解关于x的方程2x−1=1−k1−x有增根,则k=.三、解答题(共7小题)17. 下列方程中,哪些是分式方程?(1)x+1x=3(2)1x=2(3)2x−54+x3=12(4)2x−2=1x−118. 解分式方程的一般步骤,可用流程图表述为:19. 计算:(1)2x +3x=;(2)23x −13x=;(3)xx−y −yx−y=;(4)2a+1ab −1ab=.20. 化简再求值3a2−ab9a2−6ab+b2,其中a=34,b=−23.21. 小张利用休息日进行登山锻炼,从山脚到山顶的路程为12千米,他上午8时从山脚出发,到达山顶后停留了半小时,再原路返回,下午3时30分回到山脚,假设他上山与下山时都是匀速行走,且下山比上山时的速度每小时快1千米,求小张上山时的速度.22. 按照解分式方程的一般步骤解关于x的分式方程k(x+1)(x−1)+1=1x+1,出现增根x=−1,求k的值.23.甲的速度每小时a千米,乙的速度每小时b千米,如果从A地到B地,甲用m小时,那么乙要用多少小时?(结果用分式表示)参考答案1. C2. B3. C4. B5. B6. D7. B8. A9. A11. (a+b)212. 1x +11.5x=11213. 未知数的方程,分式方程14. ≠−215. 不变,加减16. 217. (1)(2)(4)是分式方程.18. 去分母;检验19. (1)5x (2)13x(3)1(4)2b20. a3a−b9 3521. 设上山时的速度为x千米每小时,则下山的速度为(x+1)千米每小时小张从山脚出发到回到山脚,总用时为:7小时30分,即7.5小时由题意得12 x +12x+1+0.5=7.5整理得7x2−17x−12=0解得x1=3,x2=−47 (舍)经检验,x=3是原方程的解故小张上山时的速度是3千米每小时22. k=−223. amb。
分式单元测试(含答案)
分式单元测试(含答案)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.分式3xx -有意义,则x 的取值范围是 A .x ≠3B .x ≠0C .x >3D .x >02.花粉的质量很小,一粒某种花粉的质量约为0.000103毫克,那么0.000103可用科学记数法表示为 A .10.3×10-5B .1.03×10-4C .0.103×10-3D .1.03×10-33.化简21x x -+1x x-的结果是A .-xB .xC .x -1D .x +14.已知18x x -=,则2216x x+-的值是 A .60B .64C .66D .725.计算11a b a b ab+--的结果是 A .0 B .2b-C .2a- D .16.化简1()x y y x x y x y -÷-⋅+-的结果是 A .221x y -B .y xx y-+ C .221y x -D .x yx y-+ 7.分式方程233x x=-的解为 A .x =0B .x =3C .x =5D .x =98.下来运算中正确的是A .a c ac b d bd÷=B .(2a a b -)2=2224a a b- C .x y y xx y y x--=++D .4453·m n m n m n=9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg ,甲搬运5000 kg 所用的时间与乙搬运8000 kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg 货物,则可列方程为A .50008000600x x =- B .50008000600x x =+ C .50008000600x x =+ D .50008000600x x =- 10.若关于x 的分式方程222x mx x=---的解为正数,则满足条件的正整数m 的值为A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共10小题,每小题3分,共30分)11.约分:2222444m mn n m n -+-=__________.12.计算:2389()32x y y x⋅-=__________.13.计算:22111m m m ---的结果是__________. 14.计算:223()23m p mnn n p-÷=__________. 15.若x =3是分式方程210a x x--=的根,则a 的值是__________. 16.关于x 的方程1(1)(1)m x x -+--11x -=0无解,则m 的值是__________. 17.某人在解方程21132x x a-+=-去分母时,方程右边的1-忘记乘以6,算得方程的解为2x =,则a 的值为__________. 18.已知关于x 的分式方程211a x x+--=1的解是非负数,则a 的取值范围是__________. 19.在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果用一台插秧机工作,要比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的__________倍.20n 个分式是__________. 三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.解方程:(1)2101x x -=+; (2)2216124x x x --=+-.22.(1)先化简,再求值:2224(1)442x x x x x -+÷-+-,其中x =1; (2)先化简,再求值:211()(3)31x x x x +-⋅---,从不大于4的正整数中,选择一个合适的值代入x 求值.23.在创建文明城市的进程中,我市为美化城市环境,计划种值树木60万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,求原计划每天植树多少万棵?24.已知关于x 的方程4433x mm x x---=--无解,求m 的值.25.解不等式组36451102x xx x-≤⎧⎪++⎨<⎪⎩,并求出它的整数解,再化简代数式2321xx x+-+·(3xx+-239xx--),从上述整数解中选择一个合适的数,求此代数式的值.26.已知方程111ax x=-+的解为x=2,先化简22144(1)11a aa a-+-÷--,再求它的值.27.探索发现:111122=-⨯;1112323=-⨯;1113434=-⨯,…根据你发现的规律,回答下列问题:(1)145=⨯__________,1(1)n n=⨯+__________;(2)利用你发现的规律计算:1111 122334(1)n n++++⨯⨯⨯⨯+;(3)灵活利用规律解方程:1111 (2)(2)(4)(98)(100)100x x x x x x x+++= ++++++.28.某商品经销店欲购进A、B两种纪念品,用320元购进的A种纪念品与用400元购进的B种纪念品的数量相同,每件B种纪念品的进价比A种纪念品的进价贵10元.(1)求A、B两种纪念品每件的进价分别为多少?(2)若该商店A种纪念品每件售价45元,B种纪念品每件售价60元,这两种纪念品共购进200件,这两种纪念品全部售出后总获利不低于1600元,求A种纪念品最多购进多少件.1.【答案】A 【解析】因为分式3xx -有意义,所以x -3≠0,即x ≠3 .故选A . 2.【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.000103=1.03×10-4,故选B .6.【答案】C 【解析】原式11x y x y y x x y -=⋅⋅+--11x y y x =⋅+-221y x =-.故选C . 7.【答案】D【解析】方程两边同乘以x (x -3)可得2x =3(x -3),解得x =9,经检验x =9是分式方程的解,故选D . 8.【答案】D【解析】选项A ,a c a d adb d bc bc ÷=⨯=;选项B ,222222244()()2a a a a b a b a ab b==---+;选项C ,x y y x x y y x --=-++;选项D ,4453·m n m n m n=,只有选项D 正确,故选D .9.【答案】B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x +600)千克,由题意得:50008000600x x =+,故选B . 10.【答案】C【解析】等式的两边都乘以(x -2),得:x =2(x -2)+m ,解得x =4-m ,x =4-m ≠2,由关于x 的分式方程222x m x x=---的解为正数,得:m =1,m =3,故选C . 11.【答案】22m nm n-+【解析】原式=222224(2)(2)2(2)(2)2(2)m mn n m n m n m n m n m n m n -+--==+-+-.故答案为:22m nm n-+. 12.【答案】-212yx【解析】原式=-(83x y ·2392y x )=-212y x .故答案为:-212yx.∴a -3=0,∴a =3,即a 的值是3.故答案为:3. 16.【答案】1或3【解析】方程两边都乘(x +1)(x -1)得,m -1-(x +1)=0,解得,x =m -2, (x +1)(x -1)=0,即x =±1时最简公分母为0,分式方程无解. ①x =-1时,m =1,②x =1时,m =3,所以m =1或3时,原方程无解.故答案为:1或3. 17.【答案】13【解析】∵在解方程21132x x a-+=-去分母时,方程右边的–1忘记乘以6,算得方程的解为x =2, ∴把x =2代入方程2(21)3()1x x a -=+-,得:2(41)3(2)1a ⨯-=⨯+-,解得:13a =.故答案为:13. 18.【答案】a ≥1且a ≠2【解析】分式方程去分母得:a -2=x -1,解得:x =a -1,由方程的解为非负数,得到a -1≥0,且a -1≠1,解得:a ≥1且a ≠2.故答案为:a ≥1且a ≠2. 19.【答案】103mm -20211n n x ++【解析】分析题干中的式子的分母为:x 2,x 3,x 4,x 5,x 6,则第n 项的分母应为x n +1,分子根号内的数为:12+1,22+1,32+1,则第n 项的分子应为:21n +,第n 211n n x ++.故答案为:211n n x++.21.【解析】(1)2101x x-=+, 2(1)0x x -+=,1x =,经检验:x =1是原方程的解. (2)2216124x x x --=+-, 22(2)164x x --=-,2x =-,经检验:x =-2是增根, 所以原方程无解. 22.【解析】(1)原式=2222222(1)22x x x x x x x x x+--+⋅=⋅=--, 当x =1时,原式=2. (2)原式=(11)31x x ---·(x -3)=13(1)(3)x x x x --+--·(x -3)=21x -,要使原分式有意义,则x ≠±1,3,故可取x =4,原式=23. 23.【解析】设原计划每天植树x 万棵,则实际每天植树1.2x 万棵,24.【解析】原方程可化为(m +3)x =4m +8,由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m +3=0且4m +8≠0,此时m =-3; (2)若整式方程的根是原方程的增根,则483m m ++=3,解得m =1, 经检验,m =1是方程483m m ++=3的解. 综上所述,m 的值为-3或1. 25.【解析】解不等式3x -6≤x ,得:x ≤3,解不等式4510x +<12x +,得:x >0, 则不等式组的解集为0<x ≤3, 所以不等式组的整数解为1、2、3,原式=23(1)x x +-·[233(3)(3)(3)(3)x x x x x x x ---+-+-] =23(1)x x +-·(1)(3)(3)(3)x x x x --+- =11x -, ∵x ≠±3、1, ∴x =2,则原式=1. 26.【解析】把x =2代入111a x x =-+中,解得:a =3, 原式=22(1)(1)1(2)a a a a a -+-⋅-- =12a a +-, 当a =3时,原式=4.27.【解析】(1)1114545=-⨯,111(1)1n n n n =-⨯++.(2)原式111111111122334111nn n n n =-+-+-++-=-=+++. (3)11111111()222498100100x x x x x x x -+-++-=++++++,1111()2100100x x x -=++, 112100100x x x -=++, 13100x x =+, 解得50x =,经检验,50x =为原方程的根.28.【解析】(1)设A 种纪念品每件的进价为x 元,则B 种纪念品每件的进价为(10)x +元.。
《分式》单元测试题
宜宾市八中2011级数学 《分式》单元测试题姓名: 分数: 一.选择题(每小题3分,共30分)1.下列各式中,分式的个数为 ( )3x y -,21a x -,1x π+,3ab -, 12x y +,12x y +,2123x x =-+; A 、2个; B 、3个; C 、4个; D 、5个; 2.下列各式正确的是 ( ) A 、c c a b a b =----; B 、;c ca b a b =--++C 、c c a b a b =---+; D 、c ca b a b-=----;3. -0.0000077用科学记数法表示为 ( )A 、-57.710-⨯; B 、-67710-⨯; C 、57710-⨯; D 、-67.710-⨯; 4.下列分式是最简分式的是 ( )A 、22x y x y -+;B 、11m m --;C 、3xy yxy-; D 、6132m m -;5.将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值 ( ) A 、扩大2倍; B 、缩小2倍; C 、保持不变; D 、无法确定; 6、方程112212-=-x x 的解是 ( )A .无解; B. 1- C. 0 ; D. 1.7、解方程4223=-+-xx x 时,去分母后得 ( ) A.)2(43-=-x x ; B. )2(43-=+x x ; C.4)2()2(3=-+-x x x ; D.43=-x8、已知1)1(0=-x ,则 ( ) A. 1=x ; B. 1-=x ; C. 1≠x ; D. x 为任意实数;9、要修一条公路,甲单修路需a 小时完成,乙单独需b 小时完成,那么甲乙两人合修需要 ( )小时完成. A .ab b a + B.b a ab + C. ab 1 D ba 11+ 10、若31=+-xx ,则=+-22x x ( )A. 9;B. 8; C . 7; D. 6 二.填空题(每小题3分,共30分) 11.若分式33x x --的值为零,则x = ; 12.分式2x y xy +,23y x ,26x y xy -的最简公分母为 ; 13.计算:201()( 3.14)3π--+-= ;14、解分式方程275-=x x 其根为________; 15、用小数表示:-3101.3-⨯= ; 16、将式子3233)()(--ab a 化为不含负整数指数的形式是 ; 17、计算:=-+-mn mn m n ; 18、已知311=-a b ,则2322a a b ba ab b+---= ; 19、若)3)(2(4232-+-=-++x x x x B x A 则A+B= ; 20、汽艇顺流而下行驶60千米以后返回,共用5小时10分。
初中数学:《分式》单元测试(有答案)
初中数学:《分式》单元测试一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。
分式单元测试卷
《分式》单元测试卷一.选择题 1.使分式2xx +有意义的x 的取值范围是( ) A .2x ≠B .2x ≠-C .2x >-D .2x <2.如果分式2xx-的值为0,那么x 为( ).A.-2B. 0C. 1D. 23.化简分式2bab b +的结果为( ) A.1a b + B.11a b + C.21a b + D.1ab b + 4.如果2ab=,则2222a ab b a b -++= ( )A .45B . 1C . 35 D . 25.计算a b a bb a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b -B .a bb +C .a ba -D .a ba+6.某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( )A .8a b -分钟 B .8a b +分钟 C .8a bb-+分钟 D .8a bb--分钟 7.分式方程1123x =-的解为( )A .2x =B .1x =C .1x =-D .2x =-8.解分式方程81877x x x--=--,可知方程( ) A .解为7x =B .解为8x =C .解为15x =D .无解9.有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+;B .9001500300x x =- ; C .9001500300x x =+; D .9001500300x x=- 10.关于x 的方程11ax =+的解是负数,则a 的取值范围是( )A.1a <B.1a <且0a ≠C.1a ≤ D.1a ≤或0a ≠二.填空题 11.要使分式231x x +-有意义,则x 需满足的条件为 .12.若分式242--x x 的值为0,则x 的值为 .13. 用科学记数法表示:-0.00002006= 。
分式单元测试卷及答案【精品】
分式 单元测试卷一、填空题。
(每小题3分,共30分)1、若分式 12+-x x 的值为0,则x = 。
2、当X= 时,分式1-x x没有意义。
3、约分:433282n m n m - = 。
4、分式9122-m 与m-32的最简公分母为 。
5、计算:ab a b ac 22⋅÷= 。
6、氢原子中电子和原子核之间距为0.00000000529,用科学记数法表示为 。
7、方程xx 527=-的解为 。
8、已知方程x x x --=-3323有增根,则增根一定为 。
9、若31=+m m ,则221mm += 。
10、我军某部由驻地到距离120千米的城市执行任务,由于情况发生紧急变化行军速度是原来的1.5倍,比原定时间提前2小时到达,求急行军原定速度,设急行军原定速度为x ,则可列方程为 : 。
二、选择题。
(每小题5分,共25分)11、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2B 、3C 、4D 、512、如果分式121-a 的值是正数,那么a 的取值范围是( )A 、a >2B 、a ≥12C 、a <12D 、a ﹥1213、化简 abb a a b b a 22+-- 的结果为( )A 、 0B 、 b a 2-C 、a b 2-D 、 ab2 14、如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变15、甲乙两工程队完成一项过程,甲对独做m 天完成,乙队独做n 天完成。
若两队合做则所需天数是( )A 、 12n m +B 、 n m 11+C 、mn n m +D 、nm mn+三、简答题。
(16、18、19题各8分,17题9分,20题12分,共45分)16、化简 y x y x x 8164222--- 17、化简求值 2)242(-÷--+a a a a 其中7=a18、解方程1522522=--+x x x 19、解方程1x 1x -+-1x 42-=120、某学生从学校回家,先步行2千米然后乘汽车行驶8千米到家,第二天骑自行车按原路返校,所用时间与回家时间相同,已知骑自行车的速度比步行速度快8千米/时,比汽车速度少12千米/时,求自行车速度?参考答案一、 填空题1. 2 2.1 3.mn41- 4.)3)(3(-+m m 5.22a c 6.91029.5-⨯7.-5 8.x=3 9.7 10.xx 12025.1120=+ 二、选择题:11.A 12.D 13.C 14.D 15.D三、解答题16.解:原式=)8)(8(8)8)(8(2y x y x y x y x y x x -++--+(2分) 17.解:原式=a a a a a 224)2)(2(-⨯---+(2分) =)8)(8(82y x y x y x x -+-- ………… (4分) =a a a a 22442-⨯---……(4分) =)8)(8(8y x y x yx -+- ………… (6分) =a a a a 222-⨯--…………(6分) =yx 81+ …………………… (8分) =a ………………………(8分)当7=a 时 原式=7……(9分) 18.解:)52)(52()52(2)52(2-+=+--x x x x x (2分) 19.解:14)1)(1(2-=-++x x x (2分)25410410422-=---x x x x ……(4分) 141222-=-++x x x (4分)1514-=-x ………………(6分) 22=x ……(6分)1415=x …………………(8分) 1=x ……(8分)20.解:设自行车速度为x 千米/时,则步行速度为)8(-x 千米/时,汽车速度为)12(+x 千米/时………………(1分)xx x 1012882=++-……………………(6分) )12)(8(10)8(8)12(2+-=-++x x x x x x ……(7分))964(10648242222-+=-++x x x x x x ……(8分)960801082222-=--+x x x x ……(9分)96080-=-x ………………(10分)12=x …………………(11分)答:自行车速度为12千米/时。
分式单元测试卷
分式单元测试卷一、选择题(每小题3分,共30分)1.下列各式中,是分式的有()A. 5/8B. (x+y)/2C. y/(x-1)D. 3π答案:C2.下列各式中,是最简分式的是()A. (a2) C. (y-1)/(y+1) D. (a2)/(a2)答案:C3.若分式 (x+1)/(x-1) 的值为0,则 x 的值为()A. 1B. -1C. 0D. 2答案:B(注意,x=1时分母为0,分式无意义,所以排除A)4.下列分式中,当 x=2 时,其值为3的是()A. (2x)/(x+1)B. (x+2)/(x-1)C. (3x)/(x+2)D. (2x+2)/(x)答案:D(代入x=2验证)5.下列关于分式的说法中,正确的是()A. 分式的分子、分母都是整式B. 分式的分母中一定含有字母C. 分式的值一定小于1D. 分式的分子一定小于分母答案:A、B(C、D选项均存在反例)6.若分式方程 (x+1)/(x-2) = a 有增根,则增根为()A. 2B. -2C. 1D. 0答案:A(增根是分式方程化为整式方程后产生的使分式方程的分母为0的根)7.下列计算正确的是()A. (a+b)/(c+d) = a/c + b/dB. (a2)/(a+b) = a-bC. (x+1)/(x^2-1) = 1/(x-1)D. (2xy)/(4x^2y^2) = 1/(2xy)答案:B(A、C选项均不能通过合并同类项或化简得到;D选项化简后应为1/(2xy),但分母中的xy不能为0,所以不能说等于1/(2xy)在所有情况下都成立)8.下列各式中,与 (y)/(x) 相等的是()A. (2y)/(2x)B. (-y)/(-x)C. (y^2)/(x^2)D. (xy)/(x^2)答案:A、B(A选项分子分母同时除以2得到原式;B选项分子分母同时乘以-1得到原式)9.若分式 (2x-1)/(3x+2) 的值为正数,则 x 的取值范围是()A. x > 1/2B. x < -2/3C. x > 1/2 或 x < -2/3D. -2/3 < x < 1/2答案:C(分子分母同号时分式值为正数)10.下列关于分式方程的说法中,错误的是()A. 分式方程中一定含有分母中含有未知数的分式B. 分式方程的解可能是无理数C. 分式方程无解时一定是因为产生了增根D. 解分式方程时通常要去分母答案:C(分式方程无解可能是因为无解、有增根或解为原分式方程的禁止值等原因)二、填空题(每小题3分,共15分)11.当 x = _______ 时,分式 (x-1)/(x+2) 的值为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式训练题
一、 判断题:(每小题2分,10分) 1. 有分母的代数式叫做分式----( ); 2.
2=x 是分式方程
04
2
2
=-=x x 的根( )
3.1
23212322
3
2232+--+=-+---a a a a a a a a ( )
4. 分式)
3)(1()
2)(1(a a a a -+++的值不可能等于41(
)
5.
化简:b
a c
a b c c a a b a c c b b a --=
------))(()())()((22( )
二、选择题:(每小题3分,共12分) 1. 下列式子(1)
y
x y x y x -=
--1
22;(2)c a b a a c a b --=--;(3)1-=--b a a b ; 》
(4)y
x y
x y x y x +-=
--+-中正确的是 ( )
A 、1个
B 、2 个
C 、 3 个
D 、 4 个 2.
能使分式1
22--x x
x 的值为零的所有x 的值是
( )
A 0=x
B 1=x
C 0=x 或1=x
D 0=x 或1±=x
3. 下列四种说法(1)分式的分子、分母都乘以(或除以)2+a ,分式的值不变;(2)分式
y
-83的值能等于零;(3)方程
111
11-=++++
x x x 的解是1-=x ;
(4)1
2+x x 的最小值为零;其中正确的说法有 ( ) A 1个 B2 个 C 3 个 D 4 个 —
4. 已知0≠x ,x x x 31
211+
+等于 ( )
A
x
21
B x 61
C x 65
D x
611 三、 填空题:(每空3分,共30分)
1. 当1-=x 时,
___________________112-+x x
2. 当_____=x 时,x
--11
的值为负数;当x 、y 满足
时,
)
(3)
(2y x y x ++的值为32;
3. 分式
x
x -+21
2中,当____=x 时,分式没有意义,当____=x 时,分式的值为零;
4. 当________________x 时,分式8
x 32
x +-无意义; 5. 当____=x 时,
2
3-x x
无意义,当____=x 时,这个分式的值为零;
$
6. 如果把分式
y
x xy -中的x 、
y
都扩大3倍,那么分式的
值 ; 7. 要使分式
2
x 1
x --有意义,则x 应满足 ;
四、 计算与化简:(每小题6分,共18分)
1.2
22)2222(x
x
x x x x x --+-+-
2.x
x x x x x x x 4
)44122(2
2-÷+----+
3.2
144122++÷
++-a a a a a (
五.解下列分式方程(每小题7分,共14分) 1. 3X
2X
22X 2=+--+ 2.
X
15
X 13X 112
+--=-
六.列方程解应用题: (每小题8分,共16分)
1.甲、乙两组学生去距学校千米的敬老院打扫卫生,甲组学生步行出发半小时后,乙组学生骑自行车开始出发,两组学生同时到达敬老院,如果步行速度是骑自行车速度的3
1,求步行与骑自行车的速度各是多少 *
2.一个分数的分子比分母小6,如果分子分母都加1,则这个分数等于4
1,求这个分数.
七. 选作题:
1. 已知12,4-=-=+xy y x ,求1
1
11+++++y x x y 的值;(10分)
2计算
)
1999x )(1998x (1
.....)3x )(2x (1)2x )(1x (1)1x (x 1+++++++++++ 并求当x=1时,该代数式的值.(10分)
:
《分式》单元评价测试题
班级___________ 姓名_____________.
一、选择题(本大题8个小题,每小题3分,共24分)
1、下列各式:2b a -,x x 3+,πy +5,b a b a -+,)(1
y x m
-中,是分式的共有( )
A 、1个
B 、2个
C 、3个
D 、4个 2、下列运算正确的是( )
A - 40=1
B (-3)-1=3
1 C 4
26x x x =÷ D (-a 2b 3)2=a 4b 9
3.下列各式正确的是( ) <
A .11++=++b a x b x a
B .22x
y x y = C .()0,≠=a ma na m n D .a m a n m n --=
4、用科学计数法表示的数 - ×10 -4写成小数是( )
A B C D -36000
5、若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )
A 、y x 23
B 、2
23y x C 、y x 232 D 、2323y x 6、计算
x
x -++11
11的正确结果是( ) A 、0 B 、212x x - C 、212x - D 、1
2
2-x
7、下列分式中最简分式的为( ).
A 8.A 、
B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) :
A .
9448448=-++x x B .9448
448=-++x x
C .9448=+x
D .94
96496=-++x x
10个空,每空2分,共20分)
9、.
10、.
11.一种细菌半径是0。
0000121米,用科学计数法表示为 米。
12、分式
,21x xy
y 51,212-的最简公分母为 。
13.分式3
9
2--x x 当x _________时分式的值为零,当x ________时,分式x x 2121-+有意义.
14.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()
1
422=
-+a a ;
15. 若关于x 的分式方程3
232
-=
--x m x x 无解,则m 的值为__________. 16.若分式
2
31
-+x x 的值为负数,则x 的取值范围是__________.
三、解答题(共43分)解答时请写出必要的演算过程或推理步骤。
17.计算:(1)11123x x x ++ (2)3xy 2÷x
y
2
6
(3)计算,并使结果只含正整数指数幂:(
)()
3
32
23
----⋅b a b
a 。
18、(5分)⑴计算:2
2
2
246⎪⎪⎭
⎫
⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y ⑵计算:x x x x x x +-÷-+-2
221112。
:
19、(6分)先化简,再求值:11112
-÷⎪⎭⎫ ⎝⎛
-+x x x ,其中:x=-2。
?
20、(6分)解分式方程:(1)x x 3121=- (2
;
22、(6分)2008年5月12日,四川省发生级地震,我校师生积极捐款,已知第一天捐
款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少
23、(7分)一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。