2矩阵数组符号运算
《矩阵及其运算 》课件
幂法
通过迭代计算矩阵A的幂 ,最终得到特征值和特征 向量。
反迭代法
利用已知的特征向量x, 通过反迭代计算得到对应 的特征值λ。
06
应用实例
在物理中的应用
线性变换
矩阵可以表示线性变换,如平移、旋转、缩放等,在物理中广泛应 用于描述物体运动和力的作用。
振动分析
矩阵可以用于分析多自由度系统的振动,通过矩阵表示系统的运动 方程,简化计算过程。
详细描述
矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数,并 且结果矩阵的行数等于第一个矩阵的行数,列数等于第二个 矩阵的列数。在计算过程中,对应元素相乘并求和,得到新 矩阵的一个元素。
矩阵的转置
总结词
矩阵的转置是将原矩阵的行变为列,列变为行的一种运算。
详细描述
矩阵的转置可以通过交换原矩阵的行和列得到,也可以通过计算元素的代数余 子式得到。转置后的矩阵与原矩阵的行列式值相等,但元素的位置发生了变化 。
《矩阵及其运算》PPT课件
目 录
• 矩阵的定义与性质 • 矩阵的运算 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 特征值与特征向量 • 应用实例
01
矩阵的定义与性质
矩阵的基本概念
矩阵的定义
矩阵是一个由数字组成的矩 形阵列,通常表示为二维数 组。
矩阵的元素
矩阵中的每个元素都有行标 和列标,表示其在矩阵中的 位置。
回带法
在消元过程中,每一步都需要回带, 以确保解的正确性。
解的判定
当系数矩阵的秩等于增广矩阵的秩时 ,线性方程组有唯一解;否则,无解 或有无数多解。
线性方程组的解的结构
解的表示
线性方程组的解可以表示为一个向量与自由变量 的线性组合。
[Matlab]数组运算和矩阵运算
上面方程是超定方程.要注意的:结果矩阵 x 是列向量形式.如果, >> a=[21 34 20 5; 78 20 21 14; 17 34 31 38]; >> b=[10 20 30]'; >> x=b\a x= 1.6286 1.2571 1.1071 1.0500 上面的方程为不定方程. 4. 矩阵与标量间的四则运算 矩阵与标量的四则运算和数组与标量间的四则运算完全相同,即矩阵中的每个元素与标量进 行加,减,乘,除四则运算.需要说明的是,当进行除法运算时,标量只能做除数. 5. 矩阵的幂运算 矩阵的幂运算与标量的幂运算不同.用符号"^",它不是对矩阵的每个元素进行幂运算,而是与 矩阵的某种分解有关. >> b=[21 34 20; 78 20 21; 17 34 31]; >> c=b^2 c= 3433 2074 1754 3555 3766 2631 3536 2312 2015 6. 矩阵的指数,对数运算与开方运算 矩阵的指数运算,对数运算与开方运算与数组相应的运算是不同的.它并不是对矩阵中的单个 元素的运算,而是对整个矩阵的运算.这些运算函数如下: expm, expm1, expm2, expm3 —— 指数运算函数; logm —— 对数运算函数; sqrtm —— 开方运算函数. >> a=[1 3 4; 2 6 5; 3 2 4]; >> c=expm(a) c= 1.0e+004 * 0.4668 0.7694 0.9200
矩阵 B 的逆乘标量 s A.^n 数组 A 的每个元素的 n 次方 A^n A 为方阵时,矩阵 A 的 n 次方 A+B 数组对应元素的相加 A+B 矩阵相加 A-B 数组对应元素的相减 A-B 矩阵相减 A.*B 数组对应元素的相乘 A*B 内维相同矩阵的乘积 A./B A 的元素被 B 的对应元素除 A/B A 右除 B B.\A 一定与上相同 B\A A 左除 B(一般与右除不同) exp(A) 以 e 为底,分别以 A 的元素为指数,求幂 expm(A) A 的矩阵指数函数 log(A)
MATLAB基础教程 第2章 数组、矩阵及其运算
写出MATLAB表达式。 解:根据MATLAB的书写规则,以上MATLAB表达式为: (1)y=1/(a*log(1-x-1)+C1) (2)f=2*log(t)*exp(t)*sqrt(pi) (3)z=sin(abs(x)+abs(y))/sqrt(cos(abs(x+y))) (4)F=z/(z-exp(T*log(8)))
命令:X(3:-1:1)
命令:X(find(X>0.5)) 命令:X([1 2 3 4 4 3 2 1])
第二章 数组、矩阵及其运算
2.1 数组(矩阵)的创建和寻访
2. 二维数组的创建和寻访
例2-3 综合练习。将教材P.31~P.44的实例按顺序在MATLAB的 command窗口中练习一遍,观察并体会其输出结果。 (注意变量的大小写要和教材上的严格一致。)
A./B
B.\A
A的元素被B的对应元素相除
(与上相同)
第二章 数组、矩阵及其运算
2.3 数组、矩阵的其他运算
1. 乘方开方运算
数组的乘方运算与power函数 格式:c=a.^k或c=power(a,k) 例如: >> g=[1 2 3;4 5 6] >>g.^2 矩阵的乘方运算与mpower函数 格式:C=A^P或C=mpower(A,P) 注意:A必须为方阵
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的加法、减法
运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算, A和B矩阵的相应元素相加减。如果维数不相同,则MATLAB将给出
出错信息。
第二章 数组、矩阵及其运算
2.2 数组、矩阵的运算
3. 矩阵的乘法
python矩阵运算符
python矩阵运算符矩阵运算在数学和计算机科学中是非常重要的概念。
在Python 中,可以使用NumPy库进行矩阵运算。
本篇文档将详细介绍Python中的矩阵运算符,包括加法、减法、乘法、转置、矩阵分解以及一些特殊的矩阵运算。
一、矩阵的基本概念在数学和计算机科学中,矩阵是一种重要的数据结构,用于表示二维数组。
矩阵是一个m×n的数组,其中m表示行数,n表示列数。
矩阵的元素按照行和列的顺序排列。
1. 加法矩阵加法是两个矩阵对应元素相加,生成一个新的矩阵。
在Python中,可以使用+运算符进行矩阵加法。
示例代码:```pythonimport numpy as npmatrix1 = np.array([[1, 2], [3, 4]])matrix2 = np.array([[5, 6], [7, 8]])result = matrix1 + matrix2print(result)```输出结果:```python[[6 8][10 12]]```2. 减法矩阵减法是两个矩阵对应元素相减,生成一个新的矩阵。
在Python中,可以使用-运算符进行矩阵减法。
需要注意的是,矩阵减法要求两个矩阵的维度必须相同。
示例代码:```pythonimport numpy as npmatrix1 = np.array([[1, 2], [3, 4]])matrix2 = np.array([[5, 0], [0, 8]])result = matrix1 - matrix2print(result)```输出结果:```python[[-4 -4][-5 4]]```3. 乘法矩阵乘法是一个比较复杂的运算,需要满足一些条件才能进行。
通常两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。
在Python中,可以使用*运算符进行矩阵乘法。
需要注意的是,矩阵乘法满足结合律和交换律,但不满足消去律。
示例代码:```pythonimport numpy as npmatrix1 = np.array([[1, 2], [3, 4]])matrix2 = np.array([[5, 6], [7, 8]])result = np.dot(matrix1, matrix2)print(result)```输出结果:```python[[ 13 8][ 29 34]]```除此之外,还有转置、逆矩阵等其他常见的矩阵运算,可以在NumPy库中找到对应的函数和方法。
MATLAB教学 最新第二章 矩阵与数组2-4
把D的逆阵右乘以B,记作/D,称之为右除.
2.5.3 基本数组运算 1,数组转置 数组转置的操作符是在矩阵转置操作符前加符号".".(实数情 况下等价) 例:数组转置操作
2,数组幂 数组幂运算符 (单个符号自身运算)就是在矩阵运算符前加上符 号".".
3.数组乘法
2.5.4 基本数学函数 在MATLAB中部分函数可以用来进行基本的 数学运算,有三角函数,指数运算函数,复数 运算函数等. 注意:这些函数的参数可以是矩阵,向量或者 多维数组,函数在处理参数时,都是按照数组 运算运算的规则来进行的. 函数数目较多,不一一列出,后面用到时再 作说明. 2.5.5 矩阵(数组)操作函数
例2-5 使用logspace函数创建向量.
上面创建的都是行向量,即创建的都 是一行n列的二维数组.如果需要创建 列向量,即n行一列的数组,则需要使 用分号作为元素与元素之间的间隔或 者直接使用转置运算符" ' ".
2.3 创建矩阵 在编程语言中,矩阵和二维数组一般指的是同一 个概念,在M语言中,矩阵的元素可以为任意的 MATLAB数据类型的数值或者对象.创建矩阵的方 法也有多种,不仅可以直接输入元素,还可以使用 MATLAB MATLAB的数组编辑器编辑矩阵的元素. 2.3.1直接输入法 直接输入矩阵元素创建矩阵的方法适合创建元素较 少的矩阵. 例2-7 用直接输入矩阵元素的方法创建矩阵.
length获取向量长度若输入参数为矩阵或多维数组则返回各个维尺寸的最大值ndims获取矩阵或多维数组的维数numel获取矩阵或数组的元素个数disp显示矩阵或者字符串的内容cat合并不同的矩阵或者数组reshape保持矩阵元素的个数不变修改矩阵的行数和列数repmat复制矩阵元素并扩展矩阵fliplr交换矩阵左右对称位置上的元素flipud交换矩阵上下对称位置上的元素flipdim按照指定的方向翻转交换矩阵元素find获取矩阵或数组中非零元素的索引55例
第二章 符号计算
2.5 符号计算基本运算符 矩阵运算: + , - , * , / , \ , ^ , ' 数组运算: + , - , .* , ./ , .\ , .^, .‘
2.6 符号计算中函数指令 (表2.1-2) 三角、双曲函数:sin、cosh等 指数、对数函数:exp、expm、log(即ln) 复数函数:conj(共轭)、real、abs (模) 矩阵分解:eig 方程求解:solve 微积分函数:diff、int 绘图函数:ezplot
第二章 符号计算
—— matlab 不仅具有数值运算功能,还开 发了在matlab环境下实现符号计算的工具 包Symbolic Math Toolbox,通过调用Maple 软件实现符号计算。 Maple——强大的符号运算软件
介绍教材第二章内容
Matlab程序设计
符号运算的功能 • • • • • • 符号表达式、符号矩阵的创建 符号线性代数 因式分解、展开和简化 符号矩阵分析和代数方程解 符号微积分 微分方程符号解法
• 默认自变量为 ‘t‘,可任意指定自变量‘x‘, ‗u‘等 • 解中任意常数C的数目等于缺少的初始条件数 • 解存放在构架数组S中 • 微分方程的各阶导数项以大写字母D表示
Matlab程序设计
dy dy 或 y的一阶导数—— Dy dt dx
d y d y 2 或 2 y的二阶导数—— D2y dt dx d y d y y 的 n 阶导数 —— Dny n 或 n dt dx
(4) syms a b c x;
f3= ax^2+bx+c
%二次三项式
Matlab程序设计
例2.1-5: 区分数值矩阵、字符矩阵、符号矩阵
数组和矩阵的运算需要掌握运算法则
本节要求
1.掌握数组和矩阵的数值计算,尤其是数 组的“点运算” 2.掌握数组的关系和逻辑运算 3.掌握指令find的使用 4.了解notebook文档的编辑
本课件由飞华健康网/pifu/cc/编辑
>>A=[1 2 3; 4 5 6],B=[4,5,6;1,2,3]; >>C=zeros(2); %生成2阶全0方阵 >>c1=A+B %加法运算 >>c2=A-C %减法相乘 >>c3=A-2 %与标量之间的加减运算
结果如下:
c1 = 5 7
7 7
9 7
c3 = -1 2
0 3
1 4
??? Error using ==> minus Matrix dimensions must agree.
A =
>> A(~B)=0
13 8 12 1
A= 0 2 5 11 0 7 0 0 1 0 0 0 3 13 0 0 0 0 0 0
16 5 9 4
2 11 7 14
3 10 6 15
>> B=isprime(A)
B = 0 1 0 0 1 1 1 0 1 0 0 0
注:isprime是用来检测数值是否为质数。
log10 log2 exp pow2
例1:分析语句a=2+2==4的执行结果。
分析:单个等号表示赋值,后面的双等号表示关系 运算,所以a的值为1.
例2:分析语句a=‘fate’;b=‘cake’;result=a==b 的执行结果。
分析:应用关系运算应该逐个比较字符是否相等。 执行结果如下: result = 0 1 0 1
结果如下:
02 关系运算及符号运算
例:
A = [1 9; 8 2] B = mean(A)
B = 4.5 5.5 C=mean(A,2) %求每列的平均值 C= 5 5
1.4.7 MATLAB的数学表达式及其书写
一、MATLAB的数学表达式 MATLAB的表达式有两类: ① 数字表达式——由数值量、数值变量、数值函数或 数值矩阵用运算符连接而成的数学关系式。它主要用来
r=[1 2 3]; g=[4 5 6]; p= conv ( r, g) %运算结果为: p = 4 13 28 27 18
即p (x) = 4x4+13x3+28x2+27x+18
[s,q]= deconv ( p, g)
4. 分式多项式的部分分式展开
b x bm x m bm 1 x m 1 ... b1 x b0 y( x ) a x a n x n a n 1 x n 1 ... a1 x a 0
acot
asec acsc sinh cosh
反余切函数
反正割函数 反余割函数 双曲正弦 双曲余弦
pow2
log10 log2 log sqrt
以2为底的指数
常用对数 以2为底的对数 自然对数 平方根函数
mod
rem sign gcd lcm
模除求余
求余数或模运算 符号函数 最大公约数 最小公倍数
表1-2 MATLAB常用运算函数
A 的第 i列的元素和。(与max一样。。。)
② sum(A,dim),当 dim 为 1 时,该函数等同于 sum(A),当 dim 为 2 时,返回一个列向量,其第 I
个元素是矩阵 A 的第 i行的各元素和。
prod函数用来求积,其用法与命令格式与sum完全相同。
Matlab编程实例视频教程系列1:基础入门 矩阵数组 数据类型 运算符 符号运算
freexyn编程实例视频教程系列1Matlab基础入门1.0 概述1.主要内容matlab基础入门,包括界面设置、矩阵、运算符、数据类型、脚本和函数以及符号运算等作者:freexyn2.实例演示随机实例(略)入门1.1认识软件1.软件简介matlab是matrix和laboratory组合缩写,意为矩阵实验室主要功能和用途:用于科学和工程计算的高级语言;用于调整运行环境进行迭代探索、设计和问题解决;用于可视化数据的图形表达和用于创建自定义绘图的工具;用于曲线拟合,数据分类,信号分析,控制系统调整等;用于各种工程和科学应用的附加工具箱;用于自定义用户界面构建应用程序;用于接口C/C ++、JA V A、.NET、Python、SQL和Excel等;2. 软件安装软件安装过程略3.认识界面启动matlab,默认的界面布局当前文件夹:访问文件的路径,也是工作目录命令窗口:输入命令并运行,由提示符“>>”指示工作区:显示创建或导入的数据或变量历史命令窗口:记录命令窗口中执行过的命令1.2创建变量1.在matlab中创建和使用变量作者:freexyn2.认识命令whosclear3.说明matlab中创建变量不需要声明,类型默认使用双精度浮点型创建变量后在命令窗口立即显示结果,并在工作区添加该变量当不指定输出变量时,默认使用ans存储计算结果程序语句以分号结尾,执行运算后不显示输出结果命令窗口中回车键起运行程序功能若输入一条语句后换行,但不想立刻运行,用Shift+Enter允许一行输入多个语句,用逗号或分号分隔每个语句快速回调之前执行过的语句,可以用方向键的上键和下键清除或者不执行当前语句,用Esc键退出可以选中部分程序,然后按回车键直接运行这部分程序创建数组或矩阵,用中括号把数值括起来1.3调用函数1.几个常用函数,说明matlab调用函数的方法作者:freexyn2.认识函数求最大值max正弦函数sin显示字符disp清除屏幕clc3.说明Matlab提供了很多函数方便直接调用,调用格式:[out1,out2]=function(input1,input2)调用时把输入参数括在括号内,有多个输入参数时,用逗号分隔相应的,有多个输出值时,用逗号分隔,并用中括号括起来4.命令语法和函数语法的对偶性当不需要输出,且所有输入都是字符向量以下两种语法是等效的:functionName(input1,...,inputN) %函数语法functionName input1 ... inputN %命令语法1.4脚本编程1.使用脚本文件编程的方法2.说明2.1概念脚本文件是包含一系列的命令和函数的程序文件,扩展名是.m 当需要把多个程序语句组合起来完成一项总体运算和功能时,常用脚本文件,方便存储、管理和重用,是matlab里普遍的编程方式2.2创建脚本的方法%在当前工作目录右键-新建文件-脚本;%菜单栏,“主页”-“新建脚本”。
MATLAB基础(矩阵运算和矩阵操作)2
223445.68
数学运算符号及标点符号
+ — * .* / ./ ^ 减法运算 乘法运算 点乘运算 除法运算 点除运算 乘幂运算
加法运算,适用于两个数或两个同阶矩阵相加
(1)MATLAB的每条命令后,若为逗号或无标点符号, .^ 点乘幂运算 则显示命令的结果;若命令后为分号,则禁止显示结果. \ 后面所有文字为注释. (2)“%” 反斜杠表示左除. 36 (3) “...”表示续行.
10
命令窗口
11
工作间
12
当前目录
13
历史命令
14
设置路径搜索 当前目录
15
进入搜索对话框
16
设置搜索路径对话框
17
18
Editpath or pathtool
20
‘帮助’的使用
help 命令:已知命令 lookfor命令:知道命令的关键词 MATLAB Help:命令查找,索引,说明书 Demo
2.2345e+005
>> format rat >> 223445.6778987654
>> format bank >> 223445.6778987654
ans =
ans =
670337/3 >> format long e >> 223445.6778987654 ans = 2.234456778987654e+005
39
clear命令用于删除MATLAB工作空间中的变 量。 who和whos这两个命令用于显示在MATLAB工 作空间中已经驻留的变量名清单。 who命令只显示出驻留变量的名称,whos在给 出变量名的同时,还给出它们的大小、所占 字节数及数据类型等信息。
矩阵的运算
矩阵的运算第三节矩阵的基本运算§ 3.1加和减§ 3.2矩阵乘法§ 3.2.1矩阵的普通乘法§ 3.2.2 矩阵的Kronecker乘法§ 3.3矩阵除法§ 3.4矩阵乘方§ 3.5矩阵的超越函数§ 3.6数组运算§ 3.6.1数组的加和减§ 3.6.2数组的乘和除§ 3.6.3数组乘方§ 3.7矩阵函数§ 3.7.1三角分解§ 3.7.2正交变换§ 3.7.3奇异值分解§ 3.7.4特征值分解§ 3.7.5 秩§ 3.1加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差•如果矩阵A和B的维数不匹配,Matlab 会给出相应的错误提示信息•如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回: C =2 6 106 10 1410 14 0如果运算对象是个标量(即1X 1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1 「書二§ 3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.mo § 3.2.1矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为1 2 5 6 1 5 2 7 1 6 2 8 19 22C= 3 4x7 8 = 3 5 4 7 3 6 4 8 = 43 50 即Matlab 返C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或 B )乘上矩阵B (或A )的每一个元素所得的矩 阵. 「二口 \§ 322矩阵的Kronecker 乘法对n X m 阶矩阵A 和p X q 阶矩阵B , A 和B 的Kronecher 乘法运算可定义为:a 〔[B a^B .・・ a ^m Ba21B a 22B... a 2m BCABan1B an2B... a nm B由上面的式子可以看出,Kronecker 乘积 A B 表示矩阵A 的所有元素与B 之间的乘积组 合而成的较大的矩阵,B A 则完全类似.A B 和B A 均为叩X mq 矩阵,但一般情况下 ABBA.和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配 方面的要求.Kronecker 乘法的 Matlab 命令为C=kron (A,B ),例如给定两个矩阵A 和B :1 2 1 3 2积C :A=[12;34];B=[1 3 2; 24 6]; C=kro n(A,B)C =13 2 2 6 424 6 4 8 123 9 64 12 86 1218816242 4 6A 和B 的 Kronecker 乘A= B=则由以下命令可以求出作为比较,可以计算 B 和 A 的Kronecker 乘积D,可以看出C、D是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kro n(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 18 24§ 3.3矩阵除法在Matlab中有两种矩阵除法符号:"\"即左除和“/”即右除•如果A矩阵是非奇异方阵,贝V A\B 是A的逆矩阵乘B,即inv(A)*B ;而B/A是B乘A的逆矩阵,即B*inv(A) •具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除•如果 A 是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:,j)表示B矩阵的第j列,返回的结果x 具有与B矩阵相同的阶数,如果 A 是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m x n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现•二^§ 3.4矩阵乘方A A P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A A P表示A的P次幂,即A自乘P次•如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A A P=V*D.A P/V (注:这里的八表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,aAB就是一个按特征值与特征向量的升幂排列的B次方程§ 3.5矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等. 一个超越函数可以作为矩阵函数来解释,例如将“ m ”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm logm sqrtm 矩阵指数矩阵对数矩阵开方阵.如果a和B都是矩阵,则「以凹、aAB是错误所列各项可以加在多种m文件中或使用funm •请见应用库中sqrtm.m , logm.m, f unm.m 文件和命令手册.§ 3.6数组运算数组运算由线性代数的矩阵运算符“ * ”、“/”、”、“八”前加一点来表示,即为“.* ”、“./”、”、“八”・注意没有“ .+ ”、“.-”运算・§ 3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+ ”、“ - ”既可被矩阵接受又可被数组接§ 3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘•例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除()与数组的右除(./),由读者自行举例加以体会.§ 3.6.3数组乘方数组乘方用符号八表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]贝V z=x.A y=[1A4 2八5 3A6]=[1 32 729]⑴如指数是个标量,例如x.A2 , x同上,则:z=x.A2=[1A2 22 3八2]=[ 1 4 9](2)如底是标量,例如2 .A[x y] , x、y同上,则:z=2 .A[x y]=[2A1 2A2 2A3 2八4 2八5 2八6]=[2 4 816 32 64]从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“・” 之间的空格很重要,如果不这样做,解释程序会把“・”看成是2的小数点.Matlab看到符号“ A”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵. 二二§ 3.7矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3)特征值变换;(4)奇异值分解.§ 3.7.1三角分解最基本的分解为“ LU ”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵•计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det得到矩阵的行列式•解线性方程组的结果由方阵的“ ”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A) 得出0.1429 1.0000 00.5714 0.5000 1.00001.0000 0 07.0000 8.0000 00 0.8571 3.00000 0 4.5000注:L是下三角矩阵的置换,U是上三角矩阵的正交变换,分解作如下运算,检测计算结果只需计算L*U即可.求逆由下式给出:x=i nv(A)x =从LU分解得到的行列式的值是精确的,d=det(U)*det(L)的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U) d =27.0000为什么两种d的显示格式不一样呢?当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.3333 0.3333 0.0000由于A=L*U ,所以x 也可以有以下两个式子 计算:y=L\b ,x=U\y .得到相同的x 值,中间值 y 为:y = 5.0000 0.2857 0.0000Matlab 中与此相关的函数还有 rcond 、chol 和rref .其基本算法与LU 分解密切相关.chol 函数对正定矩阵进行Cholesky 分解,产生一个 上三角矩阵,以使R'*R=X .rref 用具有部分主 元的高斯一约当消去法产生矩阵 A 的化简梯形 形式.虽然计算量很少,但它是很有趣的理论线 性代数.为了教学的要求,也包括在 Matlab 中.C J ZED§ 3.7.2正交变换“QR ”分解用于矩阵的正交一三角分解.它 将矩阵分解为实正交矩阵或复酉矩阵与上三角 矩阵的积,对方阵和长方阵都很有用. 例如A=[ 4 7 10是一个降秩矩阵,中间列是其它二列的平均,1 5 8 112 36 9我们对它进行QR分解:QR]=qr(A)Q =R =-12.8841 -14.5916 -16.29920 -1.0413 -2.08260 0 0.00000 0 0可以验证Q*R就是原来的A矩阵.由R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R 与原来矩阵A 都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b . 结果为:Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.5000 00.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*b x=R\y求出的y值为y 二—-9.1586-0.34710.00000.0000x的结果为Warning: Rank deficient, rank = 2 tol=1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b •这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的•显然x向量的解有无穷多个,而“ QR ”分解仅仅找出了其中之一. =§ 3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A 的奇异值(其定义为:矩阵A'*A的特征值的算术平方根)•注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A) • •§ 3.7.4特征值分解如果A是n X n矩阵,若满足Ax= x,则称为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数•特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + I.OOOOi0 -I.OOOOi如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D .计算特征值的中间结果有两种形式:Hessenberg 形式为hess(A), Schur 形式为schur(A). schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D •满秩矩阵X的列相应于特征向量,使A*X=B*X*D ,中间结果由qz(A,B)提供. 「以凹一】§ 3.7.5 秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A) , A的秩为非0行的个数.rref 方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。
矩阵的定义及其运算规则
矩阵的定义及其运算规则矩阵是数学中的一种重要工具,用于表示数字和符号的矩形阵列。
矩阵由m行n列的数字或符号排列组成,每个数字或符号称为矩阵的元素。
矩阵通常用大写字母表示,例如A,B,C等。
矩阵的大小由它的行数和列数决定,并用m×n表示。
矩阵的运算规则包括加法、减法、数乘和乘法四种运算。
1.加法:对应位置上的元素相加对于相同大小的两个矩阵A和B,它们的加法定义如下:A+B=C其中C的元素由对应位置上的两个矩阵元素相加得到。
2.减法:对应位置上的元素相减对于相同大小的两个矩阵A和B,它们的减法定义如下:A-B=D其中D的元素由对应位置上的两个矩阵元素相减得到。
3.数乘:矩阵的每个元素与一个标量相乘对于一个矩阵A和一个实数k,它们的数乘定义如下:kA=E其中E的元素由矩阵A的每个元素与k相乘得到。
4.乘法:矩阵的行与列的对应元素相乘后求和对于两个矩阵A(m×n)和B(n×p),它们的乘法定义如下:AB=F其中F是一个m×p的矩阵,F的每个元素由矩阵A的其中一行与矩阵B的对应列的元素相乘后求和得到。
矩阵的运算满足以下一些基本性质:1.加法的交换律:A+B=B+A2.加法的结合律:(A+B)+C=A+(B+C)3.加法的零元素:存在一个零矩阵O,满足A+O=A4.减法的定义:A-B=A+(-B)5.数乘的结合律:(k1k2)A=k1(k2A)6.数乘的分配律:(k1+k2)A=k1A+k2A7.数乘的分配律:k(A+B)=kA+kB8.乘法的结合律:(AB)C=A(BC)9.乘法的分配律:A(B+C)=AB+AC和(A+B)C=AC+BC10.乘法的分配律:k(AB)=(kA)B=A(kB)矩阵的运算在应用中具有广泛的应用,包括线性代数、计算机图形学、优化、概率论等。
通过矩阵的运算规则,可以对线性方程组进行求解、描述线性变换、优化问题、图像处理等。
矩阵的运算规则是学习线性代数和其他数学领域的重要基础知识。
第2章数组、矩阵及其运算
,求A B。
2.2.4 集合运算
1.两个集合的交集
命令格式:
c = intersect(a,b) %返回向量a、b的 公共部分,即c= a∩b。 c = intersect(A,B,'rows') %A、B为相同列数 的矩阵,返回元素相同的行。 [c,ia,ib] = intersect(a,b) %c为a、b的公共 元素,ia表示公共元素在a中的位置,ib表示公 %共元素在b中位置。
2.子数组的赋值
>>x(3) = 0 新赋值为0。 x = 0.9501 0.2311 >>x([1 4])=[1 1] 个元素都赋值为1。 x = 1.0000 0.2311 %把上例中的第三个元素重
0 0.4860 0.8913 %把当前x数组的第一、四
0
1.0000
0.8913
2.1.3 二维数组(矩阵)的创建
a 1n
定义为
;数组乘
方A.^P,表示A的每个元素的P次乘方。
2.3 矩阵的关系运算
2.3.1 矩阵的比较关系运算 2.3.2 矩阵的逻辑关系运算
2.3.1 矩阵的比较关系运算
矩阵的比较关系是针对于两个矩阵对应元 素的,所以在使用关系运算时,首先应该保证 两个矩阵的维数一致或其中一个矩阵为标量。 关系运算是对两个矩阵的对应运算进行比 较。 若关系满足,则将结果矩阵中该位置元素 置为1,否则置0。 MATLAB的各种比较关系运算如表2-2所示。
【例2-20】 两集合的并集示例。
6.取集合的单值元素
命令格式:
b = unique (a) 构成的向量。 b = unique (A,'rows') 成的矩阵。 [b,i,j] = unique (…) 向量(矩阵)中的位置。 %取集合a的不重复元素
矩阵的运算与处理
行列式具有一些重要的性质,如交换律、结合律、分配律等。
行列式的计算方法
行列式的计算可以通过展开法、递推法、分块法等方法进行。
04
矩阵的应用
在线性方程组中的应用
线性方程组是矩阵运算的重要应用之一。通过矩阵表示线性 方程组的系数和常数项,可以方便地进行矩阵的加法、乘法 等运算,从而求解线性方程组。
例如,对于形如 (Ax = b) 的线性方程组,可以通过矩阵的乘 法运算求得 (x) 的值。
在向量空间中的应用
向量空间是矩阵运算的另一个重要应用。通过矩阵可以将向量进行线性变换,从 而在向量空间中研究向量的性质和关系。
例如,对于一个 (n) 维向量空间,可以定义一个线性变换 (T: mathbb{R}^n rightarrow mathbb{R}^m),通过矩阵表示该线性变换,可以方便地计算变换后的 向量。
感谢您的观看
3
零矩阵
所有元素都为零的矩阵。
02
矩阵的运算
矩阵的加法
总结词
矩阵的加法是指将两个矩阵的对应元 素相加,得到一个新的矩阵。
详细描述
矩阵的加法满足交换律和结合律,即 A+B=B+A和(A+B)+C=A+(B+C)。
矩阵的数乘
总结词
数乘是指用一个标量与一个矩阵相乘,得到一个新的矩阵。
详细描述
数乘满足结合律和分配律,即k(m*n)矩阵=(k*m)*(k*n),其中k是标量,m*n矩阵。
06
矩阵的特征值与特征向 量
特征值与特征向量的定义与性质
特征值
对于一个给定的矩阵A,如果存在一个数λ和对应的非零向量v,使得Av=λv成立,则称 λ为矩阵A的特征值,v为矩阵A的对应于λ的特征向量。
矩阵 点乘 和相乘-概述说明以及解释
矩阵点乘和相乘-概述说明以及解释1.引言1.1 概述矩阵是线性代数中的重要概念,它由若干行与若干列元素组成的数组所构成。
矩阵在数学、物理、工程、计算机科学等领域有着广泛的应用,因此矩阵运算也成为了研究和实践中的重要内容之一。
在矩阵运算中,点乘和相乘是两种常见的操作。
点乘是指两个矩阵中对应位置元素相乘并相加得到一个标量值的运算,而矩阵相乘是指两个矩阵按一定规则相乘得到新的矩阵的运算。
这两种运算在实际问题中有着各自的应用场景和重要性。
本文将深入探讨矩阵的定义和性质,以及点乘和相乘的概念、规则和重要性。
通过对矩阵运算的全面解析,希望读者能够更深入地理解矩阵运算的重要性以及在实际问题中的应用价值。
1.2 文章结构本文将分为三个部分进行讨论:引言、正文和结论。
在引言部分,将介绍矩阵、点乘和相乘的基本概念,以及文章的结构和目的。
在正文部分,将详细探讨矩阵的定义和性质,点乘的概念和应用,以及矩阵相乘的规则和重要性。
在结论部分,将总结矩阵运算的重要性,指出矩阵点乘和相乘的应用场景,并展望矩阵运算的未来发展。
通过这样的结构,读者可以全面了解矩阵运算的相关知识和重要性,同时也可以展望未来在这一领域的发展方向。
1.3 目的目的部分本文的目的在于探讨矩阵运算中的点乘和相乘操作,分析它们在数学和实际应用中的重要性和作用。
通过深入理解矩阵的定义、性质以及点乘、相乘的规则,可以帮助读者更好地掌握这些概念,并在解决实际问题时运用到矩阵运算中。
此外,本文还旨在展示矩阵运算在不同领域的广泛应用,以及展望未来矩阵运算的发展方向与趋势。
通过阅读本文,读者能够深入了解矩阵运算的重要性和实用性,为其在学术和职业生涯中带来更多的启发和帮助。
2.正文2.1 矩阵的定义和性质矩阵是数学中一种非常重要的概念,它是由数字组成的二维数组。
一个矩阵通常用一个大写字母表示,比如A、B、C等。
一个矩阵可以用m ×n的形式表示,其中m表示矩阵的行数,n表示矩阵的列数。
3-1 Matlab矩阵、数组和符号运算
第3章 矩阵、数组和符号运算 章 矩阵、
>> x x= 0 0.5000 1.0000 1.5000 2.0000
% x=linspace(a,b,n) 生成有 n 个元素的行向量 x,其元素值在 a、 , 、 b 之间线性分布。 之间线性分布。
第3章 矩阵、数组和符号运算 章 矩阵、
c.利用 文件产生矩阵 利用M文件产生矩阵 利用
A=[1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 16,17,18,19,20 21,22,23,24,25]
第3章 矩阵、数组和符号运算 章 矩阵、
d.从外部数据文件调入矩阵 用load命令输入 用Import 菜单输入
>> Z=zeros(2,4) Z= 0 0 0 0 0 0 0 0 0 0 0 0 0 1
% eye 生成单位阵
0 0 0 1 0 0 0 0 0 0 1 0
% rand 生成均匀分布的随机矩阵
>> R=rand(4) R= 0.9501 0.8913 0.2311 0.7621 0.6068 0.4565 0.4860 0.0185 0.8214 0.4447 0.6154 0.7919 0.9218 0.7382 0.1763 0.4057
第3章 矩阵、数组和符号运算 章 矩阵、
>> A=[1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16] A= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
利用表达式输入
>> B=[1,sqrt(25),9,13 2,6,10,7*2 3+sin(pi),7,11,15 4,abs(-8),12,16] B= 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
第二章 矩阵运算
据全下标换算出单下标。 据单下标换算出全下标。
广西大学电气工程学院
Matlab程序设计
“逻辑1”标识
所谓“逻辑1”标识 法是:通过与A同样大小的 逻辑数组L中“逻辑值1”所在的位置,指出A中 元素的位置。 L的元素或是0或是1,它是“逻辑数组(Logical Array)”。是一种特殊的数据类型。 例
(3)定数线性采样法
在设定的“总点数”下,均匀采样生成一维“行”数组。 – 通用格式:x=linspace(a,b,n) [说明]该指令生成(1 ×n)数组,其作用与x=a:(b-a)/(n-1):b同。
–
广西大学电气工程学院
Matlab程序设计
一维数组的子数组寻访和赋值
例1:子数组的寻访(Address)。 例2:子数组的赋值(Assign)。
其显示结果是一样的。
广西大学电气工程学院
Matlab程序设计
特殊矩阵(P42)
非数NaN “空”数组(空阵) 全 0阵 单位阵 全 1阵 随机阵 其他特殊矩阵(表2-6)
广西大学电气工程学院
Matlab程序设计
非数NaN
按IEEE规定,0/0,∞/∞,0×∞等运算都会产生非数 (Not a Number)。该非数在MATLAB中用NaN或 nan记述。 根据IEEE数学规范,NaN具有以下性质:
A.^n
A.^p p.^A A+B A-B
A^n
A^p p^A A+B A-B
Matlab程序设计
数组运算和矩阵运算指令对照汇总(二)
数 指 令 组 运 含
对应元素相乘 A的元素被B的对应元素除 (一定与上相同) 以自然数e为底,分别以A的 元素为指数,求幂 对A的各元素求对数 对A的各元素求平方根 求A各个元素的函数值。f(.) 表示为上节所列各函数 A、B阵对应元素间的关系 运算。#代表关系运算符
矩阵的运算及其运算规则
矩阵的运算及其运算规则矩阵是现代数学中的一种重要工具,它在线性代数、图论、物理学等领域中都有广泛的应用。
矩阵的运算是研究矩阵性质和解决实际问题的基础。
本文将介绍矩阵的运算及其运算规则。
(一)矩阵的加法矩阵的加法是指将两个相同大小的矩阵对应位置的元素相加。
假设有两个矩阵A和B,它们的大小都是m行n列,记作A = [aij]m×n,B = [bij]m×n,则矩阵A和B的加法C = A + B定义为C = [cij]m×n,其中cij = aij + bij。
例如,对于矩阵A = [1 2 3; 4 5 6]和矩阵B = [7 8 9; 10 11 12],它们的加法结果为C = [8 10 12; 14 16 18]。
矩阵的加法满足以下运算规则:1. 加法满足交换律,即A + B = B + A。
2. 加法满足结合律,即(A + B) + C = A + (B + C)。
3. 存在一个零矩阵0,使得A + 0 = A。
4. 对于任意矩阵A,存在一个相反矩阵-B,使得A + (-B) = 0。
(二)矩阵的数乘矩阵的数乘是指将一个矩阵的每个元素都乘以一个数。
假设有一个矩阵A和一个实数k,记作kA,则矩阵kA定义为kA = [kaij]m×n。
例如,对于矩阵A = [1 2 3; 4 5 6]和实数k = 2,它们的数乘结果为kA = [2 4 6; 8 10 12]。
矩阵的数乘满足以下运算规则:1. 数乘满足结合律,即k(lA) = (kl)A,其中k和l分别为实数。
2. 数乘满足分配律,即(k + l)A = kA + lA,其中k和l分别为实数。
3. 数乘满足分配律,即k(A + B) = kA + kB,其中k为实数,A和B 为矩阵。
(三)矩阵的乘法矩阵的乘法是指将一个m行n列的矩阵A和一个n行p列的矩阵B 相乘得到一个m行p列的矩阵C。
假设有两个矩阵A和B,它们的大小分别为m行n列和n行p列,记作A = [aij]m×n,B = [bij]n×p,则矩阵A和B的乘法C = AB定义为C = [cij]m×p,其中cij= ∑(ai1 * b1j)。
verilog二维有符号矩阵乘法
verilog二维有符号矩阵乘法下面是一个Verilog代码示例,用于执行两个二维有符号矩阵的乘法运算。
```verilogmodule matrix_multiplier (input signed [7:0] matrix_a [0:2][0:2],input signed [7:0] matrix_b [0:2][0:2],output signed [15:0] matrix_product [0:2][0:2]);reg signed [15:0] temp [0:2][0:2];integer i,j,k;always @(*) beginfor (i = 0; i <= 2; i = i + 1) beginfor (j = 0; j <= 2; j = j + 1) begintemp[i][j] = 0;for (k = 0; k <= 2; k = k + 1) begintemp[i][j] = temp[i][j] + matrix_a[i][k] * matrix_b[k][j]; endendendendalways @(posedge clk) beginmatrix_product <= temp;endendmodule```在这个例子中,我们使用8位有符号数表示矩阵元素,并且乘法的结果是一个16位有符号数。
输入矩阵 `matrix_a` 和`matrix_b` 都是3x3的二维数组,输出矩阵 `matrix_product` 也是一个3x3的二维数组。
乘法的计算过程使用多个嵌套的循环实现,每个循环对应于矩阵的行、列和元素乘法的累加。
临时变量 `temp` 用于保存中间结果,最后在时钟的上升沿时将 `temp` 的值赋给`matrix_product` 输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法3:利用Matlab函数建立矩阵。 1. eye:单位矩阵;
2. zeros:全部元素均为0的矩阵;
3. ones:全部元素均为1的矩阵; 4. rand:0-1间均匀分布的随机矩阵;
X=zeros(2)
5. randn:产生标准正态分布矩阵;
6. 空阵[]:操作无结果时,返回空阵。
X=ones(3)
4/3
1.2345e-6
0.0000 0.00000123450000 1.2345e-006 1.234500000000000e-006 1.2345e-006 1.234500000000000e-006 3eb4b6231abfd271 + 1/810045 0.00
1.3333 1.33333333333333 1.3333e+000 1.33333333333333e+000 1.3333 1.33333333333333 3ff5555555555555 + 4/3 1.33
M=100+magic(5)
B. 范德蒙德矩阵
vander([1;2;3;5])
ans =
1 8 27 125
1 4 9 25
1 2 3 5
1 1 1 1
C. 希尔伯特矩阵
format rat %以有理形式输出 H=hilb(4) %生成4阶希尔伯特矩阵
hij
1 i j 1
H1=invhilb(4) %生成4阶希尔伯特逆矩阵 H= 1 1/2 1/3 1/4 H1 = 16 -120 240 -140 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7
3. 利用M文件建立矩阵
步骤: 1. 启动编辑程序或Matlab文本编辑器; 2. 在编辑器中输入待建矩阵; 3. 以纯文本方式存盘(设文件名为mymat.m); 4. 运行该M文件,就会自动建立一个名为mymat 的矩阵供以后使用。
MYMAT=[10,20,30,40,50,60,70,80,90;... 14,24,34,44,54,64,74,84,94;... 18,28,38,48,58,68,78,88,98] MYMAT = 10 20 14 24 18 28
格 式
对应结果
命令
format short format long format short e format long e format short g format long g format hex format + format rat format bank
含义
短格式 长格式 短格式e方式 长格式e方式 短格式g方式 长格式g方式 16进制格式 +格式 分数格式 银行格式
取值 运算结果的默认变量名 圆周率π 浮点数的相对误差 无穷大,如 1/0 不定值,如 0/0、∞/∞、0×∞
特殊变量名 i或 j nargin nargout realmin realmax
取值 i=j= ,虚数单位
函数的输入变量数目 函数的输出变量数目 最小的可用正实数 最大的可用正实数
10中数据显示格式
格式:A=linspace(a,b,n)
与a:(b-a)/(n-1):b等价。
X=linspace(1,10,5) X= 1.0000
3.2500
5.5000
7.7500 10.0000
X=linspace(1,100)
X= Columns 1 through 16 1 2 3 4 5 6 7 Columns 17 through 32 17 18 19 20 21 22 Columns 33 through 48 33 34 35 36 37 38 Columns 49 through 64 49 50 51 52 53 54 Columns 65 through 80 65 66 67 68 69 70 Columns 81 through 96 81 82 83 84 85 86 Columns 97 through 100 97 98 99 100
说明1:矩阵元素可以是实数,Matlab 表达式,复数,复数用特殊函数i,j输入。
X=[2 pi/2; sqrt(3) 3+5i] X= 2.0000 1.7321
1.5708 3.0000 + 5.0000i
说明2:赋过值的变量,不管是否在屏 幕上显示过,都存储在工作空间中,以 后可以随时显示或者调用。
p=[1,0,-7,6]; compan(p)
ans = 0 7 1 0 0 1 -6 0 0
矩阵元素引用两种方法
1. 利用下标来引用A(i,j),i为行号,j为列号. 2. 利用序号来引用A(i),i为元素在矩阵中的存储 序号。m×n矩阵元素A(i,j)的序号为(j-1)*m+i.
>> A=[1,2,3;4,5,6]; >> a=A(2,3),A(5)
二、矩阵、数组、符号运算
矩阵和数组是Matlab最基本的数据对象;
Matlab运算中经常使用的概念:
空数组(empty array):没有元素的数组; 标量(scalar):是指1×1的矩阵,即为只含一个数的矩 阵; 向量(vector):是指1×n或n×1的矩阵,即只有一行或 者一列的矩阵; 矩阵(matrix):是一个矩形的m×n数组,即二维数组; 数组(array):是指多维数组m×n×k×…,其中矩阵和
-120 1200 -2700 1680
240 -2700 6480 -4200
-140 1680 -4200 2800
D. 帕斯卡矩阵:杨晖三角形组成的矩阵,二项式展开系数组成
pascal(5) %生成5阶帕斯卡矩阵
ans = 1 1 1 1 1 1 2 3 4 5 1 1 1 3 4 5 6 10 15 10 20 35 15 35 70
矩阵除法
在MATLAB中,有两种矩阵除法运算:\和/,分别表示 左除和右除。 如果A矩阵是非奇异方阵,则A\B和B/A运算可以实现。 A\B等效于A的逆左乘B矩阵,也就是inv(A)*B,而B/A等效 于A矩阵的逆右乘B矩阵,也就是B*inv(A)。 对于含有标量的运算,两种除法运算的结果相同,如 3/4和4\3有相同的值,都等于0.75。又如,设a=[10.5,25],则 a/5=5\a=[2.1000 5.0000]。 对于矩阵来说,左除和右除表示两种不同的除数矩阵 和被除数矩阵的关系。对于矩阵运算,一般A\B≠B/A。
24.7284 49.1178 48.7150 34.5613 44.0084 0.5410 0.8295 0.4140 1.2904 0.5569
24.2566 32.6528 47.4721 43.7662 48.7848 0.6360 0.9373 0.6187 0.5698 0.3368
39.6722 21.0714 45.4739 48.0198 40.3621 0.6931 0.1775 0.8259 1.1134 0.3812
练习:C(1:2:7)=5;
2. 语句生成 C( 2:2:7)=1; D=1:2:7 ;
D(8)=11; 方法1:利用冒号表达式生成线性等距向量。
格式:start:step:end 步长为1时可以省略step。 方法2:linspace命令,在线性空间上,行矢量的 值从a到b,数据个数为n,缺省n值为100。
mymat
30 34 38
40 44 48
50 54 58
60 64 68
70 74 78
80 84 88
90 94 98
4. 利用已有小矩阵或向量建立大矩阵
A=[1 2 3;4 5 6;7 8 9]; C=[A,eye(size(A));ones(size(A)),A]
C= 1 4 7 1 1 1
• • • • 1. 直接输入法。 2. 语句生成。 3. 利用M文件生成。 4. 利用已有的矩阵生成。
基本语句
• 基本语句的两种格式:
• 1. 变量=表达式(结果是一个矩阵) • 2. 表达式(值赋给永久变量ans)
特殊变量
特殊变量名 ans pi eps inf 或 INF NaN 或 nan
2 5 8 1 1 1
3 6 9 1 1 1
1 0 0 1 4 7
0 1 0 2 5 8
0 0 1 3 6 9
特殊矩阵
A. 魔方矩阵:每行每列及两对角线元素之和相等。
magic(5) %生成n阶魔方矩阵 ans =
17
23
24
5
1
7
8
14
15
16
4 6 13 20 22 例 将101~125等25个数填入一个5行5列的表格中,使其每行每列及 对角线的和均为565。 10 11 12 18 19 25 21 2 3 9
a= 6 ans = 3
矩阵元素修改
1. 直接修改:可用工作空间进行修改. 2. 指令修改:可用A(*,*)=*来修改.
>> A=[1,2,3;4,5,6]; >> A(2,3)=0; >> A
A=
1 4
2 5
3 0
数据的输出格式
1. 默认格式:双精度表示和存储. 2. 输出格式修改:format格式符.
格式:zeros(m):产生m×m零矩阵; eye(m,n):产生m×n单位矩阵; rand(size(A)):产生与矩阵A同样大小的随机矩阵。
X=20+(40-20)*rand(4,3)
¤ 建立随机矩阵: (1) 在区间[20,50]内均匀分布的5阶随机矩阵。 (2) 均值为0.6、方差为0.1的5阶正态分布随机矩阵。 命令如下: x=20+(50-20)*rand(5) y=0.6+sqrt(0.1)*randn(5)