实验连续时间信号与系统的基本表示与分析

合集下载

信号与系统中的连续时间信号分析

信号与系统中的连续时间信号分析

信号与系统中的连续时间信号分析在信号与系统学科中,连续时间信号分析是一项重要的研究领域。

它涉及到对连续时间信号的特性和行为进行深入的研究与分析。

通过对连续时间信号的理解,我们可以更好地理解和应用于实际系统中。

连续时间信号是一种在时间上是连续的信号,与离散信号相对应。

通过对连续时间信号的分析,我们可以研究信号的频谱特性、系统响应以及信号处理等方面的问题。

下面将介绍一些连续时间信号分析的重要概念和方法。

一、连续时间信号的分类在连续时间信号的分析中,我们将信号分为不同的类型,以便更好地理解和处理它们。

常见的连续时间信号类型包括周期信号、非周期信号、能量信号和功率信号。

1. 周期信号周期信号是指信号在时间上具有重复性质的信号。

在数学上,周期信号可以表示为f(t) = f(t ± T),其中T是信号的周期。

周期信号在通信系统中经常出现,例如正弦信号、方波信号等。

2. 非周期信号非周期信号是指无法用周期性来描述的信号。

非周期信号在实际应用中也非常常见,例如脉冲信号、指数信号等。

3. 能量信号能量信号是指信号的总能量有限,即信号在无穷远处的能量为零。

能量信号通常在短时间内集中能量,如方波信号、冲激信号等。

4. 功率信号功率信号是指信号的功率在无穷远处有限,即信号的总功率为有限值。

功率信号通常在长时间内分散能量,如正弦信号等。

二、连续时间信号的频谱分析频谱分析是连续时间信号分析的重要手段,通过对信号的频谱特性进行研究,可以了解信号的频率成分以及频率响应等信息。

1. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的重要工具。

通过傅里叶变换,我们可以将连续时间信号表示为不同频率分量的叠加。

2. 频谱密度函数频谱密度函数是描述信号功率随频率变化的函数。

通过计算信号的频谱密度函数,我们可以了解信号的频率特性和功率分布等信息。

三、连续时间系统的分析连续时间信号的分析还涉及到对系统的研究和分析。

连续时间系统是通过输入信号产生输出信号的物理系统,例如滤波器、放大器等。

信号与系统实验一连续时间信号分析实验报告

信号与系统实验一连续时间信号分析实验报告

实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。

三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。

(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。

程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。

电路、信号与系统(2)实验指导书

电路、信号与系统(2)实验指导书
[问题]
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];

信号与系统报告实验1连续时间信号的MATLAB表示与计算

信号与系统报告实验1连续时间信号的MATLAB表示与计算
(4)编写m文件,并以Q1_3为文件名存盘绘出f(t)=Sa(2 t),f(2t-2)的波形,t的范围在-2~2s。 程序源码: t=-2:0.01:2 ft=sinc(t*2); subplot(1,2,1); plot(t,ft);
title('ft=Sa(2t)'); grid on; f1=sinc((t*2-2)*2); subplot(1,2,2); plot(t,f1); title('f(2t-2)'); grid on; 图形:
(5)编写m文件,并以Q1_4为文件名存盘。实现如图1—14所示的信号f(t)。 程序源码: t=-5:0.01:5; f1=2*heaviside(t+1)-heaviside(t-1)-2*heaviside(t-2)+heav iside(t-3); plot(t,f1); grid on; title('f(t)') axis([-5 5 -3 3]); 图形:
(3)、编写m文件,并以Q1_2为文件名存盘绘出e-2(u(t)-u (t-3))信号,给图形标出名称和坐标轴名称。 程序源码: syms t ft=sym('1*exp(-2*t)*(heaviside(t)-heaviside(t-3))'); ezplot(ft); title('exp(-2*t)*((u(t)-u(t-3))'); xlabel('t'); ylabel('ft'); grid on; 图形:
三、实验中遇到的问题 实验中经常出现各种错误,往往因为各种细小错误的出现使得整个程序运行错误。第1题中要注意所定义的函数名须与所保存的文件名一致,单位阶跃信号u(t)和单位冲激信 号需要输入数据才能得到相应的信号波形。第2题中的信号是由两个信号函数相加而成,并不是两个信号波形的叠加,故所得波形中间没有一横。其中第三个图是由两个三角波 脉冲信号相减而成,开始时用三角波脉冲信号减去矩形脉冲信号,运行并没有得到所要的信号波形。第4题需要增大时间t的取值范围才能得到函数的多个周期波形,以便于判 断函数是否为周期性信号。 在这次实验中我体会到:实验就是一个发现错误并改正错误的 过程。正因为有错误的出现才显示出实验的魅力。

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

课程设计--连续时间信号和系统时域分析及MATLAB实现

课程设计--连续时间信号和系统时域分析及MATLAB实现

课程设计任务书题目:连续时间信号和系统时域分析及MATLAB实现课题内容:一、用MATLAB实现常用连续时间信号的时域波形(通过改变参数,分析其时域特性)。

二、用MATLAB实现信号的时域运算三、用MATLAB实现信号的时域变换(参数变化,分析波形变化)1、反转,2、使移(超时,延时),3、展缩,4、倒相,5、综合变化四、用MATLAB实现信号简单的时域分解1、信号的交直流分解,2、信号的奇偶分解五、用MATLAB实现连续时间系统的卷积积分的仿真波形给出几个典型例子,对每个例子,要求画出对应波形。

六、用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形。

给出几个典型例子,四种调用格式。

七、利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形。

给出几个典型例子,要求可以改变激励的参数,分析波形的变化。

时间安排:学习MATLAB语言的概况第1天学习MATLAB语言的基本知识第2、3天学习MATLAB语言的应用环境,调试命令,绘图能力第4、5天课程设计第6-9天答辩第10天指导教师签名:年月日目录摘要 (Ⅰ)1.绪论 (1)2.对课题内容的分析 (2)2.1连续时间信号概述 (2)2.2采样定理 (2)2.3总体思路 (2)3.设计内容 (2)3.1用MATLAB实现常用连续时间信号的时域波形 (2)3.1.1单位阶跃信号和单位冲击信号 (2)3.1.2正弦信号 (4)3.1.3指数信号 (5)3.1.4实指数信号和虚指数信号 (6)3.2用MATLAB实现信号的时域运算 (7)3.2.1相加 (7)3.2.2相乘 (8)3.2.3数乘 (9)3.2.4微分 (10)3.2.5积分 (12)3.3用MATLAB实现信号的时域变换 (13)3.4用MATLAB实现信号简单的时域分解 (15)3.4.1 交直流分解 (15)3.4.2 奇偶分解 (16)3.5用MATLAB实现连续时间系统的卷积积分的仿真波形 (18)3.6用MATLAB实现连续时间系统的冲激响应、阶跃响应的仿真波形 (19)3.7利用MATLAB实现连续时间系统对正弦信号、实指数信号的零状态响应的仿真波形 (20)4.心得体会 (22)5.参考文献 (23)摘要本文介绍了基于MATLAB的连续时间信号与系统时域分析。

信号与系统实验报告连续时间信号的时域分析

信号与系统实验报告连续时间信号的时域分析

信号与系统实验报告连续时间信号的时域分析实验目的:通过对连续时间信号的时域分析,进一步加深对信号的理解和掌握时域分析的方法和技巧。

实验原理:连续时间信号在时域上可以用其函数形式表示。

通常所说的时域分析即指对该函数形式进行各种数学性质的分析,如:波形特征、奇偶性、对称性、周期性等等。

实验设备:计算机、MATLAB软件。

实验步骤:1. 打开MATLAB软件,新建空白文件,在文件中输入以下代码:t = -10:0.01:10;y = sin(t);subplot(2,1,1);xlabel('t'),ylabel('y');title('原始信号');grid on;plot(-t,-y);2. 点击运行,得到以下结果:图1 连续时间正弦信号及其翻折信号3. 对上述代码进行说明:t表示时间变量,取值范围为-10到10,以0.01为步长。

y表示信号变量,为sin(t)。

subplot(2,1,1)表示将画布分为两个部分,第一个部分为上部分。

plot(t,y)表示绘制t变量与y变量之间的图形。

xlabel('t')表示将x轴标注为t。

title('翻折信号')表示将图形命名为翻折信号。

4. 分别观察原始信号和翻折信号,并进行分析。

原始信号是一条正弦波,周期为2π。

该信号的奇偶性、对称性、周期性均为偶函数。

实验结论:本实验通过对连续时间信号的时域分析,掌握了分析信号的方法和技巧,并同时对信号的奇偶性、对称性、周期性等属性有了更深入的了解,为以后更深入的信号分析工作奠定了基础。

信号与系统实验报告—连续时间信号

信号与系统实验报告—连续时间信号

信号与系统实验报告—连续时间信号实验名称:连续时间信号一、实验目的1、熟悉Matlab编程工具的应用;2、掌握利用Matlab进行连续时间信号的绘制、分析和处理。

二、实验原理连续时间信号是指在时间轴上连续存在的信号。

连续时间信号可以用数学函数来描述,并且它们是时间变量t的函数,其幅度可以是任意实数或复数。

连续时间信号可以由物理系统中的物理量得到,比如声音信号、图像信号等。

对于一个连续时间信号x(t),可以对它进行各种变换,如平移、伸缩、反转等,这些操作可以用函数来表示。

其中,平移信号可以用x(t - a)表示,伸缩信号可以用x(at)表示,反转信号可以用x(-t)表示。

另外,通过利用傅里叶变换可以分析连续时间信号的频率构成,了解信号的频域特性,其傅里叶变换公式为:F(jω) = ∫[ -∞ , ∞ ] f(t) · e^(-jωt) · dt其中,F(jω)为信号在频域上的变换值,因此,我们可以通过傅里叶变换来分析信号在频域上的性质。

三、实验内容2、使用Matlab对信号进行平移、伸缩、反转等处理;3、使用Matlab对信号进行傅里叶变换,分析信号的频域特性。

四、实验步骤1、绘制信号首先,我们需要确定信号的形式和表示方法,根据实验要求选择不同的信号进行绘制。

在此以正弦信号为例,使用Matlab中的plot函数绘制正弦函数图形:t = 0: 0.01: 10;x = sin (2* pi* t);plot(t, x);xlabel('Time / s');title('Continuous sinusoidal signal');对信号进行平移、伸缩、反转处理也是十分简单的,只需要在信号函数上添加对应的变换操作即可。

以下是对信号进行平移、伸缩、反转处理的Matlab代码:3、进行傅里叶变换及频域分析Y = fft (x);P2 = abs (Y/L);P1(2:end-1) = 2* P1(2:end-1);title ('Single-Sided Amplitude Spectrum of x(t)');ylabel ('|P1(f)|');根据得到的频域分析结果,我们可以得出连续时间信号的功率、频率等特性。

信号与系统实验报告实验三 连续时间LTI系统的频域分析报告

信号与系统实验报告实验三   连续时间LTI系统的频域分析报告

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析

信号与系统中的连续时间系统分析信号与系统是电子工程、自动控制等领域重要的基础学科,与我们日常生活息息相关。

在信号与系统中,连续时间系统分析是其中的重要内容之一。

本文将着重介绍连续时间系统分析的基本概念、方法和应用。

一、连续时间系统的概念连续时间系统是指信号的取样频率大于或等于连续时间信号的变化频率,信号在任意时间均有定义并连续可取值。

连续时间系统包括线性系统和非线性系统两种,其中线性系统是一类常见且具有重要意义的系统。

二、连续时间系统的表示连续时间系统可以通过微分方程或差分方程来表示,其中微分方程常用于描述线性时不变系统,而差分方程常用于描述线性时变系统。

在实际应用中,可以通过拉普拉斯变换或傅里叶变换对连续时间系统进行分析和求解。

三、连续时间系统的性质连续时间系统具有多种性质,包括线性性、时不变性、因果性、稳定性等。

其中线性性是指系统对输入信号的响应是可叠加的,时不变性是指系统的输出与输入之间的关系不随时间的推移而改变。

四、连续时间系统的频域分析连续时间系统的频域分析是通过傅里叶变换来实现的,可以将时域中的信号转换为频域中的频谱。

通过频域分析,我们可以获得系统的幅频特性和相频特性,进一步了解系统对不同频率信号的响应。

五、连续时间系统的时域分析连续时间系统的时域分析是通过微分方程或差分方程来实现的,可以确定系统的时域特性。

通过时域分析,我们可以获得系统的阶数、单位阶跃响应、单位冲激响应等关键信息。

六、连续时间系统的应用连续时间系统的分析在实际应用中具有广泛的应用价值。

例如,在通信系统中,我们需要对信号进行调制、解调、编码、解码等处理,这些过程都需要借助连续时间系统的分析方法。

此外,连续时间系统的分析也在信号处理、图像处理、音频处理等领域有着重要的应用。

结语:连续时间系统分析是信号与系统学科中的重要内容,具有广泛的理论基础和实际应用。

通过深入学习连续时间系统的概念、表示、性质、频域分析、时域分析和应用,我们可以更好地理解和掌握信号与系统的基本原理和方法,为相关领域的研究和应用提供理论指导和技术支持。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告 连续信号的时域描述与运算

信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续信号的时域描述与运算专业班级:姓名:学号:完成时间:年月日一、实验目的1.通过绘制典型信号的波形,了解这些信号的基本特征。

2.通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。

二、实验原理1.基于MATLAB的信号描述方法如果一个信号在连续时间范围内(除有限个间断点外)有定义,则称该信号为连续时间信号,简称为连续信号。

从严格意义上讲, MATLAB数值计算的方法并不能处理连续信号,但是可利用连续信号在等时间间隔点的采样值来近似表示连续信号,即当采样间隔足够小时,这些离散采样值能够被MATLAB处理,并且能较好地近似表示连续信号。

(1)向量表示法对于连续时间信号f(t),可以定义两个行向量f和t来表示,其中向量t是形如t=t1:Δt:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,Δt为时间间隔;向量f为连续时间信号f(t)在向量t所定义的时间点上的采样值。

(2)符号运算表示法如果信号可以用一个符号表达式来表示,则可用ezplot命令绘制出信号的波形。

2.连续信号的基本运算(1)信号的相加与相乘信号的已知信号f1(t)、f2(t),信号相加和相乘记为f(t)=f1(t)+f2(t)f(t)=f1(t)·f2(t)(2)微分与积分对于连续时间信号,其微分运算是用diff函数来完成的。

其语句格式为:diff(function,’variable’,n);其中function表示需要进行求导运算的信号,或者被赋值的符号表达式;variable为求导运算的独立变量;n为求导的阶数,默认值为求一阶导数。

连续信号的积分运算用int函数来完成。

其语句格式为:int(function,’variable’,a,b);其中function表示被积信号,或者被赋值的符号表达式;variable为积分变量;a,b为积分上、下限,a和b省略时求不定积分。

连续时间系统实验报告(3篇)

连续时间系统实验报告(3篇)

第1篇一、实验目的1. 理解连续时间系统的基本概念和特性。

2. 掌握连续时间系统建模和仿真方法。

3. 熟悉连续时间系统的分析方法。

4. 培养实验操作能力和数据分析能力。

二、实验原理连续时间系统是指系统中各物理量随时间连续变化的系统。

连续时间系统在工程应用中广泛存在,如电路、信号处理、控制系统等。

本实验主要研究连续时间系统的建模、仿真和分析方法。

三、实验仪器与设备1. 连续时间系统实验箱2. 示波器3. 信号发生器4. 信号分析仪5. 计算机及仿真软件(如MATLAB)四、实验内容及步骤1. 连续时间系统建模(1)根据实验要求,选择合适的连续时间系统,如一阶滤波器、二阶滤波器等。

(2)根据系统特性,确定系统的输入信号和输出信号。

(3)利用实验箱提供的元器件搭建实验电路。

(4)根据元器件参数,推导出系统的传递函数。

2. 连续时间系统仿真(1)利用MATLAB软件,根据推导出的传递函数,建立系统的仿真模型。

(2)设置仿真参数,如采样时间、初始条件等。

(3)运行仿真,观察系统输出波形。

3. 连续时间系统分析(1)分析系统输出波形,观察系统的稳定性和频率响应特性。

(2)根据实验数据,计算系统的幅频特性和相频特性。

(3)分析系统在实际应用中的优缺点。

五、实验结果与分析1. 实验结果(1)根据实验数据和仿真结果,绘制系统输出波形图。

(2)根据实验数据和仿真结果,计算系统的幅频特性和相频特性。

2. 实验分析(1)通过实验和分析,验证了连续时间系统建模和仿真方法的有效性。

(2)分析了系统在实际应用中的优缺点,为实际工程提供了参考。

六、实验结论1. 本实验成功地实现了连续时间系统的建模、仿真和分析。

2. 通过实验,掌握了连续时间系统的基本概念、特性和分析方法。

3. 培养了实验操作能力和数据分析能力。

4. 为今后在实际工程中的应用奠定了基础。

七、实验注意事项1. 实验过程中,注意安全操作,防止触电、短路等事故发生。

2. 实验数据要准确记录,便于后续分析。

信号与系统实验之连续线性时不变系统的分析

信号与系统实验之连续线性时不变系统的分析

信号与系统实验报告连续线性时不变系统的分析专业:电子信息工程(实验班)姓名:曾雄学号:14122222203班级:电实12-1BF目录一、实验原理与目的 (3)二、实验过程及结果测试 (3)三、思考题 (10)四、实验总结 (10)五、参考文献 (11)一、实验原理与目的深刻理解连续时间系统的系统函数在分析连续系统的时域特性、频域特性及稳定性中的重要作用及意义。

掌握利用MATLAB 分析连续系统的时域响应、频响特性和零极点的基本方法。

二、实验过程及结果测试1.描述某线性时不变系统的微分方程为: ''()3'()2()'()y t y t y t f t f t++=+ 且f(t)=t 2,y(0-)=1,y ’(0-)=1;试求系统的单位冲激响应、单位阶跃响应、全响应、零状态响应、零输入响应、自由响应和强迫响应。

编写相应MATLAB 程序,画出各波形图。

(1)单位冲激响应: 程序如下:%求单位冲激响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; h=impulse(sys,t);%用画图函数plot( )画单位冲激响应的波形plot(h); %单位冲激响应曲线 xlabel('t'); ylabel('h');title('单位冲激响应h(t)') 程序运行所得波形如图一:200400600800100012000.10.20.30.40.50.60.70.80.91th单位冲激响应h(t )图一 单位冲激响应的波形(2)单位阶跃响应: 程序如下:%求单位阶跃响应a=[1,3,2]; b=[1,2]; sys=tf(b,a); t=0:0.01:10; G=step(sys,t);%用画图函数plot( )画单位阶跃响应的波形plot(G); %单位阶跃响应曲线 xlabel('t'); ylabel('g');title('单位阶跃响应g(t)') 程序运行所得波形如图二:2004006008001000120000.10.20.30.40.50.60.70.80.91tg单位阶跃响应g(t )图二 单位阶跃响应的波形 (3)零状态响应: 程序如下:%求零状态响应yzs=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0') %用符号画图函数ezplot( )画各种响应的波形 t=0:0.01:3;ezplot(yzs,t); %零状态响应曲线 axis([0,3,-1 5]);title('零状态响应曲线yzs'); ylabel('yzs');程序运行所得波形如图三:00.511.522.53-112345t零状态响应曲线yzsy z s图三 零状态响应的波形(4)零输入响应: 程序如下:%求零输入响应yzi=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画零输入响应的波形 t=0:0.01:3;ezplot(yzi,t);%零输入响应曲线 axis([0,3,-1,2]); title('零输入响应yzi'); ylabel('yzi');程序运行所得波形如图四:图四 零输入响应的波形(5)全响应:程序如下:%求全响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1') %用符号画图函数ezplot( )画全响应响应的波形00.511.522.53-1-0.50.511.52t零输入响应yziy z it=0:0.01:3;ezplot(y,t); %全响应曲线 axis([0,3,-1,5]); title('全响应y'); ylabel('y');程序运行所得波形如图五:00.511.522.53-112345t全响应yy图五 全响应的波形(6)自由响应:程序如下:%自由响应y=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=1,Dy(0)=1'); %全响应 yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht;yh=y-yp; % 求齐次解,即自由响应 t=0:0.01:3; ezplot(yh,t); title('自由响应yh'); ylabel('yh');程序运行所得波形如图六:0.511.522.530.511.52t自由响应yhy h图六 自由响应的波形(7)强迫响应: 程序如下:%强迫响应yht=dsolve('D2y+3*Dy+2*y=0','y(0)=1,Dy(0)=1'); % 求齐次通解yt=dsolve('D2y+3*Dy+2*y=2*t+2*t^2','y(0)=0,Dy(0)=0'); % 求非齐次通解 yp=yt-yht; % 求特解,即强迫响应 t=0:0.01:3; ezplot(yp,t); title('强迫响应yp'); ylabel('yp');程序运行所得波形如图七:0.511.522.53-112345t强迫响应ypy p图七 强迫响应的波形2.给定一个连续线性时不变系统,描述其输入输出之间关系的微分方程为:编写MATLAB 程序,绘制系统的幅频响应、相频响应、频率响应的实部和频率响应的虚部的波形,确定滤波器的类型。

信号与系统的实验报告(2)

信号与系统的实验报告(2)

信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。

二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。

L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。

L=laplace(F,t)用t 替换结果中的变量s 。

F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。

F=ilaplace(L,x)用x 替换结果中的变量t 。

2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。

对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。

信号与系统实验五 连续线性时不变系统分析

信号与系统实验五 连续线性时不变系统分析

信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。

2.掌握连续LTI系统的频域分析方法。

3.掌握连续LTI系统的复频域分析方法。

4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。

二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。

(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。

一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。

Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。

(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。

(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。

其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。

信号与系统实验一、二

信号与系统实验一、二

chapter1实验内容:1、画出以下连续时间信号的波形1-0)f(t)=cos(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=cos(2*pi*t);plot(t,fa);1-1)f (t)=sin(2πt)代码如下:pi=3.14159;t=0:0.01:8;fa=sin(2*t*pi); plot(t,fa);2-0)f (t)=Sa(t/π) 代码如下:pi=3.14159;t=0:0.01:8;fa=sinc(t/pi); plot(t,fa);3-0)f (t)=2[u(t 3)- u(t 5)] 代码如下:t=-1:0.01:10;ft=2*((t>=3)-(t>=5)); plot(t,ft);axis([-1,10,0,3]);4-1)f (t)=e t 代码如下:t=0:0.01:10; ft=exp(t);plot(t,ft);4-2)f (t)=e-t u(t) 代码如下:t=0:0.01:10;f1=(t>=0);f2=exp(-t);plot(t,f1.*f2);5-0)f(t)=2e j(π/4)t,画出实部、虚部、模和相角的波形代码如下:t=0:0.01:10;ft=2*exp(j*(pi/4)*t);h=real(ft); %实部g=imag(ft); %虚部r=abs(ft); %模a=angle(ft); %相角subplot(2,2,1),plot(t,h),title('实部') subplot(2,2,3),plot(t,g),title('虚部') subplot(2,2,2),plot(t,r),title('模')subplot(2,2,4),plot(t,a),title('相角')7)f (t) = u(t)代码如下:t=-1:0.01:5ft=(t>=0);plot(t,ft);axis([-1,5,0,1.5]);8)f (t) =δ(t)代码如下:t=-1:0.01:5;ft=(t>=0)-(t>=0.1); plot(t,ft);axis([-1,1,0,1.1]);9)f9为周期矩形信号,其幅度从-1 到1,占空比为75% 代码如下:pi=3.14159;t=-10:0.01/pi:10;ft=square(t,75);plot(t,ft);2、信号本身运算画出f1(t)为宽度是4,高为1,斜度为0.5 的三角脉冲,然后画出f1(-t),f1(2t),f1(2-2t)的波形以及f1(t)的微分和积分波形。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 连续时间信号与系统的基本表示与分析实验目的:1. 了解并掌握用Matlab 分析信号与系统时用到的主要基本知识;2. 掌握用matlab 表示常见的连续信号,并进行信号的基本运算3. 熟悉使用Matlab 分析系统的方法。

实验内容:1. 画出下列连续信号的波形(1)()()2()tx t e u t -=-(2)[](1)()(1)(2)t x t eu t u t --=---(3)()cos(10)()t x t e t u t π-=2. 判断系统是否为线性系统,是否具有时不变特性。

(1)()(2)y t x t = (2)()2()y t x t =指导资料:1.1MATLAB 的基础知识 1.1.1数据的表示和运算MATLAB 中,变量可以通过变大时直接赋值,例如直接输入 >>a=2+2得到的结果为 a=4如果输入的表达式后面加上分号“;”,那么结果就不会显示出来。

由于MA TLAB 的变量名对字母大小写敏感,因此“a ”和“A ”是两个不同的变量名。

MATLAB 主要用到以下数值运算符: + 加 - 减 * 乘 / 除^ 乘方(幂)' (矩阵)转置这些符号可以对数值或已经定义过的变量进行运算,并给变量直接赋值。

例如,假设变量“a”在上面已经定义过,则>>b=2*a得到的结果为b=8MATLAB中有一些预定义的变量可以直接使用。

信号与系统中常用的变量有:i或j 1pi π(3.1415926……)在信号与系统中,常用以下函数进行计算和对变量的赋值:abs 数值的大小(实数的绝对值)angel 复数的角度,以弧度表示real 求复数的实部imag 求复数的虚部cos 余弦函数,假设角度是弧度值sin 正弦函数,假设角度是弧度制exp 指数海曙sqrt 求平方根例如:>>y=2*(1+4*i)y=2.000+8.000i>>c=abs(y)c=8.2462>>d=angle(y)d=1.32581.1.2矩阵的表示和运算MATLAB是基于矩阵和向量的代数运算,甚至标量也可以看做是1×1 的矩阵,因此,MATLAB中对矩阵和向量的操作比较简单。

向量可以用两种方法定义。

第一种是指定元素建立向量:v = [1 3 5 7];这个命令创建了一个1×4 的行向量,元素为1,3,5和7.可以用逗号代替空格来分隔元素:v = [1,3,5,7];如果要增加向量的元素,可以表示为v(5) = 8得到的向量为v = [1 3 5 7 8]。

前面定义过的向量还可以用来定义新的向量,例如,前面已经定义过的向量v ,再定义向量a和b:a = [9 10];b = [ v a];得到向量b为b = [1 3 5 7 8 9 10]第二中定义方法是用等间隔元素建立向量,例如: t = 0 : .1 : 10;这个命令穿件了一个1×101的向量,元素为0,0.1,0.2,0.3,……,10。

这个表达式中,前面的数字表示初值,后面的数字表示终值,中间的数字表示增量。

如果只给出两个数字,那么表示增量为1,例如:t = 0 : 10;这个命令创建了一个1×11的向量,元素为0,1,2,3,…,10。

函数linspace 和logspace 也用于创建向量。

函数linspace 的格式为 x = linspace(a, b, n)其中,a 表示初值,b 表示终值,n 表示元素个数,默认n 为 100,x 是1×n 的线性等间隔分布的向量。

例如:x = linspace(0,10,101);这个命令创建的向量x 与命令t = 0 : .1 : 10的结果是相同的。

函数logspace 的格式为 x = logspace(a,b,n)其中,a 表示向量的初值为10a ,b 表示中值为10b,n 指定元素个数,默认n 为50,x是1×n 的向量,这n 个元素取以10为底的对数后在[a,b]间等间隔分布。

这个函数常用于频率响应分析中产生频率变量的采样点。

例如:x = logspace(-2,1,10);这个命令创建了一个1×10的向量,元素为0.0100,00215,0.0464,0.1000,0.2154,0.4642,1.0000,2.1544,4.6416,10.0000。

这些元素的以10为底的对视在-2和1之间等间隔分布。

矩阵可以通过输入行列元素获得: M=[1 2 4;3 6 8]; 得到的矩阵为 M=1.00 2.00 4.00 3.00 6.00 8.00矩阵特定位置的元素可以通过下面的命令赋值: M (1,2)= 5;这个命令给矩阵M 的第1行、第2行元素赋值为5,结果为 M=1.00 5.00 4.00 3.00 6.00 8.00用下面的几个命令可以定义一些特殊的矩阵: M = []; 空矩阵 M = zeros(n,m); n ×m 的0矩阵 M = ones(n,m); n ×m 的1矩阵 M = eyes(n); n ×n 的单位阵在1.1.1节给出的操作和函数也可以用于向量和矩阵。

例如: a = [1 2 3]; b = [4 5 6]; c = a + b得到的结果为 c = 5.00 7.00 9.00函数也可以用于向量元素。

例如:t = 0 : 10;x = cos(2 * t);得到向量x的元素等于cos(2t)的值,其中t=0,1,2,3, (10)如果运算是元素对元素逐项进行的,需要在1.1.1节给出的一些运算符前边加一个“.”。

例如,要得到x(t) = t cos(t),即在指定的t向量下对应的向量x,不能直接把向量t和向量cos(t)相乘,而是要把他们对应的元素逐个相乘:t = 0 :10;x = t.*cos(t);要得到向量或矩阵的规模可以用下面这两个函数:[r,c] = size(A) r、c分别为矩阵A的行数和列数n = length(b) n为向量b的长度1.1.3 数据的输入和输出数据文件的读取和存储用load命令和save命令,常用的格式如下:load my.mat 可调用由MATLAB产生的文件名为my.mat的数据文件load data.txt 可调用.txt数据文件,并生成与文件名同名的变量save my t y 把变量t和y保存为名为my.mat的二进制文件save data.txt t y-ascii 把变量t和y保存为名为data.txtd 的8位ASCII文件1.1.4 波形的绘制在信号与系统分析中,我们经常需要绘制波形图,这些图一般是二维的,MA TLAB具有强大的绘图功能,为我们提供了丰富的绘图函数。

例如:plot 绘制曲线图stem 绘制杆图hold on 保留当前图形及坐标的全部属性hold off 回复图形设置缺省值grid on 画网格图grid off 去掉网格线subplot(m,n,p) 将窗口分成m×n个子图,并选择在其中的第p个上绘图figure 创建图形窗口合理的标注可以使图形更加有说服力,MATLAB还提供了丰富的标注用函数。

例如:title 图形顶部加标题xlabel 横轴标注ylabel 纵轴标注legend 在右上角建立一个图例说明盒axis 确定坐标轴刻度范围text 在图中特定位置标注这些函数的具体使用方法可以参考MATLAB的书籍、手册或帮助文件1.1.5 M文件M文件是大量MATLAB命令的几何,它以文本文件的形式存储,文件名的后缀是“.m”。

M文件可以是一个有输入、输出变量的函数,也可以是一些列的命令脚本。

利用M文件,可以把命令脚本保存下来,在今后使用的时候修改或调用这些文件,不用在重新键入所有的命令,大大提高效率,而且是排除错误更加容易。

MATLAB要求M文件必须保存在工作目录或指定的目录下。

下面实现一个函数的M文件。

在工作目录下创建一个文件名为yplusx.m的M文件,它将包含以下命令:function z = yplusx(y,x)z = y + x;调用yplusx函数的命令如下:z = yplusx(2,3)结果为z = 5利用矩阵和向量形式写的M文件效率比较高。

循环和if语句也可以在M文件中使用,但是计算的效率比较低,所以要慎重使用。

下面列举一个for循环的例子:for k=1 : 10x(k) = cos(k);end这个例子创建一个向量x,该向量包含k从1到10的余弦值。

这个操作和下面命令的结果一样:k = 1 : 10;x = cos(k);但是这个命令可以用来定义条件语句,效率更高。

if语句可以用来定义条件语句,例如:if(a <= 2),B=1;elseif(a>=4)B = 2;elseb = 3;end在if语句中可以使用的关系运算符:<, >, = = ,<=, >=和~=。

一些M文件需要使用者给出变量值,这是使用带有询问提示的输入命令input实现的。

例如:T = input('Input the value of T:')这个命令可以让使用者输入不同的T值。

当M文件运行时,引号内的文字将显示在命令窗口,用户必须键入合适的值,然后回车运行程序。

如果M文件运行中间需要暂停,可以使用pause命令使程序暂停,然后敲任意键继续执行。

1.1.6 其他常用的MATLAB命令在后面几章中,还会用到下面几个命令,在这里简单列举一下:Who 列出内存中的变量名Whos 列出内存中变量的详细信息Clc 清除命令窗口Clear 清楚内存变量和函数Clf 清楚图形窗口Sound 对声音进行回放Help 在线帮助1.3基本连续时间信号及其MATLAB表示在所讨论的时间间隔内,出若干不连续点之外,对于任意时间值都可给出确定的函数值,这种信号成为联系时间信号,简称连续信号。

我们用t表示连续时间自变量,数学表达式写作x(t)。

利用MA TLAB软件,可以给出连续时间信号x(t)的解析式,并画出信号波形。

在MATLAB中表示连续时间信号有两种方法:一种方法是用向量来表示连续信号,这些向量包含了连续信号在时间上依次间隔的样本。

值得注意的是,在用向量进行连续信号处理和绘制连续信号波形时,时间增量Δt必须取得足够小,以生成平滑的去爱按。

如果增量选择得太大,则信号值都是以直线连接的,曲线是锯齿状的。

下面介绍几本的连续信号和他们的MATLAB表示。

1.指数信号指数信号的表示式为x(t)=K e at(1.10)式中a是实数。

若a>0,则信号随时间增长;若a<0,则信号随时间衰减;若a=0,则信号成为直流信号。

相关文档
最新文档