热统习题解答(全)

合集下载

热统作业

热统作业

第一章习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV = V n R TP P n R T V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV RnT P P V /1)(1==∂∂=β P Pn R T V P V V T T /111)(12=--=∂∂-=κ习题 1.3在00C 和1n p 下,测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和717.810T n p κ--=⨯,T κα,可近似看作常量,今使铜块加热至010C 。

问(1)压强要增加多少n p 才能使铜块体积不变?(2)若压强增加100n p ,铜块的体积改多少。

解:根据固体和液体的物态方程:000(,)(,0)[1()]T V T P V T T T k p α=+-- 两边微分:T dVdT k dp Vα=- 如果系统的体积不变,上式为 Td p d Tk α=因为T κα,可近似看作常量,上式积分可得2121()Tp p T T k α-=-代入数据:52174.8510106227.810n n p p p p --⨯-=⨯=⨯ (2)根据物态方程有:2121174()()107.810100 4.0710-5 =4.8510T VT T k p p V α--∆=---⨯⨯-⨯⨯=⨯因此,铜块的体积将增加原体积的44.0710-⨯倍。

习题1.8习题1.16解:理想气体的熵函数可以表示为0ln ln p S C T nR p S =-+ 在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为21lnp p T S C T ∆= 理想气体的熵函数也可表示为0ln ln V S C T nR p S =++ 在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为 21lnV V T S C T ∆= 因此p p VVS C S C γ∆==∆习题1.17解:(1)为求水的熵变,设想有一系列彼此温差为无穷小的热源,其温度分布在00C 和0100C 。

热统答案(全)

热统答案(全)
ln V T T0 T p p0 , V0
(2)

V T , p V T0 , p0 e
T T0 T p p0
.
(3)
考虑到 和 T 的数值很小,将指数函数展开,准确到 和 T 的线性项,有
V T , p V T0 , p0 1 T T0 T p p0 .
lnV dT T dp .
(3)
若 1 , T 1 ,式(3)可表为
T p
1 1 lnV dT dp . p T
(4)
选择图示的积分路线,从 (T0 , p0 ) 积分到 T , p0 ,再积分到(T , p ) ,相应地体
U CV , T n
(4)
(c)根据题给的数据, J , Y , 对
L L0
的曲线分别如图 1-2 (a) , (b) , (c)
所示。
7
1.7 抽成真空的小匣带有活门,打开活门让气体冲入,当压强达到外界 压强 p0 时将活门关上,试证明:小匣内的空气在没有与外界交换热量之前, 它的内能 U 与原来在大气中的内能 U 0 之差为 U U 0 p0V0 ,其中 V0 是它原来在 大气中的体积,若气体是理想气体,求它的温度与体积。 解:将冲入小匣的气体看作系统。系统冲入小匣后的内能U 与其原来在 大气中的内能 U 0 由式(1.5.3)
J YA T2 T1
解:由物态方程
f J , L, T 0
(1)
知偏导数间存在以下关系:
L T J 1. T J J L L T
(2)
所以,有

热统试题及重要答案

热统试题及重要答案

一、简答题(23分)1. 简述能量均分定理。

(4分)答:对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值的平均值等于。

根据能量均分定理,单原子分子的平均能量为,双原子分子的平均能量2. 热力学方法和统计物理方法是研究关于热运动规律性的两种方法,试评论这两种方法各自的优缺点。

(5分)答:热力学:较普遍、可靠,但不能求特殊性质。

以大量实验总结出来的几条定律为基础,应用严密逻辑推理和严格数学运算来研究宏观物体热性质与热现象有关的一切规律。

统计物理:可求特殊性质,但可靠性依赖于微观结构的假设,计算较麻烦。

从物质的微观结构出发,考虑微观粒子的热运动,通过求统计平均来研究宏观物体热性质与热现象有关的一切规律。

两者体现了归纳与演绎不同之处,可互为补充,取长补短。

3. 解释热力学特性函数。

(4分)答:如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定,这个热力学函数即称为特性函数,表明它是表征均匀系统的特性的。

4.简述推导最概然分布的主要思路。

(5分)①写出给定分布下的微观状态函数表达式② 两边同时取对数,并求一阶微分③ 利用约束条件N ,E 进行简化④ 令一阶微分为0,求极大值⑤ 由于自变量不完全独立,引入拉格朗日未定乘子⑥ 最后得出粒子的最概然分布5. 试述克劳修斯和开尔文关于热力学第二定律的两种表述,并简要说明这两种表述是等效的。

(5分)答:克:不可能把热量从低温物体传到高温物体而不引起其他变化(表明热传导过程是不可逆的);开:不可能从单一热源吸收热量使之完全变成有用的功而不引起其他变化(表明功变热的过程是不可逆的);联系:反证法 P31二.填空题(27分)1. (3分)熵的性质主要有① 熵是态函数 ; ② 熵是广延量 ; ③ 熵可以判断反应方向 ;④熵可以判断过程的可逆性 ;⑤ S=k ln 熵是系统微观粒子无规则运动混乱程度的度量 。

热统期末试卷及答案 北师大

热统期末试卷及答案 北师大

热统期末试卷及答案北师大一、选择题(每小题3分,满分24分)1、下列现象中,由于光的反射形成的是()A.月光下的人影B.池塘的水底看起来比实际的浅C.拱桥在平静湖水中的倒影D.玻璃三棱镜分解了的太阳光2、下列物态变化中属于放热现象的是哪一组()①初春,冰封的湖面解冻②盛夏,旷野里雾的形成③深秋,路边的小草上结了一层霜④严冬,冰冻的衣服逐渐变干、A.①②B.②③C.③④D.①④3、下列说法中,正确的是()A.验电器的工作原理是同种电荷相互排斥B.宇航员在月球上无法用电磁波来通信C.只有镜面反射遵循光的反射定律D.只有凸透镜能成等大的像4、下列说法错误的是()A.并联电路的干路电流等于各支路电流之和B.使用精密仪器和改进实验方法可以避免误差C.用安培定则可判断通电螺线管的极性D.1kWh=3。

6×106J5、潜水员逐渐从水里浮出水面的过程中,他受到的浮力()A.逐渐增大B.逐渐减小C.始终不变D.先增大后不变6、能说明将电能转化为机械能的是()A.钻木取火B.水蒸气将塞子冲出C.通电导体在磁场中受力D.焦耳定律实验7、相向而行的甲、乙两物体的s﹣t图像,下列说法正确的是()A.相遇时两物体通过的路程均为100mB.0﹣30s内甲、乙均做匀速直线运动C.甲的运动速度为10m/sD.甲、乙是同时出发的8、小雅同学在做电学实验时,不小心将电压表和电流表的位置互换了,如果此时将开关闭合,则()A.两表都可能被烧坏B.两表都不会被烧坏C.电流表不会被烧坏D.电压表不会被烧坏,电流表可能被烧坏二、填空题(每小题2分,满分20分)9、人的眼睛像一架照相机,物体经晶状体成像与视网膜上,对于近视眼患者而言,远处物体成的像位于视网膜(),可佩戴()透镜矫正。

10、滑冰运动员在训练中通过弯道时的情景,这一过程中她们的运动状态()(选填“改变”或“不变”);运动员穿的速滑冰鞋的冰刀表面要光滑、平整是为了()。

11、弹奏前调整琴弦的松紧程度,可以改变琴声的();根据乐器发声的(),可以听出是什么乐器在演奏(选填“响度”、“音调”或“音色”)12、某工人用装置,将重150N的木块在10s内竖直向上匀速提升4m,此装置是()滑轮(选填“定”或“动”),该工人拉力的功率为()W(滑轮和绳的重力、摩擦均不计)13、可以直接从自然界获得的能源叫一次性能源,必须通过消耗一次能源才能获得的能源叫二次能源,石油、风能、天然气、煤、电能等能源中,属于可再生能源的两种是(),属于二次能源的是()14、“六一”儿童节期间,小朋友在锦江山公园里荡秋千,当秋千从高处落下时,重力势能()(选填“变大”、“变小”或“不变”),不再用力推时,秋千最后会停下来,在此过程中机械能转化为()能、15、过桥米线是云南人爱吃的食物,路过米线馆可以闻见汤的香味,这是()现象;“汤钵烫手”是汤钵和手之间发生了()。

热统期末试题及答案

热统期末试题及答案

热统期末试题及答案正文:一、选择题(共10题,每题2分,共计20分)在下列各题中,只有一个选项是正确的,请在答题卡上将相应选项的字母涂黑。

1. 热力学第一定律是指:A. 能量守恒定律B. 熵增加定律C. 焓守恒定律D. 等温过程定律2. 下列哪一个量是揭示物质分子热运动程度的参数?A. 温度B. 压强C. 体积D. 质量3. 在绝热条件下,一个物体放热,它的温度会:A. 升高B. 降低C. 不变D. 无法确定4. 理想气体的等温过程是指:A. 温度不变的过程B. 压强不变的过程C. 体积不变的过程D. 熵不变的过程5. 热力学第二定律是指:A. 能量守恒定律B. 熵增加定律C. 焓守恒定律D. 等温过程定律6. 下面哪一种物质不是理想气体?A. 氮气B. 氧气C. 氢气D. 水蒸气7. 理想气体状态方程是:A. PV=RuTB. P+V=RTC. P/T=RuD. PT=RuV8. 物体绝对零度对应的温度是:A. 0℃B. -273℃C. 273℃D. 100℃9. 混合气体总压强等于各组分分压之和,是根据下列哪个定律得出的?A. 理想气体状态方程B. 热力学第一定律C. 道尔顿定律D. 热力学第二定律10. 热力学第四定律是指:A. 热力学系统能量守恒定律B. 热力学第一定律C. 热力学第二定律D. 热力学第三定律二、计算题(共5题,每题10分,共计50分)1. 一定质量的理想气体,在常温常压下的密度为1.29 kg/m³,求该气体的摩尔质量。

2. 一摩尔单原子理想气体在体积不变的条件下,温度从300 K增加到600 K。

根据理想气体状态方程,求气体末压强与初始压强之比。

3. 理想气体初始状态为120 kPa、300 K,经过等温膨胀,最终体积为初始体积的2倍。

求等温膨胀的过程中气体对外做的功。

4. 一摩尔理想气体在绝热条件下进行等熵过程,初始温度为300 K,初始压强为200 kPa,最终体积为初始体积的4倍。

热统练习题

热统练习题

76. 证明 VV V p T C p U ⎪⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂77. 证明p V T C V U pp p -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 78. )1(αT V p H T-=⎪⎪⎭⎫ ⎝⎛∂∂ 其中,α为定压膨胀系数。

79. 证明在以T 、V 为自变量时,内能的全微分表达式为dV p T p T dT C U d V V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+=80. VT V T p T V C ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂22 81. 理想气体在节流过程中有 0=⎪⎪⎭⎫⎝⎛∂∂Hp T 82.][1p T p T C V T V V U-⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 83. VV ST p C T -V T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂84. Tp p V p -T V T p U ⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂T 85. 对于节流过程,证明][1V T V T C p T p pH -⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ 86. 证明 0>⎪⎭⎫⎝⎛∂∂UV S 87.证明 p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ 88.证明 T VU p T pV T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 89.证明 22p p TC V T p T ∂⎛⎫⎛⎫∂=- ⎪ ⎪∂∂⎝⎭⎝⎭答案:(76-89)76.证 d U =T d S -p d VV V V V V VU S S T T T p p T p T C p ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫== ⎪ ⎪⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫∂= ⎪∂⎝⎭ 77.证 d U =T d S -p d Vp p p p p pU S S T T p T p V V T V T C pV ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭∂⎛⎫=- ⎪∂⎝⎭ 78.证:Vdp TdS dH +=V p S T p H TT +⎪⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂;利用麦氏关系,即可得证79.证 d U =T d S -p d V , 设S=S(T,V),d VTS S S dT dV T V ∂∂⎛⎫⎛⎫=+ ⎪⎪∂∂⎝⎭⎝⎭dV p T p T dT C U d V V ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛∂∂+=80.证 因为V VS C T T ∂⎛⎫= ⎪∂⎝⎭所以,2V TC S TV T V ∂∂⎛⎫= ⎪∂∂∂⎝⎭, 又,由麦氏关系 T VS p V T ∂∂⎛⎫⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭,原题得证。

热统

热统

解: γ 是常数, Cp,Cv也是常数,
S p
S V
T2 T1
dQ T2 C p dT T2 C p ln T1 T T T1
dQ T2 C V dT T2 C V ln T1 T T T1
T2
T1
S p Sv

Cp CV

练 一 练 :
(一)某些不可逆过程中熵变的计算 [例5.4〕一容器被一隔板分隔为体积相等的 两部分,左半中充有 摩尔理想气体,右半 是真空,试问将隔板抽除,经自由膨胀后, 系统的熵变是多少?
L
等压过程,设cp为单位长度的热容量。
T1 T2 2 T
dS l c p dl
T1 T2 dT 2 c p dlln T2 T1 T T1 l L
S dSl
cp
L 0
T1 T2 2 dlln T2 T1 T1 l L
cp
L
0
T1 T2 T2 T1 dl ln ln T1 l 2 L
p
p1
p2
i
f
V1 2V1 V
dQ Sb S a a可逆 T
b
dU dQ pdV
S 2 S1 R
2V V 2
因为理想气体等温过程 dU = 0, dQ = pdV,利用
1
dQ 2 p dV 1 T T
dV R ln 2 >0 V
例一:热量Q从高温热源 T1 传到低温热源T2 ,求熵变。
1 n Cn C V CV CV n 1 n 1
练 一 练 :
例:设有一理想气体,在初始状态下温度为T,体积 为 V A。经准静态等温过程体积膨胀为 V B 。求过程 前后的熵变。 解:气体在初态(T,VA )的熵为:

热统,热力学与统计物理,试题A,含答案

热统,热力学与统计物理,试题A,含答案

)是不可逆过程,热力学第二定律的数学表达式是( 2、写出简单均匀系统的热力学基本方程。 du=( ) ) ) ) ),其物理意义是( )其配分函数 Z1 ( 4、若已知正则分布的配分函数 Z,则系统的 (1)内能 U ( (2)熵 S ( (3)压强 P ( ) , ) , ) 。 ) 。
一、
填空题(每小题 6 分,共 24 分)
1、热力学第二定律的克劳修斯表述: ( ) ,其实质是指出(
姓 名
4、根据玻耳兹曼关系,系统处于热力学平衡态时: S 0 k ln 0 ,系统处于非 ) 。 平衡态时: S k ln ,则有 (1) 、 0 , (3) 、 0 , ( ) 。 (2) 、 0 , (4) 、不确定。 ) 。
第十页


专业年级
第十一页
第十二页


专业年级
第十三页
第十四页


专业年级
第十五页
第十六页
dG=( 3、玻耳兹曼分布 al (
三、判断题(下列说法正确的请打“ ” ,错误的请打“X” ,每小题 1、5 分, 共 12 分) 。 1、一切互为热平衡的系统,都具有相同的温度。 ( ) ) )
2、孤立系统中所发生的不可逆过程总是朝着熵增加的方向进行。 ( 3、若选择 T,V 作为独立变量,则自由能 F(T,V)为特征函数。 (
第一页




8、处在平衡态的孤立系统,系统各个可能的微观状态出现的概率相同。 (
第二页
四、计算证明题(49 分) (积分公式: e x dx
2

0
) 2
1(12 分) 、1mol 理想气体在 300K 时经一准静态过程,使其压强减小 10 倍。 求在这过程中系统对外界作了多少功?吸收了多少热量?内能变化了多少?熵 变化多少?

热统习题解答(全)

热统习题解答(全)

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。

解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。

证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。

1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。

热统第四六章作业答案

热统第四六章作业答案

4.1 若将U 看作独立变量1,,,,k T V n n 的函数,试证明:(a );iii U UU n V n V∂∂=+∂∂∑ (b ).i i i U U u u n V∂∂=+∂∂ 解:(a )多元系的内能()1,,,,k U U T V n n = 是变量1,,,k V n n 的一次齐函数. 根据欧勒定理(式(4.1.4)),有,,,ji i i T V n U UU n V n V ⎛⎫∂∂=+ ⎪∂∂⎝⎭∑ (1) 式中偏导数的下标i n 指全部k 个组元,j n 指除i 组元外的其他全部组元.(b )式(4.1.7)已给出v ,i i iV n =∑,i i iU n u =∑ (2)其中,,,,v ,j ji ii i T p n T p n V U u n n ⎛⎫⎛⎫∂∂==⎪ ⎪∂∂⎝⎭⎝⎭偏摩尔体积和偏摩尔内能. 将式(2)代入式(1),有,,,v i ji i i i i i i i T n i T V n U U n u n n V n ⎛⎫∂∂⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭∑∑∑ (3) 上式对i n 的任意取值都成立,故有,,,v .i ji i T n i T V n U U u V n ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 4.3 二元理想溶液具有下列形式的化学势:()()111222,ln ,,ln ,g T p RT x g T p RT x μμ=+=+其中(),i g T p 为纯i 组元的化学势,i x 是溶液中i 组元的摩尔分数. 当物质的量分别为12,n n 的两种纯液体在等温等压下合成理想溶液时,试证明混合前后(a )吉布斯函数的变化为()1122ln ln .G RT n x n x ∆=+(b )体积不变,即0.V ∆= (c )熵变()1122ln ln .S R n x n x ∆=-+ (d )焓变0,H ∆= 因而没有混合热. (e )内能变化为多少?解:(a )吉布斯函数是广延量,具有相加性. 混合前两纯液体的吉布斯函数为()()()01122,,,.G T p n g T p n g T p =+ (1)根据式(4.1.8),混合后理想溶液的吉布斯函数为()()()()()112211112222,,,,In ,In .G T p n T p n T p n g T p n RT x n g T p n RT x μμ=+=+++ (2)混合前后吉布斯函数的变化为()()0,,G G T p G T p ∆=-()1122ln ln ,RT n x n x =+ (3)其中12121212,n n x x n n n n ==++分别是溶液中组元1,2的摩尔分数. (b )根据式(4.1.10),混合前后体积的变化为12,,0.T n n V G p ⎛⎫∂∆=∆= ⎪∂⎝⎭ (4)(c )根据式(4.1.10),混合前后熵的变化为12,,p n n S G T ∂⎛⎫∆=-∆ ⎪∂⎝⎭()1122ln ln .R n x n x =-+ (5)注意1x 和2x 都小于1,故0,S ∆> 混合后熵增加了.(d )根据焓的定义,H G TS =+ 将式(3)和式(5)代入,知混合前后焓的变化为0.H G T S ∆=∆+∆= (6)混合是在恒温恒压下进行的.在等压过程中系统吸收的热量等于焓的增加值,式(6)表明混合过程没有混合热.(e )内能.U H pV =- 将式(6)和式(4)代入,知混合前后内能的变化为0.U H p V ∆=∆-∆= (7)4.7实验测得碳燃烧为二氧化碳和一氧化碳燃烧为二氧化碳的燃烧热Q H =-∆,其数值分别如下:522CO C O 0, 3.951810J;H --=∆=-⨯5221CO CO O 0, 2.828810J.2H --=∆=-⨯试根据赫斯定律计算碳燃烧为一氧化碳的燃烧热.解:本题给出了两个实验数据,在291K 和1n p 下,有522CO C O 0, 3.951810J;H --=∆=-⨯ (1)5221CO CO O 0, 2.828810J.2H --=∆=-⨯ (2)式(1)的含义是,1mol 的C 与1mol 的2O 燃烧为1mol 的2CO ,放出燃烧热53.951810J.Q =⨯ 由于等压过程中系统吸收的热量等于焓的增量,所以燃烧热为11.Q H =-∆ 式(2)的含义是,1mol 的CO 与1mol 2的2O 燃烧为1mol 的2CO ,放出燃烧热52222.828810J,.Q Q H =⨯=-∆焓是态函数,在初态和终态给定后,焓的变化H ∆就有确定值,与中间经历的过程无关. 将式(1)减去式(2),得5221CO CO O 0,1.123010J.2H --=∆=-⨯ (3)式中312.H H H ∆=∆-∆ 式(3)意味着,1mol 的C 与1mol 2的2O 燃烧为1mol 的CO 将放出燃烧热51.123010J.C ⨯燃烧为CO 的燃烧热是不能直接测量的. 上面的计算表明,它可由C 燃烧为CO 2和CO 燃烧为CO 2的燃烧热计算出来. 这是应用赫斯定律的一个例子.4.9 试证明,在3NH 分解为2N 和2H 的反应22313N H NH 022+-= 中,平衡常量可表为22,1p K p εε=-其中ε是分解度. 如果将反应方程写作223N 3H 2NH 0,+-=平衡常量为何?解: 已知化学反应0i i iv A =∑ (1)的平衡常量p K 为.i iv v v p i i i i iiK p p x v v ⎛⎫===⎪⎝⎭∑∏∏ (2) 对于3NH 分解为2N 和2H 的反应22313N H NH 0,22+-= (3) 有 12313,,1,1,22v v v v ===-=故平衡常量为1322123.p x xK p x ⋅=(4) 假设原有物质的量为0n 的3NH ,达到平衡后分解度为ε,则平衡混合物中有012n ε的203N ,2n ε的()20H ,1n ε-的3NH ,混合物物质的量为()01n ε+,因此()()12331,,.21211εεεx x x εεε-===+++ (5) 代入式(4),即得.p K p = (6) 如果将方程写作223N 3H 2NH 0,+-= (7)与式(1)比较,知1231,3,2, 2.v v v v ===-=则根据式(2),平衡常量为321223.p x x K p x =(8)将式(5)代入式(8),将有()422227.161p εK p ε=- (9) 比较式(4)与式(8),式(6)与式(9)可知,化学反应方程的不同表达不影响平衡后反应度或各组元摩尔分数的确定.4.11 试根据热力学第三定律证明,在0T →时,表面张力系数与温度无关,即0.d dTσ→ 解: 根据式(1.14.7),如果在可逆过程中外界对系统所做的功为đ,W Ydy =则系统的热力学基本方程为.dU TdS Ydy =+ (1)相应地,自由能F U TS =-的全微分为.dF SdT Ydy =-+ (2)由式(2)可得麦氏关系.y TY S T y ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 根据热力学第三定律,当温度趋于绝对零度时,物质的熵趋于一个与状态参量无关的绝对常量,即0lim 0.T TS y →⎛⎫∂= ⎪∂⎝⎭ 由式(3)知0lim 0.T yY T →∂⎛⎫= ⎪∂⎝⎭ (4) 对于表面系统,有đ,W dA σ=即,Y A y σ~~,所以0lim 0.T AdT σ→∂⎛⎫= ⎪⎝⎭ (5)考虑到σ只是温度T 的函数,与面积A 无关(见§2.5),上式可表为0lim0.T dTσ→∂= (6) 6.2 试证明,对于一维自由粒子,在长度L 内,在ε到d εε+的能量范围内,量子态数为()122d d .2L m D h εεεε⎛⎫=⎪⎝⎭解: 根据式(6.2.14),一维自由粒子在μ空间体积元d d x x p 内可能的量子态数为d d .xx p h在长度L 内,动量大小在p 到d p p +范围内(注意动量可以有正负两个可能的方向)的量子态数为2d .Lp h(1) 将能量动量关系22p mε= 代入,即得()122d d .2L m D h εεεε⎛⎫=⎪⎝⎭(2) 6.3 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为()222π.L D d md hεεε=解: 根据式(6.2.14),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为21d d d d .x y x y p p h(1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为cos ,sin .x y p p p p θθ==用极坐标描述时,二维动量空间的体积元为d d .p p θ在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为22d d .L p p h θ(2) 对d θ积分,从0积分到2π,有20d 2π.πθ=⎰可得在面积2L 内,动量大小在p 到d p p +范围内(动量方向任意),二维自由粒子可能的状态数为222πd .L p p h (3) 将能量动量关系22p mε= 代入,即有()222πd d .L D m hεεε= (4)6.4 在极端相对论情形下,粒子的能量动量关系为.cp ε=试求在体积V 内,在ε到的能量范围内三维粒子的量子态数. 解:式(6.2.16)已给出在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为234d .V p p hπ (1) 将极端相对论粒子的能量动量关系cp ε=代入,可得在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为()()234πd d .VD ch εεεε=(2)。

热统期末考试题及答案

热统期末考试题及答案

热统期末考试题及答案一、选择题(每题2分,共10分)1. 热力学第一定律的表达式是:A. ΔU = Q - WB. ΔU = Q + WC. ΔH = Q - WD. ΔH = Q + W答案:B2. 以下哪个选项是热力学第二定律的表述?A. 能量守恒定律B. 熵增原理C. 热能自发地由高温物体传递到低温物体D. 热能自发地由低温物体传递到高温物体答案:B3. 理想气体的内能只取决于:A. 体积B. 温度C. 压力D. 物质的量答案:B4. 根据热力学第三定律,绝对零度是:A. 无法达到的B. 可以无限接近的C. 可以实际达到的D. 与温度无关答案:A5. 熵是表示系统无序程度的物理量,其单位是:A. JB. J/KC. KD. J/mol答案:B二、填空题(每空2分,共20分)1. 热力学系统可以分为__________和__________。

答案:孤立系统;开放系统2. 根据卡诺定理,热机的效率与__________有关。

答案:热源温度3. 理想气体的压强由分子的__________和__________决定。

答案:碰撞频率;平均动能4. 热力学温度T与理想气体的体积V和压强P的关系是__________。

答案:T ∝ (PV)^(1/2)5. 热力学第二定律的克劳修斯表述是:不可能从单一热源__________能量,而不产生其他影响。

答案:提取三、简答题(每题10分,共20分)1. 简述热力学第一定律和第二定律的区别和联系。

答案:热力学第一定律是能量守恒定律在热力学过程中的体现,表明能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。

而热力学第二定律则描述了能量转换的方向性,即自发过程总是向着熵增的方向进行,表明了热能转换过程中的不可逆性。

2. 解释什么是熵,以及熵增原理的意义。

答案:熵是热力学中描述系统无序程度的物理量,通常用来衡量系统状态的不确定性。

热统第二章作业答案

热统第二章作业答案

2.2 解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().V p f V T ∂⎛⎫= ⎪∂⎝⎭(2)但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭(3)所以()0.TU Tf V p V ∂⎛⎫=-=⎪∂⎝⎭ (4)这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 2.3解:焓的全微分为.dH TdS Vdp =+(1)令dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2)内能的全微分为.dUTdS pdV =-(3)令0.U S p V T∂⎛⎫=> ⎪∂⎝⎭ (4)2.6 解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为.P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭在可逆绝热过程中dS =,故有.TP p SPS V T p T T S p C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1)最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭在节流过程中dH =,故有.T Pp HPH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2)最后一步用了式(2.2.10)和式(1.6.6). 将式(1)和式(2)相减,得0.pS H T T Vp p C ⎛⎫⎛⎫∂∂-=>⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化. 解:根据题设,气体具有下述特性:(),pV f T =(1)().U U T =(2)由式(2.2.7)和式(2),有0.T V U p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭而由式(1)可得.V p T df T T V dT∂⎛⎫= ⎪∂⎝⎭ (4)将式(4)代入式(3),有.df dTf T=(5)积分得l n l n l n f T C =+或,pV CT =(6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.2.10 解:式(2.4.13)和(2.4.14)给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式(1.18.3)),摩尔自由能为,mm m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(1.15.2),理想气体的摩尔内能和摩尔熵为,0,mV m m U C dT U =+⎰(2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为,002ln .m V m m m m dTF T C dT RT V U TS T =--+-⎰⎰2.12解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dWXdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =-(2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有,dF SdT Axdx =-+(3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4)其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂(5)弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6)在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.2.15 计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量.解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为()4214.3Q aT V V =- (3)。

热统打印

热统打印

热统1. 热运动是指构成物质的大量分子的无规则运动,它包括分子的无规则平动、无规则的(转动)和无规则的(振动)。

2.我们把系统与系统之间的热相互作用叫做热接触。

3.热现象的本质是热运动,它是指构成物质的大量分子的(无规则)运动。

4.晶体中离子是有序排列的,晶体中粒子的热运动主要表现为粒子的(无规则热振动)。

5.研究热现象规律的理论有两种,它们分别是(热力学)和(统计物理学)。

6.研究热现象的方法有两种,它们分别称为(热力学)方法和(统计物理)方法。

7、若某一热力学系统既处于力学平衡状态、化学平衡状态和热平衡则称该系统处于热力学平衡态。

8、如果某一热力学系统与外界有物质和能量的交换,则该系统称为()。

9、设气体的物态方程为PV=RT,则它的体胀系数 =()。

10、如果某一热力学系统与外界有物质和能量的交换,则该系统称为()。

11定压膨胀系数的意义是在压强不变的条件下系统体积随温度的相对变化。

12.定容压力系数的意义是在体积不变条件下系统的压强随温度的相对变化。

13.等温压缩系数的意义是在温度不变条件下系统的体积随压强的相对变化。

14.写出德布罗意关系。

15.根据系统与外界的相互作用的不同,可将系统分为孤立系、(封闭系)和___开放______系。

16.孤立系统的__宏观性质___性质不随_时间___变化的状态称为热力学平衡态。

17.描述平衡态的状态参量有四类,它们是力学参量、几何参量、__化学参量_和__电磁参量__。

18.热力学中将四类参量和__温度_______的关系称为物态方程。

19.描述平衡态性质的四类参量和温度的函数关系被称为___状态方程_________________。

20.根据可逆过程的定义,无摩擦的准静态过程是___可逆__过程。

21.自然界中一切与热现象有关的实际宏观过程都是_不可逆__过程;无摩擦的准静态过程是___可逆____过程。

22.循环过程分为正循环和逆循环,前者对应于__热机_____机,后者对应于__致冷机______机。

热统第一章作业答案

热统第一章作业答案

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T Tpακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.8 满足n pV C =的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量n C 为1n V n C C n γ-=- 解:根据式(1.6.1),多方过程中的热容量0lim .n T n nnQ U V C p T T T ∆→∆∂∂⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪∆∂∂⎝⎭⎝⎭⎝⎭ (1) 对于理想气体,内能U 只是温度T 的函数,,V nU C T ∂⎛⎫= ⎪∂⎝⎭ 所以.n V nV C C p T ∂⎛⎫=+ ⎪∂⎝⎭ (2)将多方过程的过程方程式n pV C =与理想气体的物态方程联立,消去压强p 可得11n TV C -=(常量)。

热统试题解

热统试题解

热力学与统计物理试题一、名词解释:1、自由能的物理意义:在等温过程中,系统对外所做的功等于它的自由能的减少,这就是自由能的物理意义。

2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则它们彼此也必定处于热平衡,这个结论通常叫做热力学第零定律。

3、内能:系统处于一定状态下是具有一定能量的,这种由系统热运动的宏观状态所决定的能量,就叫做内能。

4、定压膨胀系数:表达式是:PT V V ⎪⎭⎫ ⎝⎛∂∂=1α,它给出在压强保持不变的条件下,温度升高1K 所引起的物体体积变化的百分率。

5、等几率原理:对于处在平衡状态的孤立系统,系统各个可能的微观态出现的几率是相等的。

这是统计物理学中的基本假设。

二、填空题:1、热力学过程如果按过程的特征分类,可以分为等容过程、等压过程、等温过程和绝热过程。

2、在热力学中需要用几何参量、力学参量、化学参量和电磁参量等四类参量来描写热力学系统的平衡状态。

3、温度是决定一个系统是否与其他系统处于热平衡的宏观性质,它的特征就在于一切互为热平衡的系统都具有相同的温度。

4、表示参量与温度之间联系的数学关系式被称为系统的物态方程。

5、将一个热力学平衡态的系统分为相等的两部分,如果一个热力学量对其一部分的数值和对整个系统的数值相等,则这个量叫做强度量。

6、从宏观的观点看来,系统与外界的相互作用有两种形式,一种方法是使系统与外界进行热交换,另一种方法是使系统对外界做功或外界对系统做功。

7、当气体的体积由1V 变化到2V 时,气体所完成的功为:⎰=21V V PdV A要想计算这个积分,必须知道P 和V 的函数关系。

只有在一定的过程中,P 和V 才有确定的关系,在不同的过程中,P 和V 的关系式是不相同的。

即功是与过程有关的量。

8、如图(1),系统从某一状态出发,历经许多变化之后,最后回到原来的状态,则此过程叫做循环过程。

系统由状态1经路径A到达状态2,再由状态2经路径B回到状态1,这是一个循环过程。

热统练习题

热统练习题

陕西师范大学热统练习题绪论1. 热运动是指构成物质的大量分子的无规则运动,它包括分子的无规则平动、无规则的_____和无规则的______。

2.热现象的本质是热运动,它是指构成物质的大量分子的____________运动。

3.晶体中离子是有序排列的,晶体中粒子的热运动主要表现为粒子的_________。

4.研究热现象规律的理论有两种,它们分别是______________和_______________。

5.研究热现象的方法有两种,它们分别称为____________方法和______________方法。

答案(1-5):1. 转动,振动2. 无规则3. 无规则热振动4. 热力学,统计物理学5. 热力学方法,统计物理方法第一章热力学的基本规律1.1 填空题6.根据系统与外界的相互作用的不同,可将系统分为孤立系、_______系和_________系。

7.孤立系统的_______________性质不随____________变化的状态称为热力学平衡态。

8.描述平衡态的状态参量有四类,它们是力学参量、几何参量、_________和__________。

9.热力学中将四类参量和_________的关系称为物体方程。

10.描述平衡态性质的四类参量和温度的函数关系被称为____________________。

11.准静态过程是指过程进行的_____________,使得过程的每一步都可被看作是平衡态。

12.可逆过程要求:系统和外界的状态都要能够________________。

13.根据可逆过程的定义,无摩擦的准静态过程是______________过程。

14.自然界中一切与热现象有关的实际宏观过程都是________过程;无摩擦的准静态过程是_______过程。

15.循环过程分为正循环和逆循环,前者对应于_______机,后者对应于________机。

16.卡诺循环是由两个__________过程和两个__________过程所组成。

热统试题及答案

热统试题及答案

热统试题及答案一、选择题(每题5分,共20分)1. 热力学第一定律的数学表达式是:A. \(\Delta U = Q + W\)B. \(\Delta U = Q - W\)C. \(\Delta H = Q + W\)D. \(\Delta H = Q - W\)答案:A2. 理想气体的内能仅与温度有关,其原因是:A. 理想气体分子间无相互作用力B. 理想气体分子动能与势能之和仅与温度有关C. 理想气体分子间有相互作用力D. 理想气体分子动能与势能之和与体积有关答案:B3. 熵的微观意义是:A. 系统混乱度的量度B. 系统有序度的量度C. 系统能量的量度D. 系统温度的量度答案:A4. 绝对零度是:A. 温度的最低极限B. 温度的最高极限C. 温度的零点D. 温度的任意值答案:A二、填空题(每题5分,共20分)1. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为______而不产生其他效果。

答案:功2. 卡诺循环的效率由两个热源的温度决定,其效率公式为 \(1 -\frac{T_c}{T_h}\),其中 \(T_c\) 和 \(T_h\) 分别代表冷热热源的绝对温度,单位为______。

答案:开尔文3. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的完美晶体的熵趋向于一个常数值,这个常数值为______。

答案:04. 根据玻尔兹曼关系,熵 \(S\) 与系统微观状态数 \(W\) 的关系为\(S = k_B \ln W\),其中 \(k_B\) 是______。

答案:玻尔兹曼常数三、简答题(每题10分,共20分)1. 简述热力学第一定律和热力学第二定律的区别。

答案:热力学第一定律是能量守恒定律在热力学过程中的表现形式,它表明能量不能被创造或消灭,只能从一种形式转换为另一种形式,或者从一个物体转移到另一个物体。

热力学第二定律则描述了能量转换的方向性,即能量转换过程中存在不可逆损失,并且指出了热能转化为其他形式能量的效率不是100%。

热统答案

热统答案

2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落. 解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数ST p ⎛⎫∂⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为.P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.TP pS PS V T p T T S p C T ⎛⎫∂∂⎛⎫⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-=⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ 焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 0dH =,故有 .T Pp HPH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ 得0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落.3.1 证明下列平衡判据(假设S >0); (a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.4.10 物质的量为01n v 的气体A 1和物质的量为02n v 的气体A 2的混合物在温度T 和压强p 下体积为0V ,当发生化学变化334411220,v A v A v A v A +--=并在同样的温度和压强下达到平衡时,其体积为.e V 证明反应度ε为01203412.e V V v v εV v v v v -+=⋅+-- 解:初始状态下混合理想气体的物态方程为()0012.pV n v v RT =+(1)以ε表示发生化学变化达到平衡后的反应度,则达到平衡后各组元物质的为:L ()()010203041,1,,.n v εn v εn v εn v ε--总的物质的量为:()0123412+++--,n v v εv v v v ⎡⎤⎣⎦其物态方程为:()0123412.e pV n v v v v v v RT ε=+++--⎡⎤⎣⎦ 2) 两式联立,有:01203412.e V V v v V v v v v ε-+=⋅+-- 3) 因此,测量混合气体反应前后的体积即可测得气体反应的反应度.7.18 试求双原子分子理想气体的振动熵. 解: 以ω表示振动的圆频率,振动能级为1,0,1,2,2n n n εω⎛⎫=+= ⎪⎝⎭振动配分函数为()1v 2112v1e,1e 1ln Z ln 1.2n n Z ee βωβωβωβωβω⎛⎫∞-+ ⎪⎝⎭=---==-=---∑ 双原子理想气体的熵为 ()v v v 11ln ln Z ln 1e e 1S Nk Z Nk βωβωβββω-⎛⎫∂=- ⎪∂⎝⎭⎡⎤=--⎢⎥-⎣⎦v v v ln 1e ,e 1T T T Nk θθθ-⎡⎤⎢⎛⎫⎥=-- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦其中v kωθ= 是振动的特征温度.8.4 试证明,在热力学极限下均匀的二维理想玻色气体不会发生玻色-受因斯坦凝聚. 解:令玻色气体降温到某有限温度c T ,气体的化学势将趋于-0. 在c T T <时将有宏观量级的粒子凝聚在0ε=的基态,称为玻色-爱因斯坦凝聚. 临界温度c T 由条件()0d e 1c kT D n εεε+∞=-⎰(1)()222πd d LD m hεεε=将其代入(1),得2202πd .e 1c kT L m n h εε+∞=-⎰ (2)令cx kT ε=,上式可改写为:2202πd .e 1c x L x mkT n h +∞=-⎰ (3)将(3)被积函数展开,有()()211e 1e e ,e 1e 1e x x xx x x----==+++-- 则:d 111e 123x x +∞=+++-⎰11.n n∞==∑ (4) (4)的级数是发散的,这意味着在有限温度下二维理想玻色气体的化学势不可能趋于零. 换句话说,在有限温度下二维理想玻色气体不会发生玻色-爱因斯坦凝。

热统答案第三章 单元系的相变

热统答案第三章  单元系的相变

(2)
代入式(1) ,即有
⎛ ∂U ⎞ ⎛ ∂µ ⎞ ⎜ ∂n ⎟ − µ = −T ⎜ ∂T ⎟ . ⎝ ⎠T ,V ⎝ ⎠V ,n
(3)
3.6
Hale Waihona Puke ⎞ 两 相 共 存 时 , 两 相 系 统 的 定 压 热 容 量 Cp = T ⎛ ⎜ ∂T ⎟ , 体 胀 系 数 ⎝ ⎠p
∂S
58
α=
1 ⎛ ∂V ⎞ 1 ⎛ ∂V ⎞ 和等温压缩系数 κ T = − ⎜ ⎟ 均趋于无穷,试加以说明. ⎜ ⎟ V ⎝ ∂T ⎠ p V ⎝ ∂p ⎠T
(5)
如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于 气相的摩尔体积,则克拉珀龙方程简化为
(5)
(6)
⎛ p⎞ ⎛ ∂ p⎞ ⎛ ∂ p⎞ δ⎜ ⎟ = ⎜ ⎟ δT + ⎜ ⎟ δV ⎝ T ⎠ ⎝ ∂T T ⎠V ⎝ ∂V T ⎠T = 1 T2 ⎡ ⎛ ∂p ⎞ ⎤ 1 ⎛ ∂p ⎞ ⎢T ⎜ ∂T ⎟ − p ⎥ δT + T ⎜ ∂V ⎟ δV . ⎠V ⎝ ⎠T ⎣ ⎝ ⎦
(7)
δ S = 0, đW = 0.
根据式(1) ,在虚变动中必有
δ U < 0.
(2)
如果系统达到了 U 为极小的状态,它的内能不可能再减少,系统就不可能自 发发生任何宏观的变化而处在稳定的平衡状态,因此,在 S , V 不变的情形下, 稳定平衡态的 U 最小. (b)在 S , p 不变的情形下,有
δ U < T δ S + đW ,
(1)
式中 δ U 和 δ S 是虚变动前后系统内能和熵的改变, đW 是虚变动中外界所做的 功, T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变 化, T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的 平衡判据. (a)在 S , V 不变的情形下,有

热统第三章作业答案

热统第三章作业答案

3.4 求证:(a ),,;V n T V S T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (b ),,.T pt n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 解:(a )由自由能的全微分(式(3.2.9))dF SdT pdV dn μ=--+ (1)及偏导数求导次序的可交换性,易得,,.V n T VS T n μ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这是开系的一个麦氏关系.(a ) 类似地,由吉布斯函数的全微分(式(3.2.2))dG SdT Vdp dn μ=-++ (3)可得,,.T pT n V p n μ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (4)这也是开系的一个麦氏关系.3.5 求证:,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭解:自由能F U TS =-是以,,T V n 为自变量的特性函数,求F 对n 的偏导数(,T V 不变),有,,,.T V T V T VF U S T n n n ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (1)但由自由能的全微分dF SdT pdV dn μ=--+可得,,,,,T VT V V nF n S n T μμ∂⎛⎫= ⎪∂⎝⎭∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1),即有,,.T V V nU T n T μμ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)3.7 试证明在相变中物质摩尔内能的变化为1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭如果一相是气相,可看作理想气体,另一相是凝聚相,试将公式化简. 解:发生相变物质由一相转变到另一相时,其摩尔内能m U 、摩尔焓m H 和摩尔体积m V 的改变满足.m m m U H p V ∆=∆-∆ (1)平衡相变是在确定的温度和压强下发生的,相变中摩尔焓的变化等于物质在相变过程中吸收的热量,即相变潜热L :.m H L ∆=克拉珀龙方程(式(3.4.6))给出,mdp L dT T V =∆ (3) 即.m L dTV T dp∆=(4) 将式(2)和式(4)代入(1),即有1.m p dT U L T dp ⎛⎫∆=- ⎪⎝⎭(5)如果一相是气体,可以看作理想气体,另一相是凝聚相,其摩尔体积远小于气相的摩尔体积,则克拉珀龙方程简化为2.dp LpdT RT = (6) 式(5)简化为1.m RT U L L ⎛⎫∆=- ⎪⎝⎭ (7) 3.9 以C βα表示在维持β相与α相两相平衡的条件下1mol β相物质升高1K 所吸收的热量,称为β相的两相平衡摩尔热容量,试证明:.m p m m pV LC C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ 如果β相是蒸气,可看作理想气体,α相是凝聚相,上式可简化为,p LC C Tββα=-并说明为什么饱和蒸气的热容量有可能是负的.解:根据式(1.14.4),在维持β相与α相两相平衡的条件下,使1mol β相物质温度升高1K 所吸收的热量C βα为.mm m p T dS S S dp C T T T dT T p dTββββα⎛⎫⎛⎫⎛⎫∂∂==+⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ (1) 式(2.2.8)和(2.2.4)给出,.m p pm m T pS T C T S V p T ββββ⎛⎫∂= ⎪∂⎝⎭⎛⎫⎛⎫∂∂=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2)代入式(1)可得.m p p V dp C C T T dTβββα⎛⎫∂=- ⎪∂⎝⎭ (3) 将克拉珀龙方程代入,可将式(3)表为.m p m m pV LC C V V T βββαβα⎛⎫∂=- ⎪-∂⎝⎭ (4) 如果β相是气相,可看作理想气体,α相是凝聚相,mm V V αβ=,在式(4)中略去m V α,且令m pV RT β=,式(4)可简化为.p LC C Tββα=-(5) C βα是饱和蒸气的热容量. 由式(5)可知,当p L C Tβ<时,C βα是负的.3.10 试证明,相变潜热随温度的变化率为.m m p p mm p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ 如果β相是气相,α相是凝聚相,试证明上式可简化为.p p dL C C dTβα=- 解: 物质在平衡相变中由α相转变为β相时,相变潜热L 等于两相摩尔焓之差:.m m L H H βα=- (1)相变潜热随温度的变化率为.mm m m p T p T H H H H dL dp dp dT T p dT T p dTββαα⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂∂=+-- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 式(2.2.8)和(2.2.10)给出,,p pp TH C T H V V T p T ∂⎛⎫= ⎪∂⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3)所以().m m p p m m p p V V dL dp dp C C V V T dT dT T T dT βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+---⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎝⎭⎣⎦将式中的dpdT用克拉珀龙方程(3.4.6)代入,可得,m m p p mm p p V V dL L L C C dT T T T V V βαβαβα⎡⎤⎛⎫⎛⎫∂∂=-+--⎢⎥ ⎪ ⎪∂∂-⎢⎥⎝⎭⎝⎭⎣⎦ (4) 这是相变潜热随温度变化的公式.如果β相是气相,α相是凝聚相,略去m V α和m pV T α⎛⎫∂ ⎪∂⎝⎭,并利用m pV RT β=,可将式(4)简化为.p p dL C C dTβα=- (5) 3.15 证明在曲面分界面的情形下,相变潜热仍可表为().m m mm L T S S H H βαβα=-=- 解:以指标α和β表示两相. 在曲面分界的情形下,热平衡条件仍为两相的温度相等,即.T T T αβ== (1)当物质在平衡温度下从α相转变到β相时,根据式(1.14.4),相变潜热为().m m L T S S βα=- (2)相平衡条件是两相的化学势相等,即()(),,.T p T p ααββμμ= (3)根据化学势的定义 ,m m m U TS pV μ=-+式(3)可表为,m m m m m m U TS p V U TS p V ααααββββ-+=-+因此()()m m m m m mL T S S U p V U p V βαβββααα=-=+-+.m m H H βα=- (4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。

解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。

证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。

1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。

1.4 描述金属丝的几何参量是长度L,力学参量是张力F,物态方程是 f(F ,L,T)=0。

实验通常在1p n 下进行,其体积变化可以忽略。

线胀系数定义为F T L L a )(1∂∂=,等温杨氏模量定义为 T LFA L Y )(∂∂=, 其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对F 仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

假设金属丝两端固定。

试证明,当温度由T 1降至T 2时,其张力的增加为21()F YA T T α∆=--证明:(a )设(,)F F T L =,则L TF F dF dT dLT L ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1)由于1L F T F T L T L F ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭所以L T F F F L T L T ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2)将(2)式代入(1)式,并利用线胀系数α和等温杨氏模量的定义式,得T F TF L F AY dF dT dL AYdT dL L T L L α∂∂∂⎛⎫⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭(3) (b )当金属丝两端固定时,dL =0,由(3)式得dF aAYdT =-当温度由T 1降至T 2时,积分上式得21()F YA T T α∆=-- (4)1.5 一理想弹性物质的物态方程为 2020()L L F bT L L =-,其中L 是长度,L 0是张力F 为零时的L 值,它只是温度T 的函数,b 是常数。

试证明:(a ) 等温杨氏模量为)2(2200L L L L A bT Y +=A bT Y 30=.(b ) 在张力为零时, 线膨胀系数2/1/13033030+--=L L L L T αα 其中.10dL dL T =α (c) 上述物态方程适用于橡皮带,设,.105,10114026---⨯=⨯=K m A α试计算当0L L分别为0.5,1.0,1.5和1 210 33 . 1 , 300 - - . ⨯ = = K N b K T2.0时的F,Y ,α对0L L的曲线。

证明:(a )由弹性物质得物态方程,可得203021T L F bT L L L ⎛⎫∂⎛⎫=+⎪ ⎪∂⎝⎭⎝⎭ (1)将上式代入等温杨氏模量的定义式22003200221T L L L F L bT L Y bT A L A L L A L L ⎛⎫⎛⎫∂⎛⎫==+=+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭(2)当F =0时,L =L 0,由(2)式得()0312bT bTY A A=+= (3)(b )在F 不变下,将物态方程对T 求导,得22000002022400220F F F FL L L L L L L L L L L L T T T T T L L L L ⎡∂∂⎤∂∂⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎢⎥⎛⎫∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥-+-= ⎪⎢⎥⎝⎭⎢⎥⎣⎦由上式解出F L T ∂⎛⎫ ⎪∂⎝⎭,可得 222300022230000023203220002111111(4)222F F L L L L L L L L L T L L T L L L L L L L L L L T T T L L L L LL L ααα⎛⎫⎛⎫∂⎛⎫+----⎪ ⎪ ⎪∂∂⎝⎭⎛⎫⎝⎭⎝⎭===-=- ⎪∂⎛⎫⎝⎭+++ ⎪⎝⎭其中0001dL L dT α=1.6 1mol 理想气体,在27o C 的恒温下体积发生膨胀,其压强由20p n 准静态地降到1p n ,求气体所作的功和所吸收取的热量。

解:(a) 在恒温准静态膨胀过程中,理想气体所作的功为⎰⎰==='2121,ln 12V V V V V V RT V dVRT pdV W因为 ,,2211RT V p RT V p == 故有 ,2112p pV V =.1046.720ln 30031.8ln1321-⋅⨯=⨯=='∴mol J p p RT W(b) 理想气体在恒温膨胀过程中,内能不变,根据热力学第一定律,求得.1046.713-⋅⨯='=mol J W Q1.7 在25o C 下,压强在0至1000p n 之间,测得水的体积为13263)10046.010715.0066.18(---⋅⨯+⨯-=mol cm p p V如果保持温度不变,将1mol 的水从1p n 加压至1000p n ,求外界所作的功。

解:写出,2cp bp a V +++ 则 dV= (b+2cp)dp = dp p )10046.0210715.0(63--⨯⨯+⨯-所要求的功2110002310001133263331312(2)()2312(0.715)10(10)0.04610(10)23326.83/33.1(10.101324)V V n n W pdV p b cp dp bp cp p cm mol J mol p cm J ⋅---=-=-+=-+⎡⎤=⨯-⨯⨯+⨯⨯⨯⨯⎢⎥⎣⎦=⋅=⋅⋅=⎰⎰1.8 承前1.5题,使弹性体在准静态等温过程中长度由L 0压缩为,20L 试计算外界所作的功。

解:外界对弹性体作的元功表达式为dW FdL = (1)将物态方程代入上式,得2020L L dW bT dLL L ⎛⎫=- ⎪⎝⎭(2)注意到在等温过程中L 0不变,当弹性体在等温过程中长度由L 0压缩为L 0/2时,外界所作的功为00/2202058L L L L W bT dL bTL L L ⎛⎫=-= ⎪⎝⎭⎰(3)1.9 在0o C 和1p n 下,空气的密度为1.291-⋅m kg .空气的定压比热容.41.1,96611=⋅⋅=--γK kg J c p 今有27m 3的空气,试计算:(i )若维持体积不变,将空气由0o C 加热至20o C 所需的热量。

(ii )若维持压强不变,将空气由0o C 加热至20o C 所需的热量。

(iii )若容器有裂缝,外界压强为1p n ,使空气由0o C 缓慢地加热至20o C 所需的热量。

解:1cal=4.2J 所以 1111238.0966----⋅⋅=⋅⋅=K g cal K kg J c p(i)这是定容加热过程,定容热容量可以从定压热容量算出,.deg /169.041.1/238.0⋅===g cal C C pV γ27m 3的空气,其质量可由它的密度算得:g M 461048.3102700129.0⨯=⨯⨯=考虑到热容量为常数,使温度由0o C 升至20o C 所需得热量20169.01048.3)(41221⨯⨯=-==⎰T T MC dT MC Q V T T V V即得 J cal Q V 5510920.410176.1⨯=⨯=(ii) 在定压加热过程中,).(937.6)(10658.120238.01048.3)(5412J cal T T MC Q p p =⨯=⨯⨯⨯=-=(iii) 因为加热过程使缓慢得,所以假定容器内的压力保持1p n . 本问题,空气的质量是改变的。

在保持压力p 和容积V 不变的条件下加热时,在温度T 下的质量M(T)可由物态方程)(为空气的平均分子量其中μμRT MpV =确定之。

设T 1时,容器内的空气质量之为M 1,则由11)(RT T M pV μ=算得T T M T M 11)(=, 所以2211211111()ln (1)T T P p p T T T dTQ M T C dT M T C M T C T T ===⎰⎰将T 1=273K, T 2=293K, M 1C p =K cal /1029.83⨯代入(1)式,即得J cal Q 55310678.61060.1273293ln2731029.8⨯=⨯=⨯⨯=1.10 抽成真空的小匣带有活门,打开活门让气体冲入。

当压强达到外界压强0p 时将活门关上。

试证明:小匣内的空气在没有与外界交换热量之前,它的内能U 与原来在大气中的内能U 0之差为000V p U U =-,其中V 0是它原来在大气中的体积。

若气体是理想气体,求它的温度与体积。

解: (a) 求解这个问题,首先要明确我们所讨论的热力学系统是什么。

为此,可以设想:使一个装有不漏空气的无摩擦活塞之绝热小气缸与绝热小匣相连。

假定气缸所容空气的量,恰好为活门打开时进入该小匣内的那一部分空气的量。

这样,原来在小气缸中,后来处于小匣内的那一部分空气(为了方便,设恰为1mol 空气),就是我们所讨论的热力学系统。

系统的初态(0000;,,U p T V )和终态);,,(U p T V 如图所示:当打开活门,有少量空气进入原来抽为真空的小匣,小气缸内的气压就降为比大气压小一点,外界空气就迫使活塞向匣内推进。

相关文档
最新文档