气物性计算

合集下载

油气物性计算方法

油气物性计算方法

一、原油、天然气和水的物性参数的计算1.溶解油气比需要先计算天然气在689.5kPa 表压下的相对密度:5141.5131.5[1 5.91210()(1.832)lg(0.001265)]ogs gp ot p δδδδ-'-''=+⨯+式中,gs δ——689.5kPa 表压下的天然气相对密度,无因次;gp δ'——压力p '(绝对)和温度t '下的天然气相对密度,无因次; t '——温度,℃;p '——压力(绝对),kPa ;o δ——标准状态下,原油的相对密度,无因次。

求得天然气的在689.5kPa 表压下的相对密度后,再利用下式即可求得溶解油气比:213141.5131.50.1781(0.1450)exp [](1.8492)C o s gs o S C p C t δδδ⎧⎫-=⎨⎬+⎩⎭式中 C 1、C 2、C 3——系数,其值见表; P ——压力(绝对),kPa 。

2.原油体积系数 (1)当b p p ≤时123141.5131.5141.5131.51 5.615(1.828)() 5.615(1.828)()o oo s s o gs o gsB C S C t C S t δδδδδδ--=++-+-系数C 1、C 2、C 3的值如下表所示:(2)当b p p >时0exp[()]o ob b B B C p p =--其中,0123456141.5131.56.895[ 5.615(1.832)()]/os gs oC a a S a t a a a p δδδ-=+++++ 式中 ob B ——泡点压力b p 下的原油体积系数,m 3/m 3;a 1=-1433.0; a 2=5.0; a 3=17.2; a 4=-1180.0; a 5=12.61; a 6=105。

3.天然气压缩系数当天然气的压力低于35MPa 时,它的压缩系数可以按下式计算:2331.04670.57830.61230.63151(0.31506)(0.5353)r r r r r rZ T T T T ρρ=+--+-+ 其中,0.27r crr r r cTT T p ZT p p p ρ===式中 Z ——天然气的压缩系数,无因次; r T ——对比温度,无因次; T ——温度,K ;c T ——天然气的假临界温度,K r ρ——天然气的对比度,无因次; r p ——天然气的对比压力,无因次; c p ——天然气的假临界压力,kPa 。

天然气物性参数及管线压降与温降的计算

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分:一. 天然气物性参数及管线压降与温降的计算 二. 天然气水合物的形成预测模型 三. 注醇量计算方法.天然气物性参数及管线压降与温降的计算 20 C 标准状态1y i M i24.055任意温度与压力下Y i M i式中厂混合气体的密度,P —任意温度、压力下i 组分的密度,kg/m 3; y i — i 组分的摩尔分数; M i —i组分的分子量, V i —i 组分摩尔容积, 天然气密度计算公式pMW gZRT天然气相对密度天然气相对密度△的定义为:在相同温度,压力下,天然气的密度与空气密 度之比。

天然气分子量标准状态下,Ikmol 天然气的质量定义为天然气的平均分子量,Y i M iM式中 M —气体的平均分子量,kg/kmol ; y i —气体第i 组分的摩尔分数;M —气体第i 组分的分子量,kg/kmol天然气密度混合气体密度指单位体积混合气体的质量。

0 °C 标准状态按下面公式计算:1 22.414y i M i简称分子量。

(1)kg/m 3;kg/kmol;⑹式中 △—气体相对密度;厂气体密度,kg/m 3;p —空气密度,kg/m 3,在 P o =1O1.325kPa, T o =273.15K 时,p =1.293kg/m 3;在 P o =1O1.325kPa T O =273.15K 时,p =1.293kg/m 3。

因为空气的分子量为28.96,固有28.96假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系 式表示天然气的相对密度天然气的虚拟临界参数任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时, 无论压力增加到多大,都不能使气体液化。

可以使气体压缩成液态的这个极限温 度称为该气体的临界温度。

当温度等于临界温度时,使气体压缩成液体所需压力 称为临界压力,此时状态称为临界状态。

混合气体的虚拟临界温度、虚拟临界压 力和虚拟临界密度可按混合气体中各组分的摩尔分数以及临界温度、临界压力和 临界密度求得,按下式计算。

空气物性参数表

空气物性参数表

空气物性参数表湿空气热物性计算示例A●分子量Maw=Ma-(Ma-Mw)pw/paw式中,Maw为湿空气分子量,g/mol;Ma为干空气的分子量,28.97g/mol;Mw为水蒸气的分子量,18.02g/mol;pw为湿空气中水蒸气的分压力,Pa;paw为湿空气的总压力,Pa。

计算示例:设湿空气总压力为101325Pa,其中水蒸气的分压力为3000Pa,则此时湿空气的分子量为:Maw=28.97-(28.97-18.02)*3000/101325=28.65 g/mol●湿空气中水蒸气分压力pw=φps式中,pw为湿空气中水蒸气的分压力,Pa;φ为湿空气的相对湿度,无因次;ps为湿空气温度下纯水的饱和蒸气压力(也为湿空气温度下饱和湿空气中水蒸气的分压力),Pa。

纯水的饱和蒸气压力的估算式为(0~100℃):ln(ps)=25.4281-5173.55/(Ts+273)式中,ps为水的饱和蒸气压,Pa;Ts为水的温度,℃。

计算示例:设湿空气温度为36℃,相对湿度为70%,则湿空气中水蒸气分压力的计算过程为:该温度下纯水的饱和蒸气压为:ln(ps)=25.4281-5173.55/(36+273)=8.6852ps =e8.6852=5915 Pa湿空气中的水蒸气分压力为:pw=φps=0.7*5915=4140.5Pa●湿空气的露点温度湿空气中水蒸气开始凝结的温度为其露点温度,等于其湿空气中水蒸气分压力下纯水的饱和温度,其估算式为(0~80℃):Td=5266.77/(25.7248-ln(pw))-273式中,Td为湿空气的露点温度,℃;pw为湿空气中水蒸气的分压力,Pa。

计算示例:接上例,温度为36℃,相对湿度为70%的湿空气,其露点温度计算过程为:湿空气中水蒸气分压力为4140.5Pa,则其对应的露点温度为:Td=5266.77/(25.7248-ln(4140.5))-273=29.75℃。

天然气高压物性参数计算

天然气高压物性参数计算

摘要天然气的压缩因子、体积系数、压缩系数、粘度等高压物性参数随气藏压力和温度的变化而变化,定量描述和预测这些参数的变化规律具有十分重要的实际意义。

通过电脑程序将天然气高压物性的相关经验公式转变为程序计算,能够很快的得到计算结果以及对计算结果的图形分析,通过最后的图形分析我们能很直观的看出高压物性参数之间的关系,有利于确定合理的开发速度和规模,节省投资,将资金投向回报率高的方案上。

本文中首先介绍了天然气高压物性参数的相关经验及半经验公式,再利用excelVBA 实现公式的程序计算,只要输入原始数据,点击相应的高压物性计算按钮就能得到计算结果,数据分析窗体能够自动输出高压物性与相关参数的图形。

关键字:高压物性偏差系数粘度压力温度ABSTRACTGas compressibility factor, volume factor, compressibility, viscosity and other physical parameters with high pressure gas reservoir pressure and temperature changes, quantitatively describe and predict the variation of these parameters has a very important practical significance. Through a computer program related to the physical properties of high pressure natural gas into a program to calculate the empirical formula, can quickly get the results and the calculation results of the graphical analysis, graphical analysis through the last we can see the pressure very intuitive relationship between the physical parameters will help determine a reasonable pace and scale of development, reduce investment, high return on the capital investment program on.This paper first introduces the gas pressure in the physical parameters relevant experience and semi.empirical formulas to achieve reuse excelVBA program calculates the formula, as long as the input raw data, click on the appropriate button to be able to calculate the physical properties of high pressure to get results, analysis of data form can be automatically output pressure properties and related parameters graphics.Keywords: PVT variation ;coefficient of viscosity;pressure ;temperature ;coefficient of volume.目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1国内外天然气高压物性参数计算发展历史 (1)1.2国内天然气分布 (2)1.3天然气高压物性参数计算的意义 (2)2 计算方法介绍 (4)2.1天然气临界参数计算 (4)2.1.1 天然气平均分子量 (4)2.1.2 天然气的相对密度 (4)2.1.3 拟临界压力PPC 和拟临界温度TPC (4)2.1.4 拟对比压力PPr 和拟对比温度TPr的计算 (5)2.2天然气的偏差因子Z计算 (6)2.2.1 Pong.Robinson方程法 (6)2.2.2 Cranmer方法 (7)2.2.3 DPR法 (7)2.2.4 DAK法 (8)2.2.5 平均值法 (9)2.3天然气压缩因子计算 (9)2.4天然气体积系数计算 (10)2.5天然气膨胀系数的计算 (10)2.6天然气的粘度计算 (10)2.6.1 Lee关系式 (11)2.6.2 Dempsey关系式 (11)3 EXCELVBA程序计算 (13)3.1VBA简介 (13)3.2界面设计 (13)3.3操作步骤 (14)3.3.1 原始数据 (15)3.3.2 拟临界压力、温度,拟对比压力、温度的计算 (16)3.3.3 天然气高压物性的计算 (17)3.3.4 图形分析 (22)3.3.5 数据查询 (25)4 结论 (26)参考文献 (27)致谢 (28)1 绪论1.1 国内外天然气高压物性参数计算发展历史天然气高压物性参数计算问题早在20世纪40年代就有人提出了。

天然气物性参数计算

天然气物性参数计算
合计
异丁烷iC4 正丁烷nC4 异戊烷iC5 正戊烷nC5 己烷C6
0.060
物性参数计算结果(标准参比条件101.325kPa,20℃) 摩尔质量(kg/kmol) 高位摩尔发热量 (MJ/mol) 临界压力(MPa) 沃泊指数 (MJ/m³) 17.4778 真实相对密度 918.6086 低位摩尔发热量 (MJ/mol) 0.6046 829.0536 参比条件密度 (kg/m³) 高位体积发热量 (MJ/m³) 0.7266 38.2706 4.8729
4.6022 临界温度(℃) 49.2207
197.3959 爆炸下限(%)
计算依据:GB/T 11062-2014

组分名称 摩尔百分数
庚烷C7 辛烷C8 壬烷C9 癸烷C10 氦气He 氩气Ar
黄色区域输入组分 摩尔百分数即可得 出计算结果
20℃) 标况压缩因子 低位体积发热量 (MJ/m³) 爆炸上限(%) 0.9978 34.5396 15.1264
天然气物性参数计算表格
天然气组分化验结果(mol/mol%) 组分名称 摩尔百分数 组分名称 பைடு நூலகம்2.470 水H2O 1.750 硫化氢H2S 0.680 氢气H2 3.500 一氧化碳CO 0.980 氧气O2 100 摩尔百分数 组分名称 摩尔百分数 0.340 0.220
甲烷C1 氮气N2 二氧化碳CO2 乙烷C2 丙烷C3

燃气-空气热物性计算原理

燃气-空气热物性计算原理

燃气-空气热物性计算基于美国NIST 网站数据库以及相应的计算软件REFPROPV8.0,拟合出多种气体的特性(如密度、定压比热容、导热系数和粘性系数等)与温度之间的关系,然后将其视为理想气体,依据理想气体混合法计算燃气或者空气的热物性。

常见气体组分1定压比热利用插值法拟合出各气体的定压比热随温度变化的方程,方程形式如下:C Pi =αk (T /1000)k 7k =0kJ /(kg ∙K )混合气体的定压比热容:C P = x i C Pi n1x i −组分气体的质量百分数;n −混合气体的组分种类数。

定压比热系数计算出每一组分的定压比热后,对其进行温度积分即可得到该组分的焓值: i = C P dt TT 0= αk (T 1000)k +1−αk 273.151000 k +17k =0∙1000/(k +1) kJ /kg混合气体的比焓:= x i i n1x i −组分气体的质量百分数;n −混合气体的组分种类数。

3熵函数计算等熵绝热过程热力计算: 熵的定义:ds =dq T =C p dT −vdp T =C p dT T −R dp p工质经过等熵绝热过程由状态1到状态2 ,对上式积分得:s 2−s 1=dq T = C pdT T T 2T 1− R dp p P 2P 1=0则:C pdTTT 2T 1=R ∙ln P 2P 1C p dTTT 2T1的取值只与过程始末的温度有关,因此可以定义:Φ T =C p dTΦ T 2 −Φ T 1 =C p dT T 2T 1Φ T 为工质的状态函数,是温度的单值函数,简称熵函数。

于是有:Φ T 2 −Φ T 1 =R ∙ln P 2P 1=R ∙ln π计算出每一组分的定压比热后,对其进行温度积分即可得到该组分的熵函数值:Φi = C P T dt TT 0=α0 ln T 1000 −ln 273.151000 + αk (T 1000)k −αk 273.151000 k7k =1/kkJ /(kg ∙K )混合气体的熵函数:Φ= x i Φi n1x i −组分气体的质量百分数;n −混合气体的组分种类数。

天然气高压物性参数

天然气高压物性参数

2 计算方法介绍2.1 天然气临界参数计算2.1.1 天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ;M i 、y i —天然气中i 组分的分子量和摩尔分数。

2.1.2 天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: 28.9729g gg gg a i r a i r MM M r Mρρ===≈ (2.2)式中 r g —天然气的相对密度;g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3;g M air M —天然气、空气的平均分子量kg/mol 。

2.1.3 拟临界压力P PC 和拟临界温度T PC① 组分分析方法p c i c ip y p =∑ p c i ciT y T =∑ (2.3) g i i M y M =∑式中 ci p —— 天然气组分i 的临界压力(绝),MPa ;ci T —— 天然气组分i 的临界温度,(273+t)°K 。

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经验公式对于干气2pc 2pc 4.6660.1030.2593.31817g g g gp T γγγγ=+-=+- (2.4)对于湿气2pc 2pc 4.8680.35639.7103.9183.339.7g g g gp T γγγγ=+-=+- (2.5)也可以用下面经验关系式进行计算 对于干气pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.6)对于湿气pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.7)注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。

天然气物性参数及管线压降与温降的计算

天然气物性参数及管线压降与温降的计算

整个计算过程的公式包括三部分:一.天然气物性参数及管线压降与温降的计算 二.天然气水合物的形成预测模型 三.注醇量计算方法一.天然气物性参数及管线压降与温降的计算 天然气分子量标准状态下,1kmol 天然气的质量定义为天然气的平均分子量,简称分子量。

∑=ii M y M(1) 式中 M —气体的平均分子量,kg/kmol ;y i —气体第i 组分的摩尔分数;M i —气体第i 组分的分子量,kg/kmol 。

天然气密度混合气体密度指单位体积混合气体的质量。

按下面公式计算: 0℃标准状态∑=i i M y 14.4221ρ (2) 20℃标准状态∑=i i M y 055241.ρ (3) 任意温度与压力下∑∑=ii ii V y M y ρ(4)式中 ρ—混合气体的密度,kg/m 3;ρi —任意温度、压力下i 组分的密度,kg/m 3; y i —i 组分的摩尔分数;M i —i 组分的分子量,kg/kmol ; V i —i 组分摩尔容积,m 3 /kmol 。

天然气密度计算公式gpMW ZRTρ= (5)天然气相对密度天然气相对密度Δ的定义为:在相同温度,压力下,天然气的密度与空气密度之比。

aρρ∆=(6) 式中 Δ—气体相对密度;ρ—气体密度,kg/m 3; ρa —空气密度,kg/m 3,在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3;在P 0=101.325kPa ,T 0=273.15K 时,ρa =1.293kg/m 3。

因为空气的分子量为28.96,固有28.96M∆=(7) 假设,混合气和空气的性质都可用理想气体状态方程描述,则可用下列关系式表示天然气的相对密度28.96gg ga a pMW MW MW RT pMW MW RT∆===(8) 式中 MW a —空气视相对分子质量;MW g —天然气视相对分子质量。

天然气的虚拟临界参数任何气体在温度低于某一数值时都可以等温压缩成液体,但当高于该温度时,无论压力增加到多大,都不能使气体液化。

天然气计量中物性计算方法适用性探讨

天然气计量中物性计算方法适用性探讨

标准研究/StandardResearch天然气计量中物性计算方法适用性探讨连子超1杨妮2李学成3许佳4代晓雨5吴萍4(1.华北油田公司华港燃气集团;2.中国石油西南油气田公司华油公司重庆凯源石油天然气有限责任公司;3.国家石油天然气管网集团北方管道大庆输油气分公司;4.国家管网集团山东省分公司德州作业区;5.中国石油吐哈油田分公司工程技术研究院地面工程设计所)摘要:针对目前天然气体积计量中面临的物性参数计算问题,在GB/T 17747.2—2011和ISO 20765-2:2015的基础上,采用Matlab 软件建立AGA8-92DC 和GERG-2008状态方程天然气物性求解程序,以相对偏差(RD)和平均相对偏差(ARD)为评价指标,评估了两种方程在计算不同种类天然气物性上的准确性。

结果表明,在管输天然气压力0~10MPa、温度280~320K 的范围内,AGA8-92DC 和GERG-2008状态方程的计算结果准确度一致,ARD 均为0.03%;对于含重烃天然气,压力小于30MPa、温度250~500K 的范围内,GERG-2008状态方程的计算表现更优,压力大于30MPa,部分温度范围内AGA8-92DC 状态方程的计算表现更优;AGA8-92DC 状态方程和GERG-2008状态方程分别在计算高含硫天然气和液化天然气物性上具有优越性,但当含硫量和重烃含量较大时,偏差会显著增大。

研究结果可为天然气计量工作的持续推进提供实际参考。

关键词:天然气计量;AGA8-92DC 方程;GERG-2008方程;压缩因子;物性计算方法DOI :10.3969/j.issn.2095-1493.2024.01.014Research on the adaptability of physical property calculation method in natural gas measurementLIAN Zichao 1,YANG Ni 2,LI Xuecheng 3,XU Jia 4,DAI Xiaoyu 5,WU Ping 41Huagang Gas Group of Huabei Oilfield Company2Huayou Company Chongqing Kaiyuan Oil &Gas Co.,Ltd.,Southwest Oil and Gas Field Company,CNPC3Daqing Oil and Gas Transmission Company of North Pipeline Co.,Ltd.,PipeChina 4Dezhou Operation Area of Shandong Company,PipeChina5Surface Engineering Design of Engineer Technology Research Institute of Tuha Oilfield,CNPCAbstract:At present,based on GB/T 17747.2—2011and ISO 20765-2:2015,faced with the cal-culation problem of physical property in the volumetric measurement of natural gas,the Matlab soft-ware is used to establish the natural gas physical property solving programs for AGA8-92DC and GERG-2008equation of ing relative deviation (RD)and average relative deviation (ARD)as evaluation indexes,the accuracy of the two equations in calculating the physical properties of differ-ent kinds of natural gas is evaluated.The results show that when the pressure of pipeline natural gas ranges from 0MPa to 10MPa and the temperature ranges from 280K to 320K,the accuracy of AGA8-92DC and GERG-2008equation of state is consistent and ARD is 0.03%.For natural gas con-taining heavy hydrocarbon,the GERG-2008equation of state is performed better when the pressure is less than 30MPa and the temperature is ranges from 250K to 500K while the calculation performance of AGA8-92DC equation is better when the pressure is greater than 30MPa and some temperature第一作者简介:连子超,2018年毕业于河北工业大学(工商管理专业)省任丘市万丰佳园小区,062550。

天然气物性参数(新)

天然气物性参数(新)

2.1 天然气临界参数计算2.1.1 天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算:g i i M y M =∑(2.1)式中 M g —天然气的平均分子量kg/mol ;M i 、y i —天然气中i 组分的分子量和摩尔分数。

2.1.2 天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示: 28.9729g g g gg air air M M M r M ρρ===≈(2.2) 式中 r g —天然气的相对密度;g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3;g M air M —天然气、空气的平均分子量kg/mol 。

2.1.3 拟临界压力P PC 和拟临界温度T PC① 组分分析方法pc i ci p y p =∑pc i ci T yT =∑(2.3)g i i M y M =∑式中 ci p —— 天然气组分i 的临界压力(绝),MPa ;ci T —— 天然气组分i 的临界温度,(273+t)°K 。

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经验公式对于干气2pc 2pc 4.6660.1030.2593.31817g g g gp T γγγγ=+-=+- (2.4)对于湿气2pc 2pc 4.8680.35639.7103.9183.339.7g g g gp T γγγγ=+-=+- (2.5)也可以用下面经验关系式进行计算 对于干气pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7g g g g gg p T p T γγγγγγ=-=+≥=-=+<(2.6)对于湿气pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.7)注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。

气体物性数据计算表

气体物性数据计算表

0.03
0.01
0.02
16.04 2.52
34.08 3.24
28.02 3.04
10.30 9.62 0.00 0.00
30.67 0.01 0.00
17.00 168.12 0.06 0.00
2809.41 0.06
1 50.00 92210 0 1.23 气体压力P表(Pa) 标准大气压(Pa) 绝压(Pa) 5000.00 101325.00 97210
气体物理性质表
CH4 0.60 0.72 0.53 H2 S 0.90 1.54 0.25 N2 6.00 1.25 0.25 总和 100.00 单位 % kg/m3 kcal/kg.℃ kcal/kg.℃ kJ/kg.℃ kcal/m.h.℃ kg/m3 kg/Nm3 g/mol 292.23 kcal/m.h.℃ W/m.K μpa.s μpa.s μpa.s μpa.s pa.s kgf.s/㎡
CO 60.00 1.25 0.25
H2 12.00 0.09 3.41
CO2 20.00 1.98 0.20
0.02
0.14
0.01
28.01 3.04
2.02 1.26
44.01 3.53
16.60 1680.60 0.60 0.04
8.42 24.19 0.01 0.00
13.70 880.20 0.31 0.02
O2 0.50 1.43 0.22 0.62 2.60 0.02 1.26 1.55 28.09 32.00 3.17 0.03 0.04 20.30 16.00 0.01 0.00 15.39 1.54E-05 1.57E-06
气量(Nm³) 气体温度(℃) 当地大气压P绝(Pa) 标准温度(℃) 气量(m3)

天然气物性参数(新)

天然气物性参数(新)

T ci天然气组分i 的临界温度,(273+t) °2.1天然气临界参数计算2.1.1天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按 Key 规则计算:(2.1)式中M g —天然气的平均分子量kg/mol ;M 、y i —天然气中i 组分的分子量和摩尔分数2.1.2 天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示:M g M air —天然气、空气的平均分子量 kg/mol2.1.3 拟临界压力 田和拟临界温度T PC①组分分析方法(2.3)M g y j M i式中P ci ―― 天然气组分i 的临界压力(绝),MPa ;r gairM g M gM g M air 28.9729(2.2)式中 r g —天然气的相对密度;air—同一标准状态下,天然气、空气的密度kg/m 3;P pcy i P ci② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941 年发表的相关经验公式对于干气p pc T pc 4.66693.30.103 g181 g 70.25 g22 g(2.4)对于湿气p pc 4.8680.356 g39.7 g2Q(2.5)T pc 103.9 183.3 g 39.7 g2也可以用下面经验关系式进行计算对于干气p pc4.8815 0.3861 gT pc92.2222 176.6667 g g 0.7p pc4.7780 0.2482 gT pc 92.2222 176.6667 g g 0.72.6)对于湿气p pc5.1021 0.6895 gT pc132.2222 176.6667 g g 0.7(2.7)p pc4.7780 0.2482 gT pc 106.1111 152.2222 g g 0.7注意:上式是对于纯天然气适用,而对于含非烃CO2 、H2S 等可以用Wichert 和Aziz 修正。

天然气物性参数(新)

天然气物性参数(新)

2.1 天然气临界参数计算2.1.1 天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ;M i 、y i —天然气中i 组分的分子量和摩尔分数。

2.1.2 天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示:28.9729g g g g g air air M M M r M ρρ===≈(2.2) 式中 r g —天然气的相对密度;g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3;g M air M —天然气、空气的平均分子量kg/mol 。

2.1.3 拟临界压力P PC 和拟临界温度T PC① 组分分析方法pc i ci p y p =∑pc i ci T yT =∑(2.3) g i i M y M =∑式中 ci p —— 天然气组分i 的临界压力(绝),MPa ;ci T —— 天然气组分i 的临界温度,(273+t)°K 。

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经验公式对于干气2pc 2pc 4.6660.1030.2593.31817g g g gp T γγγγ=+-=+- (2.4)对于湿气2pc 2pc 4.8680.35639.7103.9183.339.7g g g gp T γγγγ=+-=+- (2.5)也可以用下面经验关系式进行计算 对于干气pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.6)对于湿气pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.7)注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert 和Aziz 修正。

1天然气主要物性

1天然气主要物性
–对理想气体cg=1/P,单位:1/MPa,例 P=20MPa,cg=? –思考题:理想气体cg和实际气体cg谁大?
六、天然气体积系数 1、定义: –相同数量的天然气在地下条件下的体积与其在标准 条件下的体积之比。 –两个特定状态,与过程无关 –Bg<<1 , 2、计算式 单位:m3/sm3
–标准条件:Psc=0.101325MPa, Tsc=293.15K
υ = m3/Kg
g
比容
–υ = Vm/Mg = 1/ρ
3、两个气体常数
(1)、通用气体常数 – 定义式:
P Vm R T
P MP a TK m3 Vm Kmol
MP am R Kmol K
3
–R的数值: • 公制标准状态
0.101325 22.4 MPa m R 0.008314 273.15 Kmol K
第一章
天然气的主要物性参数
在油层物理基础上拓宽、提高。 一、天然气
1、天然气
–烃类气体:CnH2n+n:C1、C2、……、C6、C7+, –非烃类气体:H2S、CO2、N2、 He、H2O等的混合气体。 • 空气:N2、O2、Ar
2、天然气组成
–质量组成ω i=mi/Σ mi –摩尔组成yi=ni/Σ ni –体积组成yi=Vi/Σ Vi –有小数和百分数两种表示。例如:C1=0.5, C1=50%
–b与气体种类有关。
4、应用举例
g
MgP 1 zRT
air
(1)、标准态下空气密度: ρ
= 1.205 kg/m3 = 1.205rg kg/m3
(2)、标准态下天然气密度:ρ
sc
四、天然气的偏差系数 1、PVT实验测定,恒温恒质膨 胀试验 2、Standing & Katz 系数图 概念:

油气藏动态分析:-天然气物性分析

油气藏动态分析:-天然气物性分析
一、天然气的组成和分类
2.分类
按矿藏特点:油田气、气田气、凝析气、煤层气 按重烃含量: 富气≥100g/m3
贫气<100g/m3 湿气 按酸性气体含量: 酸气≥1g/m3
净气<1g/m3 洁气
1.1.1天然气物性分析
二、天然气的物理性质
1.天然气的相对分析质量
定义:在标准状况下,1mol天然气具有的质量。
1.1.1天然气物性分析
二、天然气的物理性质
4.天然气在原油中的溶解度
概念:在一定压力下,单位体积的原油所溶解的天然气量,称为天然气在原油 中的溶解度。 天然气在石油中的溶解度随压力增加而增大,随温度增加而减少。
1.1.1天然气物性分析
二、天然气的物理性质
5.压缩因子Z
理想气体状态方程: PV=nRT
Z=V实际 V理想
= V实际 nRT P
当Z=1时,实际气体的性质与理想气体基本一致;
当Z>1时,实际气体比理想气体难压缩;
当Z<1时,实际气体比理想气体易压缩。
1.1.1天然气物性分析
二、天然气的物理性质
6.天然气的体积系数
定义:相同质量的天然气,在地层条件下的体积与其在地面标准状态下体积之
比。
1.1.1 天然气物性分析
1.1.1天然气物性分析
【知识目标】 1.了解天然气的组成与分类; 2.掌握天然气的物性参数。
【技能目标】 1.会收集、整理天然气的物性资料。
1.1.1天然气物性分析
✓ 2020年横跨中俄两国的能源大动脉——中俄东线天然 气管道投产通气。
✓ 从2017年到2019年我国天然气消费量呈现高速增长态 势。
Bg
V
p sc
)
Z p

天然气物性参数

天然气物性参数

2.1 天然气临界参数计算2.1.1 天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按Key 规则计算: g i i M y M =∑ (2.1) 式中 M g —天然气的平均分子量kg/mol ;M i 、y i —天然气中i 组分的分子量和摩尔分数。

2.1.2 天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示:28.9729g gggg a i r a i rM MMr Mρρ===≈(2.2) 式中 r g —天然气的相对密度;g ρair ρ—同一标准状态下,天然气、空气的密度kg/m 3;g M air M —天然气、空气的平均分子量kg/mol 。

2.1.3 拟临界压力P PC 和拟临界温度T PC① 组分分析方法p c i c ip y p =∑ p c i ci T yT =∑(2.3) g i i M y M =∑式中 ci p —— 天然气组分i 的临界压力(绝),MPa ;ci T —— 天然气组分i 的临界温度,(273+t)°K 。

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在1941年发表的相关经验公式对于干气2pc 2pc 4.6660.1030.2593.31817g g g gp T γγγγ=+-=+- (2.4)对于湿气2pc 2pc 4.8680.35639.7103.9183.339.7g g g gp T γγγγ=+-=+- (2.5)也可以用下面经验关系式进行计算 对于干气pc pc pc pc 4.88150.386192.2222176.66670.74.77800.248292.2222176.66670.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.6)对于湿气pc pc pc pc 5.10210.6895132.2222176.66670.74.77800.2482106.1111152.22220.7g g g g gg p T p T γγγγγγ=-=+≥=-=+< (2.7)注意:上式是对于纯天然气适用,而对于含非烃CO 2 、H 2S 等可以用Wichert和Aziz 修正。

天然气物性参数(新)

天然气物性参数(新)

2.1 天然气临界参数计算2.1.1天然气平均分子量天然气是混合气体,分子量不是一成不变的,其平均分子量按Key规则计算:M g y i M i(2.1)式中M g—天然气的平均分子量kg/mol ;M i、 y i—天然气中i 组分的分子量和摩尔分数。

2.1.2天然气的相对密度首先假定空气和天然气都取同一标准状态,天然气的相对密度可用下式表示:gM g M g M g(2.2)r gM a i r 2 8. 9 7 2 9a i r式中r g—天然气的相对密度;g air—同一标准状态下,天然气、空气的密度 kg/m 3;M g M air—天然气、空气的平均分子量kg/mol。

2.1.3拟临界压力P PC和拟临界温度T PC① 组分分析方法p p c yipc iT p c y T i ci(2.3)M g yiMi式中p ci——天然气组分 i 的临界压力 (绝),MPa;T ci——天然气组分 i 的临界温度 ,(273+t)°K 。

② 相关经验公式方法在缺乏天然气组分分析数据的情况下,可引用Standing 在 1941年发表的相关经验公式对于干气ppc4.666 0.1030.252ggTpc93.3 181 g 72g对于湿气ppc4.868 0.35639.7 2gg T pc 103.9 183.339.7 2gg也可以用下面经验关系式进行计算 对于干气p pc 4.8815 0.3861 gT pc 92.2222 176.6667 ggppc4.7780 0.2482 gTpc92.2222 176.6667 gg对于湿气(2.4)(2.5)0.7(2.6)0.7p pc 5.1021 0.6895 gT pc 132.2222 176.6667 g gppc4.7780 0.2482 gTpc106.1111 152.2222 gg0.7(2.7)0.7注意:上式是对于纯天然气适用,而对于含非烃CO 2 、2等可以用WichertH S和 Aziz 修正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档