2020年全国一卷理科数学高考题.pptx
2020年全国统一高考数学试卷(理科)(新课标I)(有详细解析)
2020年全国统一高考数学试卷(理科)(新课标I)班级:___________姓名:___________得分:___________一、选择题(本大题共12小题,共60.0分)1.若z=1+i,则−2z|=()A. 0B. 1C.D. 22.设集合A={−40},B={x|2x+a0},且A B={x|−2x1},则a=()A. −4B. −2C. 2D. 43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. B. C. D.4.已知A为抛物线C:=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A. 2B. 3C. 6D. 95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(i=1,2,,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A. y=a+bxB. y=a+C. y=a+D. y=a+b x6.函数f(x)=−的图像在点(1,f(1))处的切线方程为()A. y=−2x−1B. y=−2x+1C. y=2x−3D. y=2x+17.设函数f(x)=(x+)在[−,]的图像大致如下图,则f(x)的最小正周期为()A. B. C. D.8.(x+y2)(x+y)5的展开式中x3y3的系数为()xA. 5B. 10C. 15D. 209.已知(0,),且3cos2α−8cosα=5,则=()A. B. C. D.10.已知A,B,C为球O的球面上的三个点,为ABC的外接圆,若的面积为4,AB=BC=AC=,则球O的表面积为()A. 64B. 48C. 36D. 3211.已知M:+−2x−2y−2=0,直线l:2x+y+2=0,P为l上的动点,过点P作M的切线PA,PB,且切点为A,B,当|PM||AB|最小时,直线AB的方程为()A. 2x−y−1=0B. 2x+y−1=0C. 2x−y+1=0D. 2x+y+1=012.若2a+log2a=4b+2log4b,则()A. a>2bB. a<2bC. a>D. a<二、填空题(本大题共4小题,共20.0分)13.若x,y满足约束条件则z=x+7y的最大值为__________.14.设,为单位向量,且||=1,则||=__________.15.已知F为双曲线C:−=1(a>0,b>0)的右焦点,A为C的右顶点,B为C上的点且BF垂直于x轴.若AB的斜率为3,则C的离心率为__________.16.如图,在三棱锥P−ABC的平面展开图中,AC=1,AB=AD=,AB AC,AB AD,CAE=,则FCB=__________.三、解答题(本大题共7小题,共80.0分)17.设{}是公比不为1的等比数列,为,的等差中项.(1)求{}的公比;(2)若=1,求数列{}的前n项和.18.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA平面PBC;(2)求二面角B−PC−E的余弦值.19.甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下:累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.已知A,B分别为椭圆E:+=1(a>1)的左、右顶点,G为E的上顶点,=8,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D,(1)求E的方程;(2)证明:直线CD过定点.21.已知函数f(x)=+−x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)+1,求a的取值范围.22.[选修4−4:坐标系与参数方程]在直角坐标系xOy中,曲线的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为4−16+3=0.(1)当k=1时,是什么曲线?(2)当k=4时,求与的公共点的直角坐标.23.[选修4−4:坐标系与参数方程]已知函数f(x)=|3x+1|−2|x−1|.(1)画出y=f(x)的图像;(2)求不等式f(x)>f(x+1)的解集.答案和解析1. D解:由z =1+i 得z 2=2i ,2z =2+2i ,|z 2−2z |=|2i −(2+2i)|=2.2. B解:由已知可得A ={x|−2⩽x ⩽2},B ={x|x ⩽−a2}, 又因为A ∩B ={x|−2⩽x ⩽1}, 所以−a2=1,从而a =−2,3. C解:如图,设正四棱锥的高为h ,底面边长为a,侧面三角形底边上的高为ℎ′, 则由题意可得{ℎ2=12aℎ′ℎ2=(ℎ′)2−(a2)2,故(ℎ′)2−(a2)2=12aℎ′,化简可得4(ℎ′a )2−2(ℎ′a )−1=0,解得ℎ′a=1±√54.负值舍去可得ℎ′a=1+√544.C解:设点A的坐标为(x,y),由点A到y轴的距离为9,可得x=9,由点A到点C的焦点的距离为12,可得x+p2=12解得p=6.5.D解:用光滑的曲线把图中各点连接起来,由图象的走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y=a+bln x.6.B解:先求函数的导函数f′(x)=4x3−6x2,则由函数的几何意义可知在点(1,f(1))的切线斜率为k=f′(1)=−2.又因为f(1)=−1,则切线方程为y−(−1)=−2(x−1),则y=−2x+1.7.C解:由图可知f(−4π9)=cos(−4π9w+π6)=0,所以−4π9w+π6=π2+kπ(k∈Z),化简可得w=−3+9k4(k∈Z),又因为T<2π<2T,即2π|w|<2π<4π|w|,所以1<|ω|<2,当且仅当k=−1时1<|ω|<2,所以w=32,所以最小正周期T=2π|w|=4π3.8.C解:(x+y)5的展开式通项为C5r x5−r y r,r=0,1,2,3,4,5,则(x+y2x )(x+y)5的展开式有xC5r x5−r y r,y2xC5r x5−r y r,取r=3和r=1时可得10x3y3,5x3y3,合并后系数为15,9.A解:∵3cos2α−8cosα=5,∴3(2cos2α−1)−8cosα=5,即3cos2α−4cosα−4=0,(3cosα+2)(cosα−2)=0,α∈(0,π),即cosα=−23,又α∈(0,π),sinα>0,∴sinα=√1−cos2α=√53,10.A解:由圆O1的面积为4π=πr2,故圆O1的半径ρ=2,∵AB=BC=AC=OO1,则三角形ABC是正三角形,=2r=4,得AB=OO1=2√3,由正弦定理:ABsin60∘由R2=r2+OO12,得球O的半径R=4,表面积为4πR2=64π,11.D解:圆M方程化为:(x−1)2+(y−1)2=4,圆心M(1,1),半径r=2,根据切线的性质及圆的对称性可知,则|PM|⋅|AB|=4S△PAM=2|PA|⋅|AM|,要使其值最小,只需|PA|最小,即|PM|最小,此时,=√5,|PA|=√|PM|2−|AM|2=1,∴|PM|=√5(x−1),联立l的方程解得P(−1,0),过点M且垂直于l的方程为y−1=12以P为圆心,|PA|为半径的圆的方程为(x+1)2+y2=1,即x2+y2+2x=0,结合圆M的方程两式相减可得直线AB的方程为2x+y+1=0,12.B解:根据指数及对数的运算性质,4b+2log4b=22b+log2b,∵log2(2b)=log2b+1>log2b,∴22b+log2(2b)>22b+log2b=2a+log2a,根据函数f(x)=2x+log2x是定义域上的增函数,由f(2b)>f(a),得a<2b,13.1解:根据约束条件画出可行域为:由z=x+7y得y=−17x+17z,平移直线y=−17x,要使z最大,则y=−17x+17z在y轴上的截距最大,由图可知经过点A(1,0)时截距最大,此时z=1,14.√3解:|a⃗+b⃗ |2=a⃗2+b⃗ 2+2a⃗⋅b⃗ =2+2a⃗⋅b⃗ =1,a⃗⋅b⃗ =−12,|a⃗−b⃗ |2=a⃗2+b⃗ 2−2a⃗⋅b⃗ =2−2a⃗⋅b⃗ =3,∴|a⃗−b⃗ |=√3.15.2解:由题意可知,B在双曲线C的右支上,且在x轴上方,∵BF垂直于x轴,把x=c代入x2a2−y2b2=1,得y=b2a,∴B点坐标为(c,b2a),又A点坐标为(a,0),∴k AB=b2a−0c−a=3,化简得b2=3ac−3a2=c2−a2,即2a2−3ac+c2=0,解得c=2a或c=a(舍),故e=ca=2.16.−14解:由已知得BD=√2AB=√6,∵D、E、F重合于一点,∴AE=AD=√3,BF=BD=√6,∴△ACE中,由余弦定理得,∴CE=CF=1,BC²=AC²+AB²,BC=2,∴在△BCF中,由余弦定理得.17.解:⑴设等比数列{a n}的公比为q(q≠1),由题意知:2a1=a2+a3,即2a1=a1q+a1q2,所以q2+q−2=0,解得q=−2.(2)若a1=1,则a n=(−2)n−1,所以数列{na n}的前n项和为T n=1+2×(−2)+3×(−2)2+⋯+n(−2)n−1,则−2T n=−2+2×(−2)2+3×(−2)3+⋯+n(−2)n,两式相减得3T n=1+(−2)+(−2)2+(−2)3+(−2)n−1−n(−2)n=1−(−2)n1−(−2)−n(−2)n=1−(3n+1)(−2)n3,所以T n=1−(3n+1)(−2)n9.18.(1)证明:不妨设⊙O的半径为1,则AO=OB=OC=1,AE=AD=2,AB=BC=CA=√3,DO=√DA2−OA2=√3,PO=√66DO=√22,PA=PB=PC=√PO2+AO2=√62,在△PAC中,PA2+PC2=AC2,故PA⊥PC,同理可得PA⊥PB,PB∩PC=P,PB,PC⊂平面PBC,∴PA ⊥平面PBC .(2)解:以OE ,OD 所在直线分别为y ,z 轴,圆锥底面内垂直于OE 的直线为x 轴,建立如图所示的空间直角坐标系O −xyz ,则有B (√32,12,0),C (−√32,12,0),P (0,0,√22),E (0,1,0), BC ⃗⃗⃗⃗⃗ =(−√3,0,0),CE ⃗⃗⃗⃗⃗ =(√32,12,0),CP ⃗⃗⃗⃗⃗ =(√32,−12,√22), 设平面PBC 的法向量为n 1⃗⃗⃗⃗ =(x 1,y 1,z 1),则{BC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0CP ⃗⃗⃗⃗⃗ ⋅n ⃗ =0,解得n 1⃗⃗⃗⃗ =(0,√2,1), 同理可得平面PCE 的法向量n 2⃗⃗⃗⃗ =(√2,−√6,−2√3), 由图形可知二面角B −PC −E 为锐角,则cosθ=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ ||=2√55, 故二面角B −PC −E 的余弦值为2√55.19. 解:(1)甲连胜四场只能是前四场全胜,则P =(12)4=116.(2)设甲输掉一场比赛为事件A ,乙输掉一场比赛为事件B ,丙输掉一场比赛为事件C , 四场比赛能结束为事件N ,则P(N)=P(ABAB)+P(ACAC)+P(BABA)+P(BCBC)=116×4=14所以需要进行第五场比赛的概率为P =1−P(N)=1−14=34(3) 丙获胜的概率为:P =P (ABAB )+P(BABA)+P(ABACB)+P(BABCA)+P(ABCAB)+P(ABCBA) +P(BACAB)+P(BACBA)+P(ACABB)+P(ACBAB)+P(BCABA)+P(BCBAA) =(12)4×2+(12)5×10=716.20. 解:由题意A (−a,0),B (a,0),G (0,1),AG ⃗⃗⃗⃗⃗ =(a,1),GB ⃗⃗⃗⃗⃗ =(a,−1), AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =a 2−1=8⇒a 2=9⇒a =3, ∴椭圆E 的方程为x 29+y 2=1.(2)由(1)知A (−3,0),B (3,0),P (6,m ),则直线PA 的方程为y =m 9(x +3),联立{y =m 9(x +3)x 29+y 2=1⇒(9+m 2)x 2+6m 2x +9m 2−81=0,由韦达定理−3x C =9m 2−819+m 2⇒x C =−3m 2+279+m 2,代入直线PA 的方程y =m 9(x +3)得,y C =6m9+m 2,即C (−3m 2+279+m 2,6m9+m 2),直线PB的方程为y=m3(x−3),联立{y=m3(x−3)x29+y2=1⇒(1+m2)x2−6m2x+9m2−9=0,由韦达定理3x D=9m2−91+m2⇒x D=3m2−31+m2,代入直线PA的方程y=m3(x−3)得,y D=−2m1+m2,即D(3m2−31+m2,−2m1+m2),∴直线CD的斜率k CD=6m9+m2−−2m1+m2−3m2+279+m2−3m2−31+m2=4m3(3−m2),∴直线CD的方程为y−−2m1+m2=4m3(3−m2)(x−3m2−31+m2),整理得y=4m3(3−m2)(x−32),∴直线CD过定点(32,0).21.解:(1)当a=1时,f(x)=e x+x2−x,f′(x)=e x+2x−1,记g(x)=f′(x),因为g′(x)=e x+2>0,所以g(x)=f′(x)=e x+2x−1在R上单调递增,又f′(0)=0,得当x>0时f′(x)>0,即f(x)=e x+x2−x在(0,+∞)上单调递增;当x<0时f′(x)<0,即f(x)=e x+x2−x在(−∞,0)上单调递减.所以f(x)=e x+x2−x在(−∞,0)上单调递减,在(0,+∞)上单调递增.(2)①当x=0时,a∈R;②当x>0时,f(x)≥12x3+1即a≥12x3+x+1−e xx2,令ℎ(x)=12x3+x+1−e xx2,ℎ′(x)=(2−x)(e x−12x2−x−1)x3记m(x)=e x−12x2−x−1,m′(x)=e x−x−1令q(x)=e x−x−1,因为x>0,所以q′(x)=e x−1>0,所以m′(x)=q(x)=e x−x−1在(0,+∞)上单调递增,即m′(x)=e x−x−1> m′(0)=0所以m(x)=e x−12x2−x−1在(0,+∞)上单调递增,即m(x)=e x−12x2−x−1>m(0)=0,故当x∈(0,2)时,ℎ′(x)>0,ℎ(x)=12x3+x+1−e xx2在(0,2)上单调递增;当x∈(2,+∞)时,ℎ′(x)<0,ℎ(x)=12x3+x+1−e xx2在(2,+∞)上单调递减;所以[ℎ(x)]max=ℎ(2)=7−e24,所以a≥7−e24,综上可知,实数a的取值范围是[7−e24,+∞).22.解:(1)当k=1时,曲线C1的参数方程为{x=costy=sint,化为直角坐标方程为x2+y2=1,表示以原点为圆心,半径为1的圆.(2)k=4时,曲线C1的参数方程为{x=cos 4ty=sin4t,化为直角坐标方程为√x+√y=1,曲线C2化为直角坐标方程为4x−16y+3=0,联立{√x+√y=14x−16y+3=0,解得{x=14y=14,所以曲线C1与曲线C2的公共点的直角坐标为(14,14 ).23.解:(1)函数f(x)=|3x+1|−2|x−1|=,图像如图所示:(2)函数f(x+1)的图像即为将f(x)的图像向左平移一个单位所得,如图,联立y=−x−3和y=5x+4解得交点横坐标为x=−,原不等式的解集为.。
理科数学全国卷1(2020年整理).pptx
2
4
4
y=f(x)图像的对称轴,且 f(x)在 1π8,356π单调,则 ω 的最大值为
(A)11
(B)9
(C)7
(D)5
【参考答案】B【解析】因为
x=
π 4
为
f(x)的零点,所以
πω 4
φ
k
1π
,因为
x
π 4
为
y=f(x)图像的对称轴,所以
π 4
ω
φ
2k21
π ,两式作差,可得ω 2
2k
2 k
11
(13)设向量 a (m,1) , b (1,2) ,且,则 m
学海无 涯
2
2
2
【参考答案】﹣2【解析】 a b 1 m2 9 , a b m2 11 4
所以可解得 m=﹣2
(14) (2x x )5 的展开式中, x3 的系数是
(用数字填写答案)
【参考答案】10【解析】二项展开式Tk 1
线 m∥直线 BD ,直线 n∥直线 A1B,做辅助线 A1D,可构成正方体 ABCD﹣
A1B1C1D1 中的一个等边 ΔA1BD,所以 m,n 成角为 600,所以sin 600
3 2
(12)已知函数 f(x)=sin(ωx+φ) (ω﹥0,|φ|≤ π ),x= π 为 f(x)的零点, x π 为
2
2
2
1
执行第二步:x2=0,y2=1,n2=2, x3 x2
n2 1 1 , 22
y3 n2y2 2
判断 x2 y2 36?(否),n n 1 3
3
3
3
2
执行第三步:x3= 1 2
,y3=2,n3=3, x4
2020年高考全国一卷理科数学试卷.pptx
理科数学 第 41 页(共 4 页)
(一)必考题:共 60 分。 17. (12 分 )
设{an}是公比不为 1 的等比数列, a1为 a2、a3 的等差中项。 1 求{an}的公比; 2 若 a1 1,求数列{nan}的前 n 项和。
18. (12 分 ) 如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE = AD。 ABC 是底面的内接
1 当 k = 1 时,C1 时什么曲线? 2 当 k = 4 时,求 C1 与 C2 的公共点的直角坐标。
23. [选修4 5 :不等式选讲](10 分) 已知函数 f (x) | 3x 1| 2 | x 1|。
1 画出 y f (x) 的图像; 2 求不等式 f (x) f (x 1) 的解集。
C. a b2
D. a b2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x y 2 0,
13. 若 x、y 满足约束条件x y 1 0, 则 z x 7y 的最大值为
。
y 1 0,
14. 设 a、b |
。
15. 已知 F 为双曲线C : x2 y2 1(a 0,b 0) 的右焦点,A 为 C 的右顶点,B 为 C 上的点,且 BF a2 b2
线 PA、PB,切点为 A、B,当| PM | | AB |最小时,直线 AB 的方程为
A. 2x y 1 0 B. 2x y 1 0 C. 2x y 1 0 D. 2x y 1 0
1 2 . 若 2a log a 4b 2 log b ,则
2
4
A. a 2b
B. a 2b
7. 设函数 f (x) cos(x ) 在[, ] 的图像大致如下图,则 f (x) 的最小正周期为
2020全国高考数学I卷_理科数学
15.已知
F
为双曲线
C:
x2 a2
−
y2 b2
=1
(a > 0,b > 0) 的右焦点,A 为 C 的右顶点,B 为 C 上的点,且
BF 垂直于 x 轴.若 AB 的斜率为 3,则 C 的离心率为_________.
16.如图,在三棱锥 P -ABC 的平面展开图中,AC = 1,AB = AD = 3 ,AB⊥AC,AB⊥AD,∠ CAE = 30o,则 cos∠FCB = _________.
1.若 z = 1+i,则|z2-2z| =(
)
A.0
B.1
C. 2
D.2
2.设集合 A = {x|x2-4 ≤ 0},B = {x|2x+a ≤ 0},且 A∩B = {x|-2 ≤ x ≤ 1},则 a =(
)
A.-4
B.-2
C.2
D.4
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边 长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的 边长的比值为( )
B. 7 6
C. 4 3
D. 3 2
8.(x+ y2 )(x+y)5 的展开式中 x3y3 的系数为( x
A.5
B.10
) C.15
9.已知 α∈(0,π),且 3cos2α-8cosα = 5,则 sinα =( )
A. 5 3
B. 2 3
C. 1 3
D.20 D. 5
9
10.已知 A,B,C 为球 O 的球面上的三个点,⊙ O1 为△ABC 的外接圆,若⊙ O1 的面积为 4π,AB
理科数学试题第 3 页(共 6 页)
2020年高考数学(理科)真题试卷(全国Ⅰ卷)
2020高考数学(理科)真题试卷(全国Ⅰ卷)注意事项:1 .答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上 .2 .回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑 . 如需改动,用橡皮擦干净后,再选涂其他答案标号 . 回答非选择题时,将答案写在答题卡上。
写在本试卷上无效 .3 .考试结束后,将本试卷和答题卡一并交回 .一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.若z=1+ i,则|z 2–2 z|=(______)A.0B.1C.D.22.设集合 A={ x| x 2–4≤0}, B={ x|2 x+ a≤0},且 A∩ B={ x|–2≤ x≤1},则 a =(______) A.–4B.–2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为(______)A. B. C. D.4.已知 A为抛物线 C: y 2=2 px( p>0)上一点,点 A到 C的焦点的距离为12,到 y轴的距离为9,则 p=(______)A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率 y和温度 x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率 y和温度 x的回归方程类型的是(______)A.B.C.D.6.函数的图像在点处的切线方程为(______)A.B.C.D.7.设函数在的图像大致如下图,则 f( x)的最小正周期为(______)A.B. C. D.8.的展开式中 x 3y3的系数为(______)A.5B.10C.15D.209.已知,且,则(______)A.B.C.D.10.已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为(______)A.B.C.D.11.已知⊙ M:,直线:,为上的动点,过点作⊙ M 的切线,切点为,当最小时,直线的方程为(______)A.B.C.D.12.若,则(______)A.B.C.D.二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
精品解析:2020年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
★绝密 启用前2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生一定将自己的姓名.考生号等填写在答题卡和试题指定位置上.2.回答选择题时,找出每个小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试题和答题卡一并交回.一.选择题:本题共12小题,每个小题5分,共60分。
在每个小题给出的四个选择项中,仅有一项是符合题目要求的.1.若z=1+i ,则|z 2–2z |=()A. 0 B. 1C.2D. 2【答案】D 【分析】【分析】由题意首先求得 z 2 - 2z 的值,然后计算其模即可.2=(1 i +)2=2i ,则z 2- 2z = 2i - 2(1+ i )= -2【详解】由题意可得:- 2z = -2 = 2.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =(z .z2故)A. –4B. –2C. 2D. 4【答案】B 【分析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.A = x | -2 ≤ x ≤ 2},{【详解】求解二次不等式 x 2 -4≤ 0 可得:⎧⎩a ⎫2⎭2x + a ≤ 0 B = ⎨x | x ≤ - ⎬求解一次不等式可得:.a A ⋂ B = x | -2 ≤ x ≤1{},故:- =1 a = -2,解得:由于.2故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()5 -15 -1 5 +1 5 +1A.B.C.D.4242【答案】C 【分析】【分析】1设CD = a ,PE = b ,利用PO 2 = CD ⋅ PE a ,b 得到关于的方程,解方程即可得到答案.22a 【详解】如图,设CD = a ,PE = b ,则 PO ,=PE OE 22-=b 2-41a 21b b PO 2= ab ,即b 2-= ab 4( )2 - 2⋅ -1 = 0由题意,化简得,242a ab 1+ 5=(负值舍去).解得a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A. 2B. 3C. 6D. 9【答案】C 【分析】【分析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知故选:C.pp | AF |= x A + =12 ,即12 = 9 +p =6 .,解得22【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 (x , y )(i =1,2, , 20) 得到下面的散点图:i i 据此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是(y = a + bx)y = a + bx 2B.A.y = a + b ln xD.C. y = a + b e x 【答案】D 【分析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,y x y = a + b ln x 因此,最适合作为发芽率 和温度 的回归方程类型的是故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题..6.函数 f (x ) = x 4 - 2x 3 的图像在点(1,f (1))处的切线方程为()y = -2x -1y = -2x +1A.C. B.D.y = 2x -3y = 2x +1【答案】B 【分析】【分析】y = f x ()的导数 f '(x ) f (1)和 f '(1)求得函数【详解】,计算出的值,可得出所求切线的点斜式方程,化简即可.f x = x 4 - 2x 3()∴ f ' x = 4x 3 - 6x 2 ,∴ f (1)= -1, f '(1)= -2,( ),y +1= -2 x -1),即 y = -2x+1.(因此,所求切线的方程为故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题πf (x ) = cos( x + ) 在[-π,π]7.设函数的图像大致如下图,则f (x )的最小正周期为()610π7πA.C.B.D.94π63π32【答案】C 【分析】【分析】⎛ 4π⎫⎭⎛ 4ππ ⎫6 ⎭⎛ 4π⎫⎭由图可得:函数图象过点- ,0⎪,即可得到cos - ⋅ω + ⎪ = 0,结合 - ,0⎪ f (x )是函数⎝9⎝9⎝94πππ3x图象与 轴负半轴的第一个交点即可得到-⋅ω + = - ,即可求得ω =9622,再利用三角函数周期公式即可得解.⎛ 4π⎫⎭【详解】由图可得:函数图象过点- ,0⎪,⎝9⎛ 4ππ ⎫6 ⎭将它代入函数( )可得:cos - ⋅ω + ⎪ = 0f x ⎝9⎛ 4π⎫⎭ -,0⎪ f x ( )图象与 轴负半轴的第一个交点,x 又是函数⎝94πππ3所以 -⋅ω + = - ,解得:ω =96222π 2π 4πT ===所以函数( )的最小正周期为f x ω323故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.y 28. (x + )(x + y )5 的展开式中x 3y 3的系数为()xA. 5B. 10C. 15D. 20【答案】C 【分析】【分析】y 2⎫x5-ry rr ∈ N x +求得 (x + y )5展开式的通项公式为T r +1= C 5r(且r ≤ 5),即可求得⎛与(x + y )5x ⎭⎝展开式的乘积为C r 5x 6-r y r或C 5rx 4-r y r +2形式,对 分别赋值为3,1即可求得r x 3y 3的系数,问题得解.【详解】 (x + y )5展开式的通项公式为Tr +1= C 5r x 5-r y r (r∈ N 且 r ≤ 5)⎛2⎫y x +⎪(x + y )5展开式的乘积可表示为:所以与x ⎭⎝y 2y 2xT r +1 = xC 5x5-r r y r= C 5r x6-ry r=x 5-r = C 5x 4-r y r +2C 5r y r r 或T r +1x xxT r +1 = C 5r x 6-r y r r = 3,可得: xT 4 = C 53x 3y 333x y 的系数为10在在中,令,该项中,y 2y 2T r +1 = C 5r x 4-r y r +2r =1,可得: T 2 = C 51x 3y 3x 3y 3的系数为5中,令,该项中x xx 3y 3的系数为10 + 5 =15所以故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法.转化能力及分析能力,属于中档题.9.已知α∈(0,π),且3cos2α -α = 5 ,则sin α =()8cos 52A.C. B.3315D.39【答案】A 【分析】【分析】cos αcos α的一元二次方程,求解得出用二倍角的余弦公式,将已知方程转化为关于,再用同角间的三角函数关系,即可得出结论.【详解】3cos 2α - 8cos α = 5,得 6cos 2 α -8cos α -8 = 0 ,2α - 4 cos α - 4 = 0 ,解得cos α = -cos α = 2(舍去),即 3cos 2或35又 α ∈(0,π ),∴sin α = 1- cos 2 α =.3故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.A ,B ,C 为球O的球面上的三个点,⊙OABC 的外接圆,若⊙O的面积为4π10.已知为A ,11AB = BC = AC = OO 1 ,则球O的表面积为()A. 64πB.48πC.36πD. 32π【答案】A 【分析】【分析】由已知可得等边A ABC 的外接圆半径,进而求出其边长,得出OO1的值,根据球截面性质,求出球的半径,即可得出结论.【详解】设圆Or 半径为,球的半径为 R ,依题意,1得πr = 4π,∴r = 22,由正弦定理可得 AB = 2r sin 60︒ = 2 3 ,∴OO = AB = 2 3 ,根据圆截面性质OO ⊥平面 ABC ,11∴OO ⊥ O A ,R = OA = OO 2+ O 1A 2 = OO 12 + r 2 = 4,111∴球O 的表面积 = πS 4 R 2 64π .=故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.11.已知⊙M : x 2线PA , PB ,切点为 A , B ,当| PM | ⋅| AB |最小时,直线 AB 的方程为(2x - y -1= 0 2x + y -1= 02x - y +1= 0+y 2 −2x −2y −2 =0,直线 :l 2x +y +2 =0, P 为 上的动点,过点 P 作⊙M 的切l )2x + y +1= 0D.A. B. C.【答案】D 【分析】【分析】A , P ,B ,M ⊥由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且 AB MP ,根据PM ⋅ AB MP PM ⋅ AB = 2S △PAM = 2 PA MP ⊥ l时,可知,当直线最小,求出以为直径的圆的方程,根据圆系的知识即可求出直线 AB 的方程.2⨯1+1+ 2【详解】圆的方程可化为(x 1) (y 1)-2+-2= d == 5 > 24 ,点 M 到直线 的距离为l 22+12l,所以直线 与圆相离.A , P ,B ,M ⊥依圆的知识可知,四点四点共圆,且 AB MP ,所以1PM ⋅ AB = 2S △PAM = 2⨯ ⨯ PA ⨯ AM = 2 PA PA = MP 2- 4,而,2当直线 MP ⊥ l 时,MP = 5PA =1,此时 PM ⋅ AB ,最小.min min ⎧1212⎪ y = x +⎧x = -1⎩y = 01112MP : y 1-= ( - ) y = x +x 1⎨⎨∴即,由解得,.22⎪⎩2x + y + 2 = 0所以以 MP 为直径的圆的方程为(x -1 x +1 + y y -1 = 0)()(),即x 2+ y 2 - y -1= 0,2x + y +1= 0两圆的方程相减可得:,即为直线AB 的方程.故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.2a+ log 2 a = 4b + 2 log 4 b,则(12.若)A. a > 2bB. a < 2bC. a > b 2D. a < b 2【答案】B 【分析】【分析】设 f (x ) = 2x + log 2 x ,利用作差法结合 f (x ) 的单调性即可得到答案.f (x ) 为增函数,因为2a+ l og 2 a = 4b+ 2 l og 4 b = 22b + l og 2 b【详解】设 f (x ) = 2x + log 2 x ,则1f (a ) - f (2b ) = 2a + log 2 a - (22b + log 2 2b ) = 22b + log 2 b - (22b + log 2 2b ) = log 2 = -1< 0所以所以,2f (a ) < f (2b ) a < 2b ,所以.f (a ) - f (b 2 ) = 2a log 2+ a -(2b 2+2= 22b + log 2 b - (2b 2 + log 2 b 2 ) = 22b - 2b 2 - log 2 b log 2b ),当b =1时, f (a ) - f (b 2 ) = 2 > 0,此时 f (a ) > f (b 2 )a >b 2,有当b = 2 时, f (a ) - f (b 2 ) = -1< 0,此时 f (a ) < f (b 2 )a <b 2,有,所以C .D 不正确.故选:B.【点晴】本题主要考查函数与方程的综合应用,涉及到构造函数,利用函数的单调性比较大小,是一道中档题.二.填空题:本题共4小题,每个小题5分,共20分。
2020普通高等学校招生全国统一考试 全国一卷 理科数学
2020年普通高等学校招生全国统一考试理科数学本试卷共5页,23题(含选考题),全卷满分150分。
考试用时120分钟。
注意事项:★祝考试顺利★1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若i z +=1,则=-z z 220.A 1.B 2.C 2.D 2.设集合{}042≤-=x x A ,{}02≤+=a x x B ,且{}12≤≤-=x x B A ,则=a 4.A -2.B -2.C 4.D 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它们的形状可视为一个正四棱锥。
以该正四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为415.A -215.B -415.C +215.D +4.已知A 为抛物线()02:2>=p px y C 上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则=p 2.A 3.B 6.C 9.D 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()()20,,2,1, =i y x i i 得到下面绝密★启用前%100%80%60%40%200010203040的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是bxay+=.A2.B bxay+=x beay+=.C xbay ln.D+=6.函数()342xxx f-=的图像在点()()1,1f处的切线方程为12.A--=xy12.B+-=xy32.C-=xy12.D+=xy7.设函数()⎪⎭⎫⎝⎛+=6cosπωxxf在[]ππ,-的图像大致如下图。
2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
2020年高考理科数学试卷(全国1卷)(附详细答案)
2 绝密★启用前2020 年普通高等学校招生全国统一考试理科数学本试卷共 5 页,23 题(含选考题)。
全卷满分 150 分。
考试用时 120 分钟。
★祝考试顺利★ 注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效。
5. /6.考试结束后,请将本试卷和答题卡一并上交。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若 z = 1+ i ,则22z z -=( )A .0B .1C .D .2解: z = 1+ i ⇒ z 2 - 2z=z ( z - 2)= (1+ i )( i -1)=i 2-12= - 2⇒| z 2 - 2z|=2. 选D . 2.设集合 A ={x |x 2 - 4 ≤ 0},B ={x |2x +a ≤ 0}, 且A∩B = {x | -2 ≤ x ≤ 1}, 则a =( ) A .!B .-4 B .-2 C .2 D .4解:A=[-2,2], B=(-∞,2a -], A ∩B=[-2,1]⇒2a-=1⇒a=- 2. 选B . 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其 侧面三角形底边上的高与底面正方形的边长的比值为( )A.514-B.512-C.514+D.512+解:设正四棱锥的底面边长为a ,高为h ,斜高为b ,则222211154210224b b b ab h b a a a a +⎛⎫⎛⎫⎛⎫==-⇒--=⇒=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( 舍负). 选 C. 4.已知 A 为抛物线C : y 2 = 2 px ( p > 0) 上一点,点 A 到C 的焦点的距离为 12,到 y 轴<的距离为 9,则 p = ( ) A .2B .3C .6D .9解:91262pp +=⇒=. 选 C. 5.某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据( xi , yi )( i = 1 , 2 ,…, 20 )得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归方程类型的是( )A . y = a + bxB . y = a + bx 2C . y = a + bexD .y = a + b ln x 解:选D . 《6.函数 f ( x ) = x 4 - 2x 3 的图像在点(1,f (1)) 处的切线方程为( )A . y = -2x -1B . y = -2x +1C . y = 2x - 3D . y = 2x +1 解:'32'()46,(1)1,(1)2f x x x f k f =-=-==-∴切线方程为(1)2(1)y x --=--,即21y x =-+. 选B . 7.设函数 f ( x ) =cos()6x πω+在[-π,π] 的图像大致如下图,则 f ( x ) 的最小正周期为( )A.109π B.76πC.43πD.32π解:由图可知 T<π-(-π)<2T, ) 即222212πππωωω<<⨯⇒<<又42,962k k Z πππωπ⎛⎫-+=-∈ ⎪⎝⎭⇒92(2),43k k Z ω=-∈ ∴当0k =时,32ω=,从而 43T π=,选C . 8.()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中 x 3 y 3 的系数为( )A . 5B .10C .15D . 20解:()()()22555y y x x y x x y x y x x ⎛⎫++=+++ ⎪⎝⎭()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中含 x 3 y 3 的项为22234455y xC x y C x y x +∴()25y x x y x ⎛⎫++ ⎪⎝⎭的展开式中 x 3 y 3 的系数为245515C C +=, 选C . 9.~10.已知α ∈(0, π) ,且3cos2α -8cos α = 5 ,则sin α = ( )523 C.1353cos2α -8cos α = 5⇒3(2cos 2α -1)-8cos α -5=0⇒(3cos α +2)(cos α -2)=0∴cos α =23-这里α ∈(0, π) ,所以2225sin 1cos 1()3αα=-=--=,选A. 10.已知 A ,B ,C 为球 O 的球面上的三个点, O 1 为△ABC 的外接圆.若 O 1 的面积为4π , AB =BC =AC = OO 1 ,则球 O 的表面积为 A .64π B .48πC .36πD .32π—解:设AB =BC =AC = OO 1 = a ,则O 13r = 又22234123O S r a a πππ⎛⎫===⇒= ⎪ ⎪⎝⎭,从而 24r = 在Rt∆O 1OA 中,22216R a r =+=2464S R ππ==球选A.11.已知M :: x 2 + y 2 - 2x - 2y - 2 = 0 ,直线 l : 2x + y + 2 = 0 ,P 为 l 上的动点,过点P 作M 的切线 PA ,PB ,切点为 A ,B ,当 |PM | |AB| 最小时,直线 AB 的方程为( )A . 2x - y -1 = 0B . 2x + y -1 = 0C . 2x - y +1 = 0D . 2x + y +1 = 0 解:22:(1)(1)4M x y -+-=的圆心为M (1,1),半径为2—PA ,PB 是M 的切线,设PM ∩AB=C ,则PA ⊥AM ,PM ⊥ABAC AM Rt PAMRt ACM PA PM ∆∆⇒=,即1224ACAMPM AB AM PA PA PA PM=⇒==当 |PM| |AB | 最小时,PA 最小,此时,PM ⊥l ,AB // l,22521PM ==+由2AM MC MP =,即225MC =,得5MC =∴555PC PM MC =-==设AB:2x+y+c =0155c =⇒= ∴ AB:2x+y+1=0, 选 D .12.若242log 42log a ba b +=+ ,则( ) ,A .a >2bB .a <2bC .a >b 2D .a <b 2解:显然2()2log xf x x =+是R +上的增函数若a <2b ,则()(2)f a f b <,即2222log 2log 2a ba b +<+………………………❶又22422log 42log 2log a b b a b b+=+=+ ………………………………………❷ ❶-❷得220log 2log 1b b <-=怛成立,选 B .二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】C (微信公众号:数学研讨) 【解析】如图,设正四棱锥的高为方,底面边长为々,侧面三角形底边上的
高为h',则依题意有:<
护=一 ahr
I
2
,因此有 h,2-(-f =-ah',化
玲=砂_(;)2
22
简得4(-)2-2(-)-U0,解得四=2^呈.
aa
a4
1
学海无涯
已知A为拋物线C:/ = 2^O>0)上一点.点也到。的焦点的距离为12,到p抽的距离为9.则尸=
【答案il.t微信公众号:数学研讨)
Y
【解析】:如图,当直线z = x + 7j■经过
^4(1,0)时 Z 取到最大值 1.
~~
/ \/
_ 二.'
学海无涯
14.设口,6为单位向量,且"+*=1,贝lj |t7-d| =_____ ___
【答案】:V3-(微信公众号:数学研讨) 【解析】:由已知可得|a + &|2 = (a + d)-(a + &) = + 时 + 2ab = 1 +1 + 2ab = L 故沥二所以 |々_《二(g —3).(Q 一白)二同2 + "「- 2ab = 3 , \a-b\ = 15.己知卩为双曲线。:与-「= 10>0寸>0)的右焦点,A^C的右顶点,B为。上的点且BE垂直于 a' b *轴.若的斜率为3,则C的离心率为 __.
D. 2K+* + 1 = 0
【答案】;D (微信公众号:数学研讨)
【解析】:OM:(x-l)2+(^-l)2=4r 因为 ^=l|PA/||v4B|=2^=|M||^|=2|Pv4|=27rPA7M,
所以|WH如I最小,即|W|最小,此时W与直线/垂直,PM:y = -x + y
直线户A/与直线,的交点P(-l,0), 过直线外一点尸作汕的切线所得切点弦所在直线方程为:2x + * + l=0,所以选D.
16.如图,在三棱锥P-ABC的平面展开图中,JC = 1 , AB = AD = >]3 , AB ± AC , AB 1 AD ,
I cos ZCAE = 30,贝 rj cos ZFCB = ___. 【答
案】:-](微信公众号:数学研讨) 【解
析】:由已知,得BD = -J2AB = V6 , ■-■D,E,F 重合于一点,AE = AD = ^3 , BF = BD = ^6 , .•.在MCE中,由余弦定理,得 CE2 AC2 +AE2-2AC-AE-cos ZCAE^l2+ -2xlx.^3cos30 ^1,
进行下一场比赛,负者下一场轮空,直至有一人淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其 中一人被淘汰,另一人最终获胜,比赛结束.
经抽签,甲、乙首先比赛,丙轮空,设每场比赛双方获胜的概率都为m
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率
(3)求丙最终获胜的概率.
7
〜二数字研讨
学海无涯
D, 2
【答案】:C (微信公众号:数学研讨)
"9、 【解析】:由图知/ 4兀
cos
4 71 71
—--々)+ —
96
(jteZ ),又因为T<2n<2T ,即吝<=02,花所〈以會一,—所a>以+ 1—<=同—<+2A,当JL且( i仅e Z当)4,化= 简-1时得1少<=同- <2,所
&> = — »最小正周期『=咎=竺故选C.
0 10 3 30
40 温度/。C
由此触点图.在lire至4EC之间,下面四个回归方程类型中最适宜作为很芽率『和温度工的回归方
程类型的是
A. y = 口 + bx
B. y =
C. y = CJ + be?;
D. y= a +iln
【答案】D (微信公众号:数学研讨) 【解析】用光滑旳曲线把图中各点连接起来「由图像的大致走向判断•此函数应该是对数函数类型的. 故
把=产①=_2,又因为,⑴= -1.由直线方程的点斜式得切线方程为:y-(-l) = -2(x- 1).化简
得 y = -2x+ 1.
设函数/(:c) = L:os
xc+di:— 在[F]的图像大致如下副 则川)的最小正周期为 "二駐字硏讨
2
学海无涯
A, 10兀
~9 ~
B, 7兀 V 4 71 3 3兀
:.CE = CF = \.
.•.在A5方中,由余弦定理,得
BC2 + CF2 _ BF2 I2 + 22 -(向2 1 cos ZFCB =--------------=-------;----=——,
2BC-CF 2x1x2 4
三' 解答题:共70分。解答题应写岀文字说明' 证明过程或演算步骤。第17〜21题为必考
9.已知ae(0»万),且3cosa-8cosa = 5,则sintx= (
7
3 【答案】:A (微信公众号:数学研讨)
【解析】:原式化简得3cos2 a-4cosa-4-0,
污
in a ----
3 10,已知工,B , C为球。的球面上D. 9
解得cos a
?
一,或2(舍),又ae(0, TT),所
以
3
G)q为△48C的外接圆,若oq的面积为4兀,
AB = BC = AC = OOX ,则球。的表面积为
A. 64 兀
B, 48 兀
3 6兀
【答案丄A (微信公众号:数学研讨)
D. 32兀
C6数学硏讨
3
学海无涯
【解析】:设AB = a , 脆]的半径为一球。的半径为R,所以紀=4冗,所以
r = 2, ^\r = O,A = —a,所以 a = 2 也,Rz = 00.2 + 0.A1 = 4 ,所 以球。的
【答案】:CD
19 9
—5 C2) —; (3)—.(微信公众号:数学研讨)
【解析】:CD 甲16连续3胜2四场3只2 能是前四场全胜:尸=(!)4=£
C2)情景一: 前3场各负一场:片=
1
32
情景二:前3场比赛结束是乙被淘汰(其中甲胜一场),最后两场比赛结束,又分为甲胜或丙胜:
0),击=(亭,一!,乎)。
设平面P3C的法向量为无,由
(0,72,1);
同理可得
同理可求得平面FCE的法向量为无= (&-屈-2立),
故 COS。=
学,故二面角B-PC-E的余弦值为乎.
19. (12 分) 甲、乙、丙三位同学进行羽毛球比赛,预定赛制如下; 累计负两场者被淘汰;比赛前抽签决定首次比赛的两个人,另一人轮空:每场比赛的胜者与轮空者
学海无涯
2020年普通高等学校招生全国统一考试理科数学试卷(理科) (全国新课标D
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
L 若 z = l+i,则lb
【答案】D (微信公众号:数学研讨) 【解析】由 z = l+i 得,?=2i, 2z = 2+2i,所以 |z2—2z|=|2i — (2+2i)|=2. 2.设集合4 = {x|U _4W0}, 3 = {x|2x+aW0},且刀Pl3 = {x|-2WxWl},则白=
9 62
4
2
同3
以
,2
8. (x + )(%+ jv)5的展开式中3的系数为 (
A, 5
B, 10
【答案】:C (微信公众号:数学研讨)
C. 15
D. 20
【解析】:(*+疗 的通项公式为己;『:/(尸=0丄2,3,4,5),所以尹二1时, —C^x4y = 5x3y3, r = 5
x-*
“
时xC^xy =10x3/,所以矿y3的系数为15.
度舞件下进行种子很芽实验,由实验数据$ = L2,…,20)得到下面的散点图:
100% ----------------------------------------
120% ---------------------------------------------------
0 ------------------------------------------------
3
表面积为4nR2 =64n,故选A.
11. 己知QM:xl +y2-2x-2y-2 = 0 ,直线,:2x + y + 2 = 0 , P为,上的动点,过点P作的切线R4 ,
P8,且切点为48,当\PM\-\AB\最小时,直线朋的方程为
A・ 2x-y~l = 0
B. 2x+y-l-0
C. 2x-夕+1 = 0
令f(x) = T +logz*,由指对函数单调性可得/⑴在(0,*o)内单调递增,
由/(。)</(2。)可得;a <26,所以选B.
二、填空题:本题共4小题,每小题5分,共20分。
2/X + N — 2《0, 13. 若x, y满足约束条件,x-y-1^0,则z-x + 7y的最大值为____.
.Z河,
【答案】B (微信公众号:数学研讨) 【解析】由己知得/ = {x|_2WxW2} , 8={X|XW-4,又因为』= -2WxWl},所以有
=1 ?从而々=-2. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正