交通信号灯控制系统
基于plc的交通信号灯控制系统
基于plc的交通信号灯控制系统随着城市交通的日渐拥堵,如何高效地控制车辆行驶已经成为各个城市管理部门面临的重要问题之一。
交通信号灯控制系统就是这样一个能够有效管理城市道路流量的关键性系统,它能够保证城市交通的有序性和安全性。
本文将探讨基于PLC 的交通信号灯控制系统的关键技术和应用,并提供一些实用的建议。
一、PLC的定义和特点PLC是可编程逻辑控制器的英文缩写,主要用于对生产线的自动化进行控制。
PLC的特点主要如下:1. 单元化结构:PLC是由多个模块组成的,它们的连接可以通过接头进行实现,这使得PLC在故障排查和升级换代补充等方面具有非常高的灵活性。
2. 可编程性:PLC是一种具有可编程性质的控制器,它可以通过编写软件控制逻辑来完成不同的任务。
这个特点无疑给PLC带来了灵活性和处理许多任务的能力。
3. 开放性:PLC在不同设备之间的通信上没有固定界面,因此可以与各类设备进行通信和控制,从而为企业实现自动化工厂的高效运行打下了基础。
二、基于PLC的交通信号灯控制系统的优势交通信号灯控制系统是一种广泛应用的城市管理系统,它可以改善城市交通状况,保障公众出行的安全和便捷。
在传统的交通信号灯控制系统中,信号灯的控制主要依靠人工控制,这种方式存在控制不准确,响应时间慢等问题。
而基于PLC的交通信号灯控制系统具有以下明显优势:1. 灵敏度高:基于PLC的交通信号灯控制系统具有非常高的信号响应速度,它可以迅速捕捉到交通状况的变化,并做出快速的响应。
这使得交通信号灯控制系统在处理大量车辆流量时非常可靠。
2. 稳定性高:PLC控制器具有非常高的抗干扰能力和系统稳定性,这使得交通信号灯控制系统能够稳定工作长时间,从而降低了故障发生的概率。
3. 操作简便:基于PLC控制器实现交通信号灯控制系统还具有操作简便的特点,用户可以通过简单的鼠标操作和编程即可实现信号灯的控制,这降低了操作难度和工作量。
三、基于PLC的交通信号灯控制系统的实现基于PLC的交通信号灯控制系统采用模块化结构,主要分为PLC控制器模块、输入输出模块、CPU模块、显图片和其它相关模块。
智能交通信号灯控制系统的设计与应用
智能交通信号灯控制系统的设计与应用智能交通信号灯控制系统是现代交通中不可或缺的重要组成部分,它通过采用计算机技术、传感器技术和通信技术,来实现对交通信号灯的智能控制和管理。
本文将介绍智能交通信号灯控制系统的设计原理、应用场景以及其带来的益处。
一、设计原理智能交通信号灯系统的设计原理基于交通流量的实时监测与控制。
系统通过交通监测传感器采集道路上的车辆、行人等信息,并将其传输到信号控制中心。
信号控制中心根据采集到的交通信息,通过智能控制算法对当前信号灯进行优化调度,以达到交通流量的最优化分配。
1. 交通监测传感器:交通监测传感器主要包括摄像头、地感器、红外传感器等。
摄像头主要用于车辆和行人的识别与计数;地感器用于检测车辆的存在与实时流量;红外传感器则用于监测行人的存在与通行状态。
2. 信号控制中心:信号控制中心是智能交通信号灯系统的核心,它集中管理、控制各个交通信号灯。
信号控制中心通过接收来自交通监测传感器的数据,利用算法对交通信号进行实时优化控制,以提高道路通行效率和交通安全。
二、应用场景智能交通信号灯控制系统广泛应用于城市道路、高速公路和公共交通枢纽等交通拥堵区域。
以下是几个典型的应用场景:1. 城市交通拥堵疏导:在城市的路口设置智能交通信号灯控制系统,可以根据道路上的车辆流量进行实时调整信号灯的灯光时长,以减少拥堵情况,提高交通效率。
2. 公交快速通行:在公共交通线路上,安装智能交通信号灯控制系统可以实时感知公交车辆的到来,并通过优先放行的策略,确保公交车快速通行,提高公共交通的运行效率。
3. 高速公路流量控制:在高速公路入口设置智能交通信号灯控制系统,可以根据不同时间段和道路实际情况,灵活调整进入高速公路的车辆数量,以平衡车流量,提高交通安全。
三、益处智能交通信号灯控制系统的应用带来了许多益处,其中包括:1. 提高交通效率:通过实时监测交通流量和智能分配信号灯灯光时长,系统能够减少交通拥堵,提高道路通行效率。
交通信号灯控制系统
交通信号灯控制系统
交通信号灯控制系统是一种用来管理道路交通流量、维护交通秩序和保证交通安全的系统。
它通过安装在道路交通路口的信号灯,利用红、黄、绿三种颜色的信号灯的变化来指示车辆和行人何时停止、何时前进,从而实现对交通流量的控制。
交通信号灯控制系统通常由以下组成部分组成:
1. 控制器:负责控制信号灯的变化,根据交通流量和时间段调整信号灯的时长。
2. 信号灯:通过红、黄、绿三种颜色的变化来指示交通参与者何时停止、何时准备出发和何时可以前进。
3. 检测设备:用于检测交通流量和车辆的存在,可以是基于地磁、红外线、摄像头等技术的检测设备。
4. 通信设备:用于控制器与其他交通管理系统的通信,可以接收来自其他系统的交通信息,并根据需要进行调整。
交通信号灯控制系统的工作原理如下:
1. 检测设备检测到车辆或行人的存在,将信息传输给控制器。
2. 控制器根据检测到的交通流量和时间段的设定,判断信号灯需要显示的颜色,并发出相应的控制指令。
3. 控制器通过通信设备将控制指令传输给信号灯,信号灯根据指令改变对应的颜色。
4. 交通参与者根据信号灯的指示来决定行动,例如红灯停、绿灯行等。
通过交通信号灯控制系统,交通管理部门可以实现对交通
流量的合理调度,减少交通拥堵和事故发生的概率,提高
道路通行效率和安全性。
同时,通过与其他交通管理系统
的无缝连接,可以实现更智能化、高效的交通管理。
交通信号灯控制系统组成原理
交通信号灯控制系统组成原理交通信号联网控制系统是城市交通管理系统的一个重要子系统,它依靠先进适用的交通模型和算法对交通信号控制参数(周期、绿信比和相位差)进行自动优化调整,运用电子、计算机、网络通信和GIS电子地图等技术手段对交通路口进行智能化、科学化交通控制,从而实现交叉口群交通信号的最佳协调控制。
其主要功能是自动调整控制区域内的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染等减至最小,充分发挥道路系统的交通效益,必要时,可通过指挥中心人工干预,强制疏导交通。
交通信号控制系统根据采集的交通流量信息和系统的优化方式,可以实现对控制区域内的所有路口进行有效的实时自适应优化控制。
通过设置和调用交通信号配时方案,改变周期、绿信比和相位差,协调路口间的交通信号控制,可满足不断变化的交通需求,比如早高峰,晚高峰,公共节假日,夜间或特殊事件等。
同时,系统具有采集、处理、存储、提供控制区域内的车流量、占有率、饱和度、排队长度等交通信息的功能,以供交通信号配时优化软件使用,同时供交通疏导和交通组织与规划使用。
1、系统组成交通信号联网控制系统可分为几部分:中央管理系统、区域控制系统和路口控制系统。
结构关系如下图所示:▲系统整体结构图路口控制系统由检测器、路口控制器、传输设备和中心控制系统四部分组成。
具体物理结构图如下图所示:▲交通信号控制系统物理结构图检测器主要是检测路口相关路段的车流量、车速、占有率等交通信息,并将这些信息传送到路口控制器,作为路口控制器本路口优化的输入数据。
在设计检测器的安装位置时,必须对交通控制和交通信息采集两方面的需求进行考虑。
路口控制器除了接收本路口的检测器交通数据,进行本路口优化控制信号灯之外,还负责将这些检测器的数据传送到、指挥中心。
它可以接收指挥中心发送来的命令和控制规划进行信号灯控制。
它不仅可以处理公交优先和紧急车辆优先外,还可以与相邻的路口控制器进行通讯,协调控制交通。
交通信号灯控制系统
交通信号灯控制系统简介交通信号灯控制系统是一种用来组织交通流量的设备,它通过设置不同的信号灯颜色来指示交通参与者何时可以通行。
这种系统在城市和高速公路等交通场景中非常常见,它有助于减少交通拥堵、提高交通效率和减少交通事故。
组成部分一个典型的交通信号灯控制系统包括以下几个主要组成部分:信号灯信号灯是交通信号灯控制系统的核心组件。
它通常由红、黄、绿三个色灯组成,分别代表停止、准备和通行。
信号灯可以通过LED灯、荧光灯等不同的光源进行发光。
控制器交通信号灯控制器是控制信号灯的主要设备。
它通常由微处理器、逻辑电路和通信接口等组成。
控制器根据预设的交通信号灯时序和传感器信号来控制信号灯的颜色变化。
传感器传感器用于收集交通场景的数据,以便控制器能够根据实际情况调整信号灯的状态。
常用的传感器包括车辆检测器、行人检测器和交通流量检测器等。
通信系统交通信号灯控制系统通常需要与其他系统进行通信,以便进行数据交换和协同工作。
常见的通信方式包括有线通信和无线通信。
工作原理交通信号灯控制系统的工作原理如下:1.控制器根据预设的交通信号灯时序不断切换信号灯的颜色。
典型的时序包括红灯亮、黄灯亮、绿灯亮等。
2.传感器收集交通场景的数据,并将数据传输给控制器。
例如,车辆检测器可以检测到车辆的存在和行驶方向,行人检测器可以检测到行人的存在,交通流量检测器可以检测到交通流量的情况等。
3.控制器根据传感器的数据和预设的算法来判断信号灯应该如何控制。
例如,当车辆检测器检测到某个方向没有车辆时,控制器可以将信号灯切换为绿灯;当交通流量检测器检测到某个方向的交通流量过大时,控制器可以延长该方向的红灯时间等。
4.控制器通过通信系统与其他系统进行数据交换和协同工作。
例如,交通信号灯控制系统可以与交通监控系统进行通信,以便实时获取交通场景的数据;交通信号灯控制系统还可以与城市交通管理中心进行通信,以便实现远程监控和控制等。
应用领域交通信号灯控制系统广泛应用于各种交通场景,包括城市道路、高速公路、停车场和交叉路口等。
基于物联网的智能交通信号灯控制系统研究
基于物联网的智能交通信号灯控制系统研究智能交通信号灯是现代城市交通管理的重要组成部分,它通过物联网技术与其他交通设备进行信息交互,实现交通信号的自动控制和调节。
本文将对基于物联网的智能交通信号灯控制系统进行深入研究,探讨其原理、应用和未来发展趋势。
一、智能交通信号灯的原理智能交通信号灯控制系统基于物联网技术,主要原理如下:1. 传感器网络:通过在道路上布置传感器设备,监测交通流量、速度、方向等交通状况,收集实时数据。
2. 数据传输:通过物联网技术将传感器数据传输到信号灯控制中心,实现数据的实时传输和处理。
3. 控制算法:信号灯控制中心根据接收到的数据采用先进的控制算法,判断交通状况,制定合理的信号灯控制策略。
4. 信号灯控制:信号灯根据信号灯控制中心发送的指令进行控制,实现智能化的交通信号灯控制。
二、智能交通信号灯的应用智能交通信号灯控制系统可以应用于城市道路、高速公路等交通场景,具有以下优势:1. 交通流畅:通过实时的交通数据分析和信号灯控制策略优化,可以减少拥堵现象,提高交通的流畅性。
2. 安全性:基于物联网技术的智能交通信号灯可以根据路况实时调整信号灯周期,提高交通安全性,降低交通事故的发生率。
3. 能源节约:通过智能控制算法,合理分配车辆通过信号灯的时间,减少车辆停等时间,降低燃油消耗,实现能源的节约。
4. 环境保护:智能交通信号灯可以根据实时交通情况调整信号灯绿灯时间,减少车辆急加速、急刹车频率,降低尾气排放,改善空气质量。
三、智能交通信号灯的未来发展趋势智能交通信号灯控制系统在未来的发展中,将呈现以下趋势:1. 人工智能应用:将人工智能算法应用于智能交通信号灯控制系统中,进一步优化交通流量、减少交通事故,提高整体交通效率。
2. 多模态交通集成:智能交通信号灯与其他交通设备和系统进行深度集成,实现多模式交通的智能化调度和协同。
3. 无线通信技术应用:利用5G等无线通信技术,实现信号灯控制中心与信号灯之间的高速稳定通信,提高系统的实时性和可靠性。
交通信号灯控制系统设计
交通信号灯控制系统设计首先,交通信号灯是交通信号控制系统中最重要的组件之一、交通信号灯通过红、黄、绿三种灯光的组合,向驾驶员传递不同的交通指示。
这些信号灯通常安装在道路交叉口或者重要的交通路口上。
根据交通量不同和交通流量的需求,可以设置单一的信号灯或者多个信号灯的组合。
交通信号灯一般配备成卤素灯或者LED灯,具有明亮、耐用和节能的优点。
其次,交通检测器是交通信号控制系统中另一个重要的组件。
交通检测器用于检测车辆或行人的存在和运动状态。
车辆检测器可以通过地感线圈或者摄像头等设备来检测车辆的存在和数量。
行人检测器则可以通过红外线或者摄像头来检测行人的存在和数量。
这些检测器将收集到的信息传输给控制器,以便根据实际情况调整信号控制。
然后,控制器是交通信号灯控制系统中的核心组件。
控制器根据交通检测器提供的信息来决定信号灯的切换。
控制器根据交通量和交通流量的变化,动态地调整信号灯的切换时间和模式。
控制器可以根据预设的算法和策略,通过不同的信号组合来调整交通流量的优化,提高道路的通行能力和交通的安全性。
最后,通信设备是交通信号控制系统中的另一个重要组成部分。
通信设备用于交通信号控制系统与其他交通管理系统之间的信息传输和互联。
通过与交通监控中心、交通警察和其他控制器之间的通信,交通信号控制系统可以获取到更全面和准确的交通信息,并及时地进行响应。
通信设备可以采用有线或者无线的方式进行通信,以保证信息的实时性和准确性。
在交通信号控制系统设计中,需要考虑以下几个方面。
首先,需要根据道路的交通量和交通流量的特点,合理设置信号灯的数量和位置。
其次,需要选择合适的控制器,并根据交通检测器提供的信息进行相应的调整。
同时,需要考虑交通信号控制系统与其他交通管理系统之间的信息传输和互联,以便实现更高效和智能化的交通管理。
总之,交通信号灯控制系统是为了提高交通流量的效率和安全性而设计的工程系统。
通过合理设置信号灯、使用交通检测器、选择合适的控制器和通信设备,可以实现交通信号的动态调整和响应,提高道路通行能力和交通的安全性。
项目3、交通信号灯控制系统设计PPT
优化结果评估
评估方法
对优化后的系统再次进行性能测 试,记录测试数据,与优化前进 行对比。
评估结果
根据测试数据和对比结果,评估 优化措施的有效性,判断系统性 能是否得到提升。
总结与建议
总结整个项目过程中遇到的问题 和解决方法,提出对未来类似项 目的建议和注意事项。
05
项目总结与展望
项目总结
项目目标达成情况
项目总结
团队协作与沟通
团队成员各司其职,通过定期的会议和文档共享,确保信息及时流通和任务顺利推进。在遇到问题时,团队成员能够迅速响 应,共同解决问题,展现了良好的团队协作精神。
项目收获与不足
项目收获 加深了对交通信号灯控制系统的理解,
掌握了相关的硬件和软件开发技能。
提高了团队协作和沟通能力,学会了 如何高效地推进项目进程。
项目不足
在项目初期,对某些硬件设备的选型 存在一定偏差,导致后期出现了一些 兼容性问题。
在项目时间管理上存在一定不足,部 分任务进度有所延误。
项目展望
技术升级与优化 市场应用前景 团队合作与个人成长
考虑引入更为智能的控制算法,如自适应调整红绿灯时 长,以更好地应对不同时段的交通流量。
探索将本项目成果应用于实际交通场景的可能性,如中 小城市的交通控制系统升级。
实现交通信号灯的智能控制,减少交 通事故的发生,保障行人和驾驶员的 安全。
缓解城市交通拥堵
通过智能化的交通信号灯控制系统, 有效缓解城市交通拥堵问题。
推动技术进步与产业升级
通过项目实施,推动相关技术的进步 和产业的发展,提升城市交通管理的 智能化水平。
02
交通信号灯控制系统设计
需求分析
需求调研
通过实地考察和问卷调查,了解 交通路口的流量、车速、等待时 间等需求参数,为系统设计提供
智能交通信号灯控制系统原理
智能交通信号灯控制系统原理随着城市化进程的加速和车辆数量的快速增长,交通拥堵问题日益突出。
为了提高交通效率和减少交通事故的发生,智能交通信号灯控制系统应运而生。
该系统利用先进的技术手段,基于交通流量和实时道路状况,对信号灯进行智能化控制,以实现交通信号的合理分配和调节。
智能交通信号灯控制系统基本原理如下:1. 数据采集:系统通过各种传感器和监测设备,如车辆检测器、摄像头、雷达等,实时采集交通流量、车辆速度、车辆类型等数据,并将其传输到中央控制中心进行处理。
2. 数据处理:中央控制中心对采集到的数据进行实时处理和分析。
通过算法和模型,对交通流量、道路拥堵程度等进行评估,并预测未来的交通状况。
3. 决策制定:基于数据处理的结果和预测,中央控制中心制定合理的信号灯控制策略。
考虑到不同道路的车流量、车速、优先级等因素,系统能够自动地调整信号灯的时长和节奏,以最优化地分配交通流量。
4. 信号灯控制:根据中央控制中心的信号灯控制策略,各个交通信号灯进行相应的调整。
通过网络连接,中央控制中心可以实时发送控制指令到各个信号灯设备,实现信号灯的智能控制。
5. 实时监测与调整:系统不仅能够实时监测交通状况和信号灯工作情况,还可以根据实时的数据反馈进行调整。
如果发现某个路口出现拥堵,系统会立刻做出响应,通过增加该路口的绿灯时长或调整其他信号灯的策略来缓解拥堵。
智能交通信号灯控制系统的优势在于其智能化和自适应性。
相比传统的定时控制方式,智能交通信号灯控制系统能够根据实际交通状况进行动态调整,提高交通流量的利用率和道路通行能力。
同时,系统还能够根据道路负载情况合理分配交通信号,减少交通事故的发生,提高交通安全性。
智能交通信号灯控制系统还可以与其他交通管理系统进行联动。
例如,可以与智能车辆系统进行通信,实现车辆与信号灯的互动,提前调整信号灯的状态,减少车辆的停车等待时间。
还可以与交通监控系统、交通指挥中心等进行数据共享和信息交互,实现整个交通网络的协调管理。
红绿灯控制系统原理
红绿灯控制系统原理
红绿灯控制系统是一种交通信号灯系统,用于管理道路上的车辆和行人流量。
其原理是通过灯光信号的变化,指示交通参与者在道路交叉口或路口如何行驶。
红绿灯控制系统一般由三个颜色的灯,即红灯、绿灯和黄灯组成。
在红绿灯控制系统中,红灯通常表示停止,绿灯表示行驶,黄灯表示准备停止。
交通信号灯通过周期性地改变颜色来控制车辆和行人的流动。
这个周期一般设定为几十秒到几分钟不等,以便交通参与者可以根据灯光的变化做出相应的动作。
红绿灯控制系统的原理是基于以下几个方面:
1. 安全性:红绿灯系统的首要目标是确保交通参与者的安全。
通过给予红灯信号,可以使车辆和行人停止行驶,防止交叉口或路口发生交通事故。
2. 交通流量控制:红绿灯系统能够对车辆和行人的流量进行有效的调控。
通过设置一定的信号周期和不同灯光的持续时间,可以合理地安排交通参与者的行驶顺序,优化交通流量。
3. 车辆和行人优先权的平衡:红绿灯控制系统还考虑到不同交通参与者之间的优先权平衡。
根据需求和道路情况,系统会设置不同灯光的持续时间,以确保车辆和行人能够公平地共享道路资源。
红绿灯控制系统通常由中央控制器和交通信号灯组成。
中央控
制器根据设定的程序和算法,控制信号灯的显示。
交通信号灯则通过灯泡或LED灯等发光装置将不同颜色的信号显示给交通参与者。
红绿灯控制系统在道路交通管理中发挥着重要作用。
它通过合理地控制车辆和行人的行动,提高道路交通安全性和效率,减少交通拥堵,促进交通流动。
智能交通信号灯控制系统设计与实现
智能交通信号灯控制系统设计与实现随着城市化进程的不断加快,交通拥堵问题也日益突出,这也使得人们对交通信号灯的控制以及优化变得越来越关注。
智能交通信号灯作为一种新型的交通控制系统,其最大的优势在于提高了交通效率和管理能力。
本文将介绍如何设计和实现智能交通信号灯控制系统。
1 智能交通信号灯的原理智能交通信号灯是通过网络控制单元,实现对各个交叉口的信号灯的控制。
当交通拥堵时,系统会根据实时交通数据进行优化调整,降低道路的拥堵程度,提高交通的效率。
智能交通信号灯主要由三个部分组成:传感器、控制器和信号灯。
①传感器:可以检测车流量、车速和人行道行人数量等交通信息。
②控制器:是智能交通信号灯的核心部分,用于控制各个交通路口的信号灯,根据从传感器获得的数据来控制信号灯的显示状态。
③信号灯:根据控制器的指示来实时显示交通灯的状态。
2 智能交通信号灯优势智能交通信号灯主要具有以下优势:①提高交通效率:普通交通灯只能按照设定的固定时长来控制交通流量,而智能交通信号灯采用实时数据感知,能够根据交通流量和方向进行自适应控制,提高交通效率。
②缓解交通拥堵:智能交通信号灯在交通拥堵的时候,会自动调整控制方案,从而尽可能地缓解道路拥堵状况。
③降低交通事故发生率:智能交通信号灯通过实时监测交通情况,减少了不必要的交通信号灯的切换,让道路行驶更加稳定,从而减少了交通事故的发生率。
3 智能交通信号灯的设计与实现智能交通信号灯的设计和实现需要以下几个步骤:①设定交通流量检测机制通过使用传感器技术,检测车道上的车辆数量和记录其速度,获得实时交通数据,用于智能交通信号灯的控制。
②设计控制算法算法主要用于根据获得的实时数据,进行信号控制和灯光切换,以提高道路通行效率。
如控制算法包括最短路径控制、动态调整时间控制、压力均衡控制和优先级控制。
③信号灯控制器设计智能交通信号灯控制器是系统中最核心的设备,它主要负责实时运算交通状态和时间的关系,实现最优的信号灯控制策略,确保信号灯显示时的安全性和效率。
智能交通信号灯控制系统集成
智能交通信号灯控制系统集成近年来,随着城市交通流量的不断增加,交通拥堵问题已经成为了人们生活中的一大困扰。
而智能交通信号灯控制系统的出现,给解决交通拥堵问题带来了新的希望。
本文将对智能交通信号灯控制系统集成进行深入探讨。
一、智能交通信号灯控制系统的概述智能交通信号灯控制系统是一种利用先进的计算机技术和通信技术对交通信号灯进行有效控制的系统。
它通过对交通流量进行实时监测和分析,以达到最优化的交通流动效果,提高交通运行的效率和安全性。
二、智能交通信号灯控制系统的原理智能交通信号灯控制系统的原理主要包括以下几个方面:1. 实时监测:通过摄像头、传感器等设备对交通流量进行实时监测,获取交通流量的相关数据。
2. 数据分析:将实时监测得到的数据进行处理和分析,以了解交通流量的状况,并根据分析结果进行决策。
3. 决策与控制:根据数据分析的结果,通过控制信号灯的开关时间和配时方案,来有效调控交通流量。
4. 通信与传输:智能交通信号灯控制系统需要通过通信网络将数据传输到控制中心,以及实现信号灯之间的协调与同步。
5. 用户体验:智能交通信号灯控制系统还可以结合移动应用等技术,向用户提供实时的交通信息,以便出行的规划和调整。
三、智能交通信号灯控制系统的优势智能交通信号灯控制系统相比传统的交通信号灯控制方式具有以下几个优势:1. 实时性:通过实时监测和数据分析,智能交通信号灯控制系统可以根据交通流量的变化进行及时调整,使交通运行更加高效。
2. 灵活性:智能交通信号灯控制系统可以根据不同的交通状况,采取不同的配时方案和优化策略,提供更加灵活的交通控制手段。
3. 安全性:智能交通信号灯控制系统可以通过数据分析和决策控制,减少交叉口事故的发生,提高行车安全性。
4. 能耗低:智能交通信号灯控制系统可以根据交通流量的实际情况进行灯光的开启和关闭,减少不必要的能源浪费。
四、智能交通信号灯控制系统集成的挑战和解决方案智能交通信号灯控制系统集成过程中存在一些挑战,如设备的兼容性、数据的准确性、系统的安全性等。
交通信号灯控制系统
交通信号灯控制系统简介交通信号灯控制系统是一种用于控制交通流量的设备或软件。
它通过控制交通信号灯的颜色和时序,有效地管理道路上的车辆通行,减少交通事故和交通拥堵。
功能交通信号灯控制系统具备以下几个主要功能:1.信号切换控制:根据不同道路的车流量、交通流向和拥堵情况,智能地切换交通信号灯的颜色。
2.时序调整:根据交通流量的变化,动态调整信号灯亮起的时间,以实现最佳的路口通行效果。
3.紧急情况响应:在紧急情况下,如火灾、事故等,交通信号灯控制系统能够通过接收紧急信号,立即改变信号灯的状态以保障道路的畅通。
4.传感器集成:与交通流量传感器、车辆识别系统等其他设备进行集成,获得实时的路况信息,并根据信息智能调整交通信号灯的控制策略。
工作原理交通信号灯控制系统的工作基于以下几个方面的原理:1.时序算法:通过设置预设的信号灯颜色和时长,系统能够按照不同的交通状况自动调整信号灯的时序,以保障道路的畅通。
2.传感器数据分析:通过集成传感器设备,交通信号灯控制系统可以实时获取道路上的车流量、车速、车辆种类等信息,并通过数据分析算法判断道路上的拥堵情况和通行效率,从而进行信号灯控制优化。
3.通信技术:交通信号灯控制系统可以通过与监控中心、车辆导航系统等进行通信,获取更多的路况信息,并根据需要进行信号灯状态的调整。
优点交通信号灯控制系统具有以下几个优点:1.提高交通效率:通过智能的信号切换和时序调整功能,系统能够根据实时的交通状况进行优化,提高道路通行效率,减少交通拥堵。
2.减少事故发生:交通信号灯控制系统能够根据道路上的车流量合理调整信号灯状态,有效减少交叉口事故的发生。
3.节能环保:合理控制信号灯的时长和信号切换,降低不必要的能源消耗,并减少交通堵塞导致的尾气排放。
4.灵活性强:交通信号灯控制系统可以根据实际需要进行配置和调整,具备较高的灵活性和适应性。
应用领域交通信号灯控制系统广泛应用于以下几个领域:1.城市交通管理:在城市繁忙路口、交叉口等地方,通过安装交通信号灯控制系统,能够有效管理车流量,提高道路通行效率。
交通信号灯控制系统课程设计
交通信号灯控制系统课程设计一、引言交通信号灯控制系统是城市交通管理中非常重要的一环。
合理的交通信号灯控制可以提高交通流量,减少交通拥堵,提高道路通行效率,确保交通安全。
本文将以交通信号灯控制系统课程设计为题,对该系统的设计进行详细讨论。
二、系统需求分析交通信号灯控制系统主要用于控制路口交通信号灯的开关以及信号灯的亮灭时长。
系统的需求主要包括以下几个方面:1. 能够根据交通流量和道路状况自动调整信号灯的时长,以实现最优的交通流控制;2. 能够监测交通信号灯的工作状态,及时发现故障并进行报警;3. 能够通过远程控制或本地操作对信号灯进行手动调整;4. 具备数据存储和分析功能,能够对交通流量进行统计和分析。
三、系统设计1. 硬件设计交通信号灯控制系统的硬件设计主要包括信号灯控制器、传感器、通信模块和显示屏等组成部分。
信号灯控制器负责控制信号灯的开关和时长,传感器用于检测交通流量和道路状况,通信模块用于远程控制和数据传输,显示屏用于显示交通信号和系统状态。
2. 软件设计交通信号灯控制系统的软件设计主要包括信号灯控制算法、故障检测和报警系统以及数据存储和分析模块。
信号灯控制算法根据传感器检测到的交通流量和道路状况,自动调整信号灯的开关和时长,以实现最优的交通流控制。
故障检测和报警系统能够监测信号灯的工作状态,及时发现故障并进行报警。
数据存储和分析模块用于对交通流量进行统计和分析,为交通管理部门提供决策支持。
四、系统实施交通信号灯控制系统的实施包括系统的安装和调试、系统的运行和监控以及数据的存储和分析。
在系统安装和调试阶段,需要将硬件设备安装到路口,并进行相应的连接和配置;在系统运行和监控阶段,需要对系统进行实时监控,及时发现和处理故障;在数据存储和分析阶段,需要对采集到的数据进行存储和分析,生成相关的报表和图表。
五、系统评估交通信号灯控制系统的评估主要包括系统的性能评估和应用效果评估。
系统的性能评估主要包括系统的稳定性、可靠性、响应时间等指标的评估;应用效果评估主要包括交通流量的变化、道路通行效率的提高以及交通事故的减少等指标的评估。
PLC综合应用案例—交通信号灯PLC控制系统
04
第4信号相位:南北红
06 第6信号相位:南北黄灯亮2s 后熄灭,同时东西红灯也继续 亮2s, 2s 后进入第1信号相 位。
5.交 通 信 号 灯 P LC 控 制 系 统
交通信号灯控制系统控制方案
信号
南 北
时间
绿灯亮 20
5.交 通 信 号 灯 P LC 控 制 系 统
交通信号灯控制系统控制方案
信号灯受启动及停止按钮的控制,当按动启动按钮时,信号灯系统开始工作,并周而复始地循环工作。本 控制方案采用6个信号相位循环,信号灯系统开始工作时,东西红灯亮,同时南北绿灯亮,信号相位时序如下
第1信号相位:南北绿灯亮维 持20s,在南北绿灯亮的同时 东西红灯也亮并维持20s, 20s 后进入第2信号相位。
01
第3信号相位:南北黄灯亮2s 后熄灭,同时东西红灯也继续 亮2s, 2s 后进入第4信号相 位。
03
第5信号相位:东西绿灯闪亮 3s(亮 0.5s。熄 0.5s),绿 灯闪亮3s 后熄灭,同时南北 红灯也继续亮3s, 3s 后进入 第6信号相位。
05
02
第2信号相位:南北绿灯闪亮 3s(亮 0.5s。熄 0.5s),绿 灯闪亮3s 后熄灭,同时东西 红灯也继续亮3s, 3s 后进入 第3信号相位。
二.目前交通灯的设计方案有很多,有基于 CPLD/FPGA(可编程逻辑器件)设计实现交通信号灯 控制器的方法;有应用单片机实现对交通信号灯控制的 方法;有应用PLC实现对交通灯控制系统的方法。由于 PLC具有对使用环境适应性强同时其定时器资源十分 丰富,可对信号灯进行精确方便地控制。与此同时 PLC通讯联网功能可将同一条道路上的交通信号灯进 行统调度管理, 能够缩短车辆通行等候时间,实现交 通信号灯的科学化管理。
交通信号灯控制系统的设计和实现
交通信号灯控制系统的设计和实现随着城市化进程的不断加速,人们的生活方式和交通方式也发生了翻天覆地的变化。
交通问题成为城市面临的重要难题,其中交通拥堵是最为普遍的问题之一。
为了缓解交通拥堵,提高道路通行效率,交通信号灯控制系统成为了不可或缺的交通治理工具。
一、交通信号灯控制系统的基本原理交通信号灯控制系统是利用电子技术、计算机技术等现代科技手段,在交通信号灯上装配各种传感器,利用交通流量信息和路口封闭情况动态调整、优化交通信号灯的控制方式,使路口交通畅通。
交通信号灯控制系统的基本原理是以人群通行的流量为依据,根据路口结构、道路车流量、道路交通容量等参数,利用智能控制算法和控制程式,实现信号灯组的协调、控制和优化,达到调节交通流量,提高道路通行效率的目的。
二、交通信号灯控制系统的应用现在,交通信号灯控制系统已经广泛应用于城市、高速公路、地铁等交通场域。
交通信号灯控制系统有以下特点:1. 人性化的控制策略。
交通信号灯控制系统能够根据实际情况合理调整信号灯的时间和绿灯开放的持续时间,从而适应城市的交通状况,为行人和车辆提供更加方便快捷的交通环境。
2. 显著的安全性提高。
信号灯的控制能力和交通流量信息的自动处理,能够降低交通事故的发生率,提高道路行车安全性。
3. 节约行车时间和燃油。
交通信号灯控制系统能减少行车的停等时间,让行人和车辆通行更快捷和稳定,从而提高人们的行车效率,减少燃油消耗。
三、交通信号灯控制系统的设计要点为了保证交通信号灯控制系统的实现效果和稳定性,系统的设计需要注意以下几个方面:1. 信号灯的精确控制机制。
交通信号灯的控制机制需要具有高可靠性、高精度的特点,对各种交通流量信息的处理能力应支持多种文件格式、数据源等,能够在某些条件下切换至备用等机制,以应对突发情况。
2. 功能多元化。
为了应对不同的路口和交通情况,交通信号灯控制系统的设计要支持多种控制策略,能够自动切换不同的控制方案,根据实际情况自主调整不同的控制参数,提高交通通行效率。
基于PLC的交通信号灯智能控制系统设计
基于PLC的交通信号灯智能控制系统设计随着城市化进程的加速和交通需求的增长,交通信号灯在城市交通管理中的地位日益重要。
传统的交通信号灯控制系统往往采用定时控制方式,无法适应实时变化的交通流状况,容易导致交通拥堵和安全隐患。
为了解决这一问题,本文将介绍一种基于PLC(可编程逻辑控制器)的交通信号灯智能控制系统设计。
一、系统概述基于PLC的交通信号灯智能控制系统主要由PLC、传感器、信号灯和通信模块组成。
PLC作为核心控制器,负责处理传感器采集的交通流数据,根据预设的控制策略调整信号灯的亮灭时间,实现交通信号灯的智能控制。
二、硬件设计1、PLC选型PLC作为控制系统的核心,需要具备处理速度快、输入输出接口丰富、稳定可靠等特性。
本文选用某品牌的高性能PLC,具有16个输入接口和8个输出接口,运行速度可达纳秒级。
2、传感器选型传感器主要用于采集交通流的实时数据,如车流量、车速等。
本文选用微波雷达传感器,可实时监测车流量和车速,具有测量精度高、抗干扰能力强等优点。
3、信号灯设计信号灯是交通信号控制系统的执行机构,本文选用LED信号灯,具有亮度高、寿命长、能耗低等优点。
每盏信号灯均配备独立的驱动电路,由PLC通过输出接口进行控制。
4、通信模块设计通信模块负责将PLC采集的数据传输至上级管理系统,同时接收上级管理系统的控制指令。
本文选用GPRS通信模块,具有传输速度快、稳定性高等优点。
三、软件设计1、控制策略设计本文采用模糊控制算法作为交通信号灯的控制策略。
模糊控制算法通过对车流量和车速进行模糊化处理,将它们转化为PLC可以处理的模糊变量,再根据预设的模糊规则进行调整,实现信号灯的智能控制。
2、数据处理流程设计数据处理流程包括数据采集、数据处理和数据传输三个环节。
传感器采集车流量和车速数据;然后,PLC根据控制策略对数据进行处理;通过通信模块将处理后的数据上传至上级管理系统。
同时,PLC还会接收上级管理系统的控制指令,根据指令调整信号灯的亮灭时间。
交通信号灯的工作原理
交通信号灯的工作原理1.控制系统:信号灯的控制系统一般由一个中央控制器和一个信号灯控制箱组成。
中央控制器负责编程和发送指令,而信号灯控制箱则负责接收和执行指令。
2.电力供应:交通信号灯需要稳定的电力供应。
一般情况下,信号灯会接入市政电网,但也有一些地方使用太阳能或者其它可再生能源来供电。
3.交通感应器:为了根据实际交通情况来控制信号灯,一些交通信号灯还配备了交通感应器。
这些感应器可以是地下线圈、摄像头、红外线或者雷达等设备。
当有车辆或行人接近时,感应器感知到交通流量并将信息发送到中央控制器。
4.时序控制:中央控制器根据接收到的信号处理信息和编程,来判断信号灯的运行时序。
例如,在一个常见的交叉路口,信号灯的时序可能是左转,直行和右转流量的依次排列。
5.环形时序:对于一些拥堵情况较为严重的交通路口,还可以使用环形时序控制。
环形时序控制将所有信号灯与中央控制器相连,通过循环红绿灯时间来引导交通流向。
这种控制方法可以根据实际交通情况灵活调整信号灯的运行时序,以达到最佳的交通流量。
6.绿波带动:在一些需要较高通行能力的交通路口,还可以使用绿波带动技术。
该技术通过同步信号灯的时序,使车辆在一段时间内保持连续畅通,从而实现绿灯持续时间的最大化。
7.行人信号灯:除了车辆信号灯,交通路口还需要设置行人信号灯来保护行人的安全。
行人信号灯一般位于人行横道上方或路口旁边。
行人信号灯与车辆信号灯同步运行,以确保行人与车辆之间的安全。
总结起来,交通信号灯的工作原理涉及到控制系统、电力供应、车辆和行人感应器、时序控制、环形时序控制等多个方面,通过中央控制器的编程和执行指令,实现了交通流量的控制和调度。
通过科学合理的系统设计和配合,交通信号灯可以大大提高交通安全性和效率,为交通管理做出重要贡献。
基于物联网的智能交通信号灯控制系统设计与优化
基于物联网的智能交通信号灯控制系统设计与优化智能交通信号灯控制系统是基于物联网技术和智能算法的应用,旨在优化交通流量,提高道路通行效率,减少交通堵塞和事故发生率。
本文将介绍基于物联网的智能交通信号灯控制系统的设计与优化方法。
一、引言智能交通信号灯控制系统是一个复杂的系统工程,其设计与优化涉及到交通流量预测、信号灯控制策略、网络通信等多个方面。
物联网技术的应用使得车辆、道路设施等交通要素之间能够实现无线信息传输和互联互通,为智能交通信号灯控制系统的设计与优化提供了强有力的支持。
二、设计与优化方法1.交通流量预测智能交通信号灯控制系统的核心是根据预测的交通流量情况,合理地控制信号灯的时长和间隔时间,以提高交通的通行效率。
通过物联网技术,可以收集车辆、传感器等设备的实时数据,结合历史数据进行交通流量预测。
预测模型可以采用机器学习和人工智能算法,根据历史数据的规律和趋势,准确地预测未来一段时间的交通流量状况。
2.信号灯控制策略智能信号灯控制策略的选择是智能交通信号灯控制系统设计与优化的关键。
传统的固定周期控制方式无法适应交通流量的变化,因此需要基于物联网技术的实时数据和算法,采取自适应的信号灯控制策略。
控制策略可根据实时交通流量情况,动态调整信号灯的时长和间隔时间,以最大限度地减少待行车辆的排队长度和等待时间,并提供最佳的通行效率。
3.网络通信智能交通信号灯控制系统中各个设备之间需要实现数据的互联互通和实时通信。
物联网技术提供了无线通信和互联网的支持,使得交通信号灯、车辆、传感器等交通要素能够实时交换信息。
通过物联网技术,交通信号灯可以接收车辆的实时位置和速度信息,根据交通状况进行实时的信号灯控制调整,以提供最佳的交通通行效率。
三、优化效果及应用案例基于物联网的智能交通信号灯控制系统的设计与优化可以显著改善交通流量状况,提高交通通行效率,减少交通堵塞和事故发生率。
优化效果主要体现在以下几个方面:1.减少等待时间:智能交通信号灯控制系统通过优化信号灯的时长和间隔时间,减少了车辆的等待时间,提供了更顺畅的通行体验。
plc交通信号灯控制系统的基本构成
知识文章:深度探讨PLC交通信号灯控制系统的基本构成1. 介绍PLC(可编程逻辑控制器)交通信号灯控制系统是现代城市交通管理的重要组成部分,它通过自动化控制实现红绿灯的变换,以提高交通效率和安全性。
本文将深入探讨PLC交通信号灯控制系统的基本构成,以帮助读者更好地理解这一领域的技术和应用。
2. 主要构成2.1 PLC控制器:作为整个系统的核心,PLC控制器负责接收输入信号、进行逻辑运算,并输出控制信号,以实现对交通信号灯的控制。
2.2 输入/输出模块:用于连接传感器、开关和执行器等外部设备,将外部信号转换为数字信号输入给PLC控制器,并将PLC控制器的输出信号转换为实际控制信号输出到实际设备中。
2.3 交通信号灯:包括红灯、黄灯、绿灯等灯组,通过PLC控制器的输出信号进行状态切换。
2.4 电源和通信模块:为整个系统提供稳定的电源供应,同时可以通过通信模块与其他系统进行数据交换和远程监控。
3. 工作原理PLC交通信号灯控制系统的工作原理是基于程序控制的自动化运行,当系统接收到交通信号灯的变换条件信号时,PLC控制器根据预设的程序进行逻辑运算,输出相应的控制信号,实现信号灯状态的相应切换,从而指挥交通流向。
4. 应用与展望在城市交通管理中,PLC交通信号灯控制系统已经被广泛应用,并且随着智能交通的发展,其应用前景也将越来越广阔。
未来,可以结合人工智能、大数据等技术,进一步提升交通信号灯控制系统的智能化和自适应性,以应对城市交通日益增长的挑战。
总结与回顾通过本文的介绍,我们了解了PLC交通信号灯控制系统的基本构成、工作原理以及应用展望。
这一系统在城市交通管理中扮演着重要的角色,其自动化、智能化的特点使其在未来的发展中具有广阔的前景。
个人观点我认为随着城市交通的不断发展,PLC交通信号灯控制系统将在智能交通领域发挥更加重要的作用。
我们也应该关注其安全性和稳定性,并不断提升其自适应能力,以更好地服务于城市交通管理的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着中国城镇化速度的较快,交通事故也日趋发生,所以合理的交通控制方法能有效的缓解交通拥挤、减少尾气排放及能源消耗、缩短出行延时,改善我国独有的交通问题。
而平面交叉口是城市交通的关键,它是整个城市道路的瓶颈地带,对其进行交通信号控制方法的研究具有重大意义,所以交通信号灯是维护城市交通的主要设施。
我们本次复杂的十字路口交通灯控制系统设计主要是利用AT89C51制作并仿真.并且在单片机的选择上,考虑到电路的简单和成本的削减,我们选择性价比最好的AT89C51,而且能够使程序简单。
可以添加恰当的传感器,实时监控道路情况,对各种情况的处理实行紧急情况优先级最高,其次行人优先通过,最后车流量高的方向,给予更多的通过时间,采用中断的方法,由中断根据各种不同的情况选择合适的处理程序处理。
通过单片机控制交通灯不仅能提高我们理论联系实际的能力,而且能够熟练掌握C语言的编程方法,掌握定时/计数器、外部中断的使用方法和简单程序的编写,最终提高逻辑抽象能力和动手能力。
关键字:AT89C51 中断交通信号控制目录1 社会需求......................................... 错误!未定义书签。
2 设计目的......................................... 错误!未定义书签。
3 设计思路及框图 (1)3.1 交通灯设计 (1)3.2 交通灯定时控制 (2)3.3 传感器智能控制 (4)4 硬件电路设计 (4)4.1 单片机电源电路 (4)4.2 单片机复位电路 (4)4.3 交通LED灯外围驱动电路 (5)4.4 按键控制电路 (6)4.5 单片机主电路 (7)4.6 整体电路图设计 (8)5 软件设计 (9)5.1 系统程序流程图设计 (9)5.2 系统程序设计 (10)5.3仿真显示结果 (17)总结 (17)参考文献 (18)1社会需求目前在世界范围内,一个以微电子技术、计算机和通信技术为先导的,以信息技术和信息产业为中心的信息革命方兴未艾。
为使我国尽快实现经济信息化,赶上发达国家水平,必须加速发展我国的信息技术和信息产业。
而计算机技术怎样与实际应用更有效的结合并有效的发挥其作用是科学界最热门的话题,也是当今计算机应用中空前活跃的领域。
本文主要从单片机的应用上来实现十字路口交通灯的管理,用以控制过往车辆的正常运作。
2 设计目的本设计首先从定时控制着手,解决交叉口交通控制过程中存在的问题,但是定时控制信号周期固定,不能根据实际的交通流状况随时调整信号控制参数,因此造成很多不必要的时间等待和资源浪费。
对左转车辆较少的单交叉口一般采用有固定左转相位的定时控制方法,此信号控制中的左转车辆通行对直行车辆影响很大。
行人过街信号与上游交叉口的不协调导致车辆通过上游交叉口后遇到行人过街而再次停车。
基于上述交叉口信号控制存在的问题,本设计进行了如下研究:①介绍了常用定时信号控制算法和感应信号控制的基本工作原理,分析了传统定时控制的优越性和局限性。
②设计了一种自动信号控制方法,这种方法能使交叉口根据实际交通情况选择合理的定时信号配时方案,不过这个需要配备额外的感应器。
本设计将要完成红灯停,绿灯行,黄灯停3S的操作,并且如当一道有车而另一道无车是,交通灯控制系统能立即让有车的车道放行,单人行道上人数较多时,智能转换交通灯状态,行人优先通过,当有紧急车辆(如110、112、119等急救车)要求通过时,此系统应能禁止普通车辆通行,路口的信号灯全部变红,以便让紧急车辆通过。
假定紧急车辆通过时间为2s,紧急车辆通过后,交通灯恢复先前状态。
3设计思路及框图3.1交通灯设计首先了解实际交通灯的变化情况和规律。
设有一个南北(SN)向和东西(WE)向的十字路口,两方向各有两组相同交通控制信号灯,每组各有四盏信号灯,分别为直行信号灯(S)、左拐信号灯(L)、红灯(R)和黄灯(Y),交通控制信号灯布置如图1所示。
根据交通流量不同,交通信号灯的控制可实现手动、自动两种控制。
平时使用自动控制,高峰区可使用传感器智能化控制。
智能控制时,传感器通过检测道路交通情况对交通信号灯进行实时控制;自动控制时,交通信号灯控制规律用图2状态转换图来描述。
图1 红绿灯显示系统框图3.2交通灯定时控制图2 红绿灯系统控制流程图定时控制系统控制流程图如上图2,初始状态0为SN直行WE红灯,然后转状态1为SN黄灯WE红灯。
过一段时间后,转状态2为SN左拐WE红灯。
再转状态3,SN黄灯WE红灯。
过一段时间后转状态4,SN红灯WE直行。
然后状态4,SN红灯WE直行。
状态5为SN红灯WE黄灯。
状态6为SN红灯WE左拐。
状态7为SN红灯WE黄灯。
又循环至状态0,重复循环上述状态。
3.3传感器智能控制图3 磁检测器方框图交通灯在采用智能化控制时,采用磁感应车辆检测器.这种环形线圈检测器是传统的交通检测器,是目前世界上用量最大的一种检测设备。
这些埋设在道路表面下的线圈可以检测到车辆通过时的电磁变化进而精确地算出交通流量。
交通流量是交通统计和交通规划的基本数据,通过这些检测结果可以用来计算占用率(表征交通密度),在使用双线圈模式时还可以提供速度、车辆行驶方向、车型分类等数据,这些数据对于交通管理和统计是极为重要的,可通过分析这些数据,然后通过外部中断动态控制交通灯的状态,实现道路交通灯的智能化控制,让交通灯根据实际情况转换状态。
原理框图如上图图3所示。
对于交通信号灯来说,应该有东西南北共四组灯,但由于同一道上的两组的信号灯的显示情况是相同的,所以可以用一个I/O控制相同的两灯,因此,采用单片机内部的I/O口上的P0口中的8个引脚即可来控制16个信号灯。
通过编写程序,实现对发光二极管的控制,来模拟交通信号灯的管理。
每延时一段时间,灯的显示情况都会按交通灯的显示规律进行状态转换。
通过定时器精确延时送显,在原有的交通信号灯系统的基础上,增添其倒计时间的显示功能,实现其功能的扩展。
通过添加感应器检测车流量、人行道情况通过外部中断动态调节人、车流量,使交通更加智能,提高道路运行速率。
4 硬件电路设计4.1单片机电源电路图4 电源电路如上图图4所示是电源电路,这里开关用的双路开关,双路开关并联能更好的确保给后级提供更大电流。
电容C4、C5,都是隔离断开直流的,在这里添加了一个发光二极管指示灯,在我们打开开关的时候,这个二极管会亮,下面的R12为限流电阻,给发光二极管提供合适的电流。
4.2 单片机复位电路单片机的复位操作有上电自动复位和手动按键复位两种方式。
本次设计采用手动按键复位设计,如下图5所示。
图5 按键复位电路当这个电路处于稳态时,电容起到隔离直流的作用,隔离了+5V,而左侧的复位按键是弹起状态,下边部分电路就没有电压差的产生,所以按键和电容C1 以下部分的电位都是和GND 相等的。
按键复位有 2 个过程,按下按键之前,RST 的电压是0V,当按下按键后电路导通,同时电容也会在瞬间进行放电,会处于高电平复位状态。
当松开按键后,先是电容充电,然后电流逐渐减小直到RST 电压变0V 的过程。
按下按键的瞬间,电容两端的5V 电压会被直接接通,此刻会有一个瞬间的大电流冲击,会在局部范围内产生电磁干扰,为了抑制这个大电流所引起的干扰,在电容放电回路中串入一个18 欧的电阻来限流。
4.3 交通LED灯及外围驱动电路图6交通LED灯电路将NS道上的两个同色灯连在一起,WS道上的同色灯也彼此相连(此处用发光二极管模拟实际的交通灯,各发光二极管的阳极通过保护电阻接到+5v的电源上,发光二极管的阴极接到单片机的P0口)用AT89C51单片机的P0.0—P0.7共8根输出线控制各色交通灯的点亮与熄灭;为了更加直观的显示红绿灯的情况,用了共阳极数码管显示倒计时,数码管显示有动态扫描和静态显示,由于静态显示需要占用过多的IO口,这里用动态扫描,用P1控制数码管的断选信号端,P2.6、P2.7控制数码管的位选信号端,可以显示出每个灯的倒计时。
紧急车辆通过时,采用外部触发按键实时中断方式进行处理。
根据该系统的功能要求及所用元器件,设计硬件电路,电路原理图如图6所示。
由于单片机的输出电流有限,需要用到芯片驱动LED,使LED可以正常使用,这里使用74LS245,74LS245是一个双向缓冲器,引脚AB是方向引脚,这个引脚为高电平的时候,右侧所有的电压都等于左侧对应编号的电压,所以这里AB引脚接的+5V电源,即高电平。
图中还有排阻RP1做为上拉电阻。
引脚OE 为输出使能端,低电平有效。
在74LS245输出端有R3~R10的限流电阻,给LED 灯提供恰当的电流。
在LED的阳极接有PNP三极管,可以通过单片的P2.5控制所有的LED的通断,只有P2.5端电平为高时LED才能正常工作,通过单片机的P0口控制LED 的状态。
数码管的显示也需要大电流,这里外接上拉电阻可以提供足够的电流,原理图中用了排阻RP2,可以使数码管正常工作。
交通LED灯驱动电路如图7所示。
图7 交通LED灯驱动电路4.4 按键控制电路图8 按键控制LED电路图智能化控制中使用到传感器,传感器采集到的数据通过系统分析,然后反馈到单片机外部中断,通过中断程序选择合适的处理程序。
整个交通灯控制系统通过按键模拟控制LED的状态,SW1控制LED是定时循环还是智能控制,SW2控制LED灯是顺序切换状态还是手动选择LED状态。
SW1按下触发外部中断0进去中断程序,在中断程序中可以通过查询方式判断P3.7是否按下,如果检测到P3.7为低电平则SW2按键按下,系统进入只能控制LED状态模式,单片机通过检测P2.0~P2.3的电平状况确定LED灯要显示的状态,例如:若单片机检测到端口P2.0电平为低,则要求交通灯要WE方向左拐,系统调用左拐子程序,使单片机控制LED灯先NS黄灯闪3下,然后NS红灯亮,WE左拐指示灯变绿。
如果系统监测到P3.7为高电平则SW2弹起,系统进入只能顺序切换模式,单片机检测P2.4的电平情况,检测到一次说明按键按下一次,交通的按照定时方式的顺序变换状态,使交通灯稳定顺次执行。
如果遇到十字路口发生交通事故,可以触发紧急逼停按键,这样四个方向都为红绿灯,等突发情况处理完毕后,然后根据实际情况选择合适的处理程序。
这样可以根据实际的车、人流量动态调节交通灯,智能解决各种突发情况,按键控制电路如图8所示。
按键消抖有两种方式:硬件消抖和软件消抖,硬件消抖需要引进RS触发器或者单稳态电路,这需要额外的硬件开支,而软件消抖只需要用延时函数就可以完成,因此这里选择软件消抖。
4.5 单片机主电路采用这款芯片及克服了采用8031需要添加外部外部程序存储器导致电路复杂的缺点,又克服了采用8751导致电路制作成本高的缺点,AT89C51单片机芯片具有以下特性:1)指令集合芯片引脚与Intel公司的8051兼容;2)4KB片内在系统可编程FLASH程序存储器;3)时钟频率为0~33MHZ;4)128字节片内随机读写存储器(RAM);5)6个中断源,2级优先级;6)2个16位定时/记数器;图9 单片机引脚结构图4.6 整体电路图设计图10 A T89C21单片机交通灯控制电路本次设计采用AT89C51单片机,其中P0.0—P0.8共8根输出线控制各色交通灯的点亮与熄灭,通过外部中断0控制交通灯的切换方式,端口P3.7控制在智能模式下是顺次转换状态还是动态选择,在顺序转换模式下P2.4控制交通灯的状态转换。