线路板的打孔机工作流程设计

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C题线路板的打孔机工作流程设计

摘要

本文讨论了电路板的打孔机工作流程中的费用及时间问题,在已知孔型、刀具及行走费用和转刀费用的前提下,综合考虑成本和时间,设计行走路线及换刀方案,使生产效率最高。

本文中首先采用了0-1整数规划方法(模型一),再采用二次逐边修正法(模型二),之后采用了贪心算法(模型三)。在求解过程中,我们先考虑只打孔的情况,即遇到孔便打完,同时以最少费用为目标,对这三个模型进行比较,结果如下:

模型一:该模型的变量较多,且使用0-1规划法,对matlab以及lingo的要求较高,鉴于我们的计算机条件,该模型只有理论上的意义。

模型二:在以最少费用为目标的条件下,费用为79232元,时间为49188秒(约合13.66小时)。

模型三:在以最少费用为目标的条件下,费用为44708元,时间为48665秒(约合13.5小时)。在以最少时间为目标的条件下,费用为374090元,时间为56298秒(约合15.6小时)。

在模型的优化部分,本文将需要两种刀具(或三种)的孔视为两种孔型(或三种),如C型孔,视为C1和C2两种孔型,分别用a刀和c刀(有下刀顺序),D型孔视为两个独立的孔D1和D2(无下刀

顺序)。同时综合考虑费用和时间,建立适合大规模生产的模型,取合适的权值(以费用60%、时间40%为例),费用为49276元,时间为21272秒(约合5.9小时)。

一、问题的重述

过孔是印刷线路板(也称为印刷电路板)的重要组成部分之一,过孔的加工费用通常占制板费用的30%到40%,打孔机主要用于在制造印刷线路板流程中的打孔作业。本问题旨在提高某类打孔机的生产效能。

打孔机的生产效能主要取决于以下几方面:(1)单个过孔的钻孔作业时间,这是由生产工艺决定,为了简化问题,这里假定对于同一孔型钻孔作业时间都是相同的;(2)打孔机在加工作业时,钻头的行进时间;(3)针对不同孔型加工作业时,刀具的转换时间。目前,实际采用的打孔机普遍是单钻头作业,即一个钻头进行打孔。

现有某种钻头,上面装有8种刀具a ,b ,c ,… , h ,依次排列呈圆环状,如图1所示。

图1:某种钻头上8种刀具的分布情况

而且8

种刀具的顺序固定,不能调换。在加工作业时,一种刀具

b

c d

f

h a

使用完毕后,可以转换使用另一种刀具。相邻两刀具的转换时间是18 s,例如,由刀具a转换到刀具b所用的时间是18s,其他情况以此类推。作业时,可以采用顺时针旋转的方式转换刀具,例如,从刀具a转换到刀具b;也可以采用逆时针的方式转换刀具,例如,从刀具a转换到刀具h。将任一刀具转换至其它刀具处,所需时间是相应转换时间的累加,例如,从刀具a转换到刀具c,所需的时间是36s (采用顺时针方式)。为了简化问题,假定钻头的行进速度是相同的,为180 mm/s,行进成本为0.06元/mm,刀具转换的时间成本为7元/min。刀具在行进过程中可以同时进行刀具转换,但相应费用不减。

不同的刀具加工不同的孔型,有的孔型只需一种刀具来完成,如孔型A只用到刀具a。有的孔型需要多种刀具及规定的加工次序来完成,如孔型C需要刀具a和刀具c,且加工次序为a,c。表1列出了10种孔型所需加工刀具及加工次序(标*者表示该孔型对刀具加工次序没有限制)。

表1:10种孔型所需加工刀具及加工次序

一块线路板上的过孔全部加工完成后,再制作另一线路板。但在同一线路板上的过孔不要求加工完毕一个孔,再加工另一个孔,即对于须用两种或两种以上刀具加工的过孔,只要保证所需刀具加工次序正确即可。

请建立相应的数学模型,并完成以下问题:

(1)附件1提供了某块印刷线路板过孔中心坐标的数据,单位是密尔(mil)(也称为毫英寸,1 inch=1000 mil),请给出单钻头作业的最优作业线路(包括刀具转换方案)、行进时间和作业成本。

二、问题的分析

本题的主要问题,是考虑行走的费用、时间以及转刀的费用、时间,找到一条遍历所有点的合适的行走路径,使生产的效率达到最高。在MATLAB软件中,我们画出了这十种孔型的坐标(见附录1),发现孔的数目很多,既有集中的孔,也有相对分散的孔。因此,所建的模型,应该要将所有的点都走遍,这一点可以参照TSP的相关算法,同时考虑到各种换刀问题。从收集的资料可以看出,解决TSP问题的一般算法有遗传算法,模拟退火算法,贪心算法,二次逐边修正法等等。

考虑到本题并不是完全意义上的TSP问题,本文对使用的方法进行了一定程度改进,例如考虑将路程和转刀的因素统一成时间或是费用,使其更适合本题的要求。

考虑到本题要求得出打孔的费用和时间,因此有不同生产效率的生产线,对费用和时间有不同的要求,因此在模型求解的过程中应该要考虑到对费用和时间赋予不同的权数,得出不同的行走方案,最终确定符合要求且效率高的行走路径和转刀方案。

三、模型假设

1、加工每块板工作过程中,无刀具磨损、损坏情况,中途无间断。

2、钻头钻孔、刀具加工的结果均合格,不存在残品孔。

3、钻头钻孔时间及费用固定,不予考虑。

4、刀具行进速度保持恒定。

5、周围环境对钻头和刀具没有干扰。

6、钻头和刀具可以按照设定的路程准确行走和换刀。

7、刀具行进过程中两点之间所走路径为直线。

四、符号说明

m:点的数目(2124个)。

M: 将孔拆分后点的数目(2814个)。

Wij :为0-1变量,Wij=1表示,i点可到达j点,Wij=0表示,i点不能到达j点。

Lij :移动的费用加换刀具的费用。

Ni :为0-1变量,保证有m-1条折线。

mm:转刀费用矩阵(10*10)。

mm1:转刀费用矩阵(18*18)。

x :点的横坐标。

y :点的纵坐标。

S1 :i点到j点的费用(包括路程费和转刀费)。

S2 :i+1点到j+1点的费用(包括路程费和转刀费)。

相关文档
最新文档