仪器分析总复习(重要必背)
仪器分析复习内容重点
仪器分析复习内容重点集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-第二章气相色谱分析1.简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。
气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。
组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统.进样系统、分离系统、温控系统以及检测和记录系统.气相色谱仪具有一个让载气连续运行管路密闭的气路系统.进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.3.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。
(1)选择流动相最佳流速。
(2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。
(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。
在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。
(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。
(5)对担体的要求:担体表面积要大,表面和孔径均匀。
粒度要求均匀、细小(但不宜过小以免使传质阻力过大)(6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL.(7)气化温度:气化温度要高于柱温30-70℃。
4.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些因素的影响?解:参见教材P14-16A 称为涡流扩散项 ,B 为分子扩散项,C 为传质阻力项。
仪器分析知识点总结期末
仪器分析知识点总结期末引言仪器分析是一门应用化学和物理学原理的科学,涉及仪器、仪表、光学和电子学等多个学科,用于测定和分析物质样品的成分和性质。
仪器分析在各个领域都有广泛的应用,包括环境监测、制药、食品安全、医学诊断和天文学等。
本篇文章将对仪器分析的基本概念、常见的分析仪器和技术、质量控制以及未来发展方向等进行总结和分析。
一、仪器分析基础知识1. 仪器分析的基本原理仪器分析是利用物理、化学或生物学原理构建各种仪器和设备,用于检测和测定样品中的成分、结构和性质。
基本原理包括光谱学、电化学、分子光度法、色谱法、质谱法、X射线衍射法等。
在实际应用中,可以根据需要选择不同的分析原理和仪器进行样品分析。
2. 仪器分析的步骤仪器分析一般包括取样、制备、分析和数据处理等步骤。
取样是从样品中获取代表性的部分;制备是指针对样品的物理或化学处理,以适应分析仪器的要求;分析是使用仪器进行测定,获取样品的性质和组分信息;数据处理是指对分析结果进行统计分析、质量控制和报告撰写等。
3. 仪器分析的应用领域仪器分析在环境监测、医学诊断、食品安全、农业生产、材料检测、制药和化工等领域都有重要应用。
例如,质谱法在药物研发和医学诊断中有重要应用;光谱学在化学分析和环境监测中起到关键作用;色谱法在食品安全和环境保护中发挥作用。
二、常见的分析仪器和技术1. 分光光度计分光光度计是一种用于测定物质浓度的仪器,利用物质吸收或发射光的特性进行分析。
分光光度计包括紫外可见分光光度计、红外分光光度计和荧光光度计等,广泛应用于化学分析、生物医药和环境监测等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,用于测定物质的分子结构和质量。
质谱仪主要有气相质谱仪和液相质谱仪两大类,可用于药物分析、环境监测和食品安全等领域。
3. 色谱仪色谱仪是一种用于分离和测定混合物中组分的仪器。
常见的色谱仪包括气相色谱仪和液相色谱仪,广泛应用于环境检测、食品安全和医学诊断等领域。
仪器分析期末知识点总结
仪器分析期末知识点总结仪器分析是现代化学分析的重要手段之一,它利用各种仪器设备来检测和分析物质的成分、结构、性质等信息。
仪器分析技术具有灵敏、准确、高效等优点,已经广泛应用于化学、环境、医药、食品等领域。
本文将从基本仪器分析原理、常用仪器、质谱、光谱分析、色谱分析等方面进行知识点总结,以便于同学们在期末复习时进行复习。
一、基本仪器分析原理1. 仪器分析的基本原理仪器分析是通过测量样品的物理性质,如质量、电子结构、核磁共振等,间接或直接地确定样品中的化学成分或结构。
一般包括以下几个基本原理:(1)光学原理:利用物质与光的相互作用,通过测量光的吸收、散射或发射等来分析物质的成分、性质。
(2)电化学原理:通过测量电流、电势、电荷量等来分析物质。
(3)质谱原理:利用质子、中子、电子等粒子与物质相互作用的规律,测定物质的成分、结构。
(4)色谱原理:利用物质在固、液、气相中的分配系数差异,通过色谱柱分离、检测来分析物质。
2. 仪器分析的基本步骤仪器分析一般包括样品的前处理、仪器的操作和测量、数据的处理与分析等步骤。
具体可以分为以下几个步骤:(1)样品的前处理:首先需要对样品进行前处理,包括样品的取样、样品的溶解、稀释、萃取等,以便于后续的仪器操作。
(2)仪器的操作和测量:根据仪器的不同,进行样品的操作和测量,包括光谱分析、质谱分析、色谱分析等。
(3)数据的处理与分析:对测得的数据进行处理、分析,得出结论和结果。
二、常用仪器1. 紫外可见分光光度计紫外可见分光光度计是一种广泛应用的光学仪器,可用于测量物质的吸收、散射等光学性质,对分析有机物、无机物、生物分子等具有重要意义。
其原理是利用物质对特定波长光的吸收程度来分析物质的成分、浓度等信息。
2. 红外光谱仪红外光谱仪是一种通过测量物质对红外辐射的吸收、散射来分析物质的结构、功能团、成分等信息的仪器。
其原理是利用物质分子在红外光波段的振动、转动运动,吸收特定频率的红外辐射,从而得到物质的光谱信息。
仪器分析复习内容
仪器分析复习内容
一、原理
仪器分析是指通过使用电子或物理仪器(也称检测仪器)来检测和测
量一些物质的含量,反映其中一种物质或物质的物理和化学特性,从而了
解它们的存在状况或结构,为科学研究提供参考和决策依据。
仪器分析是一个多学科的交叉领域。
它涉及的科学科目包括化学、物理、生物、地质和过程科学等。
因此,仪器分析常见的原理包括:电离质
谱法(离子质谱)、质谱法(质谱图)、光谱法、分析化学、热分析、热
工学仪器分析等。
二、电离质谱法(离子质谱)
电离质谱(离子质谱)是以电场来离开物质中的离子的一种分析技术,是以电离、电屏蔽和电流来测定分析物质中离子浓度的一种技术。
它可以
用来分析物质中的单个离子浓度,以及离子的丰度关系,进而计算化合物
的组成百分比。
电离质谱法具有高灵敏度、高准确度、操作简单方便等优点,是一种常用的仪器分析手段。
电离质谱法的过程包括离子源(Ion Source)、离子传输器(Ion Transporter)、轨道电离器(Orbital Ionizer)、检测器(Detector)、电源(Power Supply)等部分。
(完整版)仪器分析重点知识点整理
仪器分析重点知识点整理一,名词解释。
吸收光谱:指物质对相应辐射能的选择性吸收而产生的光谱吸光度(A):是指光线通过溶液或某一物质前的入射光强度与该光线通过溶液或物质后的透射光强度比值的以10为底的对数A=abc =lg(I0/It)透光率(T):透射光强度与入射光强度之比T=I0/It摩尔吸光系数(ε):物质对某波长的光的吸收能力的量度,(如浓度c以摩尔浓度(mol/L)表示则A=εbc)物理意义:溶液浓度为1mol/L,液层厚度为1cm时的吸光度百分吸光系数(E1cm1%):物质对某波长的光的吸收能力的量度,(如浓度c以质量百分浓度(g/100ml),则A=E1cm1%bc)物理意义:溶液浓度为1g/100ml,液层厚度为1cm时的吸光度发色团:有机化合物分子结构中含有π→π*或n→π*跃迁的基团,能在紫外可见光范围内产生吸收助色团:含有非键电子的杂原子饱和基团,本身不能吸收波长大于200nm的辐射,但与发色团或饱和烃相连时,能使该发色团或饱和烃的吸收峰向长波移动,并使吸收强度增加的基团红移(长移):由取代基或溶剂效应等引起的吸收峰向长波长方向移动的现象蓝移(短移):由取代基或溶剂效应等引起的吸收峰向短波长方向移动的现象浓色效应(增色效应):使化合物吸收强度增加的效应淡色效应(减色效应):使化合物吸收强度减弱的效应吸收带:紫外-可见光谱为带状光谱,故将紫外-可见光谱中吸收峰称为吸收带R带:Radikal(基团) ,是由n →π*跃迁引起的吸收带K带:Konjugation(共轭作用),是由共轭双键中π→π*跃迁引起的吸收带B带:benzenoid(苯的),是由苯等芳香族化合物的骨架伸缩振动与苯环状共轭系统叠加的π→π*跃迁引起的吸收带,芳香族化合物特征吸收带E带:也是芳香族化合物特征吸收带,分为E1、E2紫外吸收曲线(紫外吸收光谱):最大吸收波长λmax:吸收曲线上的吸收峰所对应的波长最小吸收波长λmin:吸收曲线上的吸收谷所对应的波长末端吸收:吸收曲线上短波端只呈现强吸收而不成峰形的部分试剂空白:指在相同条件下只是不加入试样溶液,而依次加入各种试剂和溶液所得到的空白溶液试样空白:指在与显色相同条件下取相同量试样溶液,只是不加显色剂所制备的空白溶液溶剂空白;指在测定入射波长下,溶液中只有被测组分对光有吸收,而显色剂或其他组分对光没有吸收或有少许吸收,但所引起的测定误差在允许范围内,此时可用溶剂作为空白溶液荧光:物质分子吸收光子能量而被激发,然后从激发态的最低振动能级返回到基态时所发射出的光分子荧光:?荧光效率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比多普勒变宽:由于原子的无规则热运动而引起的谱线变宽,用ΔνD表示谱线轮廓:原子光谱理论上产生线性光谱,吸收线应是很尖锐的,但由于种种原因造成谱线具有一定的宽度,一定的形状,即谱线轮廓半宽度(Δν):是指峰高一半(K0/2)时所对应的频率范围峰值吸收系数:吸收线中心频率所对应的峰值吸收系数?共振吸收线:原子的最外层电子从基态跃到第一激发态所产生的吸收谱线,最灵敏的谱线内标法:选择样品中不含有的纯物质作为对照物质(内标)加入待测样品溶液中,以待测组分和内标物的响应信号对比,测定待测组分含量的方法外标法:用待测组分的纯品作标准品,在相同条件下以标准品和样品中待测组分的响应信号相比较进行定量的方法背景干扰:主要是原子化过程中所产生的连续光谱干扰,前面光谱干扰中已详细介绍,它主要包括分子吸收、光的散射及折射等,是光谱干扰的主要原因物理干扰:指试样在转移、蒸发和原子化过程中,由于试样任何物理特性(如密度、粘度、表面张力)的变化而引起的原子吸收强度下降的效应光谱干扰:由于分析元素的吸收线与其他吸收线或辐射不能完全分离所引起的干扰原子吸收光谱:?保护剂:作用于与被测元素生成更稳定的配合物,防止被测元素与干扰组分反应释放剂:作用于与干扰组分形成更稳定或更难发挥的化合物,以使被测元素释放出来红外线:波长为0.76-500um的电磁波红外光谱:又称分子振动转动光谱,属分子吸收光谱。
仪器分析复习重点
▪ 7.固定液选择的原理是? ▪ 8.在色谱分析法中,为什么要测定定量校
正因子 ?
▪ 9.液相色谱中正相,反相色谱的定义及研 究对象
▪ 10.色谱定量分析公式-内标法 ▪ 11.色谱分离条件选择-如何提高柱效
第三节 HPLC的主要类型及分离原理
1. 液液分配色谱
亲水性固定液常采用疏水性流动相,即流动相的极 性小于固定相的极性,称为正相液液色谱法,极性柱 也称正相柱。主要应用于分离甾醇类、类脂化合物、 磷脂类化合物、脂肪酸以及其他有机物。
cM mMVS
VS
:相比
相对保留值 r21:指组分2和组分1的调整保留值之比。
r21
t 'R2 t 'R1
V 'R2 V 'R1
相对保留值的特点是只与温度和固定相的性质有关, 与色谱柱及其它色谱操作条件无关。
相对保留值反映了色谱柱对待测两组分1和2 的选 择性,是气相色谱法中最常使用的定性参数。
例:用电解法从组成为0.01 mol/L Ag+, 2mol/L Cu2+的混合液中分离Ag+ 和Cu2+,已知铜的标 准电极电位为0.345V,银的标准电极电位为 0.779V。
问:1)首先在阴极上析出的是铜还是银?
2)电解时两者能否完全分离?
3) 外加电压应控制在什么数值上,Ag+与Cu2+ 完全分离,阳极电位等于1.23v(vs.SCE,不考 虑超电位) ?
测待测液的pH值,写出该化学电池的符号表示式?(见书 P113) 5.离子选择性系数 的定义?(见书P118) 6.盐桥是什么组成的?作用是什么? 7.干扰电流及其消除方法(见书P162) 8.什么是残余电流,它产生的原因是什么?它对极谱分析有 什么影响? (见书P162)
仪器分析知识点复习汇总
仪器分析知识点复习汇总研究必备,欢迎下载。
第一章:绪论1.灵敏度是指被测物质单位浓度或单位质量的变化引起响应信号值变化的程度。
检出限是一定置信水平下检出分析物或组分的最小量或最小浓度。
2.检出限指恰能鉴别的响应信号至少应等于检测器噪声信号的3倍。
3.根据表里给的数据,标准曲线方程为y=5.7554x+0.1267,相关系数为0.9716.第二章:光学分析法导论1.原子光谱是由原子外层或内层电子能级的变化产生的,表现形式为线光谱。
分子光谱是由分子中电子能级、振动和转动能级的变化产生的,表现为带光谱。
吸收光谱是当电磁辐射通过固体、液体或气体时,具一定频率(能量)的辐射将能量转移给处于基态的原子、分子或离子,并跃迁至高能态,从而使这些辐射被选择性地吸收。
发射光谱是处于激发态的物质将多余能量释放回到基态,若多余能量以光子形式释放,产生电磁辐射。
带光谱除电子能级跃迁外,还产生分子振动和转动能级变化,形成一个或数个密集的谱线组,即为谱带。
线光谱是物质在高温下解离为气态原子或离子,当其受外界能量激发时,将发射出各自的线状光谱,其谱线的宽度约为10-3nm,称为自然宽度。
2.UV-Vis和IR属于带状光谱,AES、AAS和AFS属于线性状光谱。
第三章:紫外-可见吸收光谱法1.朗伯-比尔定律的物理意义是样品溶液中吸收光的强度与样品浓度成正比。
透光度是指样品溶液透过光束后的光强度与入射光强度之比。
吸光度是指样品溶液吸收光束后的光强度与入射光强度之比。
两者之间的关系是吸光度等于-log(透光度)。
2.有色配合物的XXX吸收系数与入射光波长有关。
3.物质的紫外-可见吸收光谱的产生是由于原子核外层电子的跃迁。
4.最大能量跃迁需要最大能量,因此跃迁所需能量最大的是电子从基态到最高激发态的跃迁。
A.样品加入量和仪器响应的不确定性B.谱线重叠的问题C.光谱干扰的问题D.样品制备的不确定性改写:1.电感耦合等离子体光源由高频发射器、等离子炬管、雾化器等三部分组成,具有稳定性好、机体效应小、线性范围宽、检出限低、应用范围广、自吸效应小、准确度高等优点。
仪器分析复习内容(重点)
第二章气相色谱分析1.简要说明气相色谱分析的基本原理借在两相间分配原理而使混合物中各组分分离。
气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。
组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。
2.气相色谱仪的基本设备包括哪几部分?各有什么作用?气路系统.进样系统、分离系统、温控系统以及检测和记录系统.气相色谱仪具有一个让载气连续运行管路密闭的气路系统.进样系统包括进样装置和气化室.其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中.3.试以塔板高度H做指标,讨论气相色谱操作条件的选择.解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑流速的影响,选择最佳载气流速.P13-24。
(1)选择流动相最佳流速。
(2)当流速较小时,可以选择相对分子质量较大的载气(如N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H2,He),同时还应该考虑载气对不同检测器的适应性。
(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。
在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。
(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。
(5)对担体的要求:担体表面积要大,表面和孔径均匀。
粒度要求均匀、细小(但不宜过小以免使传质阻力过大)(6)进样速度要快,进样量要少,一般液体试样0.1~5uL,气体试样0.1~10mL.(7)气化温度:气化温度要高于柱温30-70℃。
4.试述速率方程中A, B, C三项的物理意义. H-u曲线有何用途?曲线的形状主要受那些因素的影响? 解:参见教材P14-16A 称为涡流扩散项,B 为分子扩散项,C 为传质阻力项。
下面分别讨论各项的意义:(1) 涡流扩散项A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱的扩张。
仪器分析 重点内容归纳
仪器分析第一章1.电位法的基本原理。
P152.离子选择电极的分类。
P163.玻璃膜电极是怎样产生的?P184.不对称电位?酸差?碱差?P205.TISAB的组成及作用。
P286.标准曲线法、标准加入法。
P297.电位滴定:数据处理、三种作图方法及终点判断并会用语言描述。
P29~308.电重量法的定义及分类。
P339.库仑法的理论基础及电流效率。
P3510.极谱法的工作电极、定性定量依据、极谱曲线的产生条件?P41~4211.干扰电流有多少种?P48第三章12.色谱流出曲线及参数表征。
P68~6913.气相色谱分离中的各参数的相关内容。
P70~7214.塔板理论及速率理论。
P73~7415.用速率理论来解释怎样提高柱效。
P74~7516.分离度。
P7817.气液色谱固定相分类,担体要求,固定液选择原则、分离依据及出峰顺序。
P81/83、P315(李)18.两种重要检测器的原理、载气及检测过程(理解)。
P8619.气相色谱中固定相选择原则及出峰顺序。
P9120.归一化法及内标法计算题。
P96~9721.气象色谱仪的组成。
P79第四章22.高效液相色谱仪的组成。
P10823.液相色谱的流动相。
P11624.液相色谱的主要分离类型及各自原理。
P118~125第六章(无计算题)25.光谱项及选择定则。
P166~16726.原子发射光谱仪的结构及光源。
P16927.元素的分析线、最后线、灵敏线、共振线及铁谱。
P17728.内标法原理,内标元素与分析线对的选择要求?P17829.引起吸收峰变宽的的原因?P180~18130.锐线光源应满足的条件?P18331.原子吸收分光光度计的结构。
P18432.火焰法类型。
P18633.光谱干扰与抑制?P18834.原子荧光光谱法的原理与分类(了解)。
P193第八章35.分子荧光中去激发方式?P22936.荧光光谱的基本特征?P23337.产生荧光的分子必须具备的条件。
P23438.分子磷光与荧光的区别。
仪器分析知识点复习汇总
仪器分析知识点复习汇总仪器分析是化学分析中的一个重要分支,主要研究利用各种仪器设备进行样品分析和检测的方法和技术。
下面是仪器分析的一些知识点复习汇总:1.基本概念:仪器分析是利用仪器设备对样品进行分析和检测的方法。
仪器分析可以分为定性分析和定量分析两个方面。
2.仪器分类:仪器主要分为电化学仪器、光谱仪器、质谱仪器、色谱仪器、微量元素分析仪器等几个大类。
3.电化学仪器:电化学仪器包括电解池、电渗析仪、电导仪、计时电位计等,主要用于电化学分析和电化学过程研究。
4.光谱仪器:光谱仪器包括分光光度计、紫外可见分光光度计、荧光光谱仪、红外光谱仪等,主要用于分析和检测样品的光谱特性。
5.质谱仪器:质谱仪器包括质谱仪和气相色谱-质谱联用仪,可用于分析样品中的有机化合物的结构和组成。
6.色谱仪器:色谱仪器包括气相色谱仪、液相色谱仪、离子色谱仪等,主要用于分离和定性分析样品中的化合物。
7.微量元素分析仪器:微量元素分析仪器包括火焰原子吸收光谱仪、电感耦合等离子体发射光谱仪、电感耦合等离子体质谱仪等,主要用于测定样品中的微量元素含量。
8.仪器分析的步骤:仪器分析通常包括样品的制备、测量条件的选择与优化、光谱或电位的测量、数据处理与结果分析等几个步骤。
9.仪器分析中的常见问题:仪器分析中常见的问题包括仪器的灵敏度、选择性、准确度和重现性等。
灵敏度指的是仪器检测样品中目标物质的能力,选择性指的是仪器只检测样品中的目标物质而不受其他物质的干扰,准确度指的是仪器检测结果与真实值之间的偏差,重现性指的是多次测量同一样品的结果之间的一致性。
10.仪器分析的应用:仪器分析广泛应用于环境监测、食品质量安全检测、医药检验等领域。
在环境监测中,仪器分析可以检测大气中的污染物、水中的有机污染物和无机污染物等。
在食品质量安全检测中,仪器分析可以检测食品中的农药残留、重金属含量等。
在医药检验中,仪器分析可以分析药物的纯度、含量等。
以上是仪器分析的一些基本知识点复习汇总。
仪器分析期末考试重点总结要点
现代仪器分析:一般的说,仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。
灵敏度:指待测组分单位浓度或单位质量的变化所引起测定信号值的变化程度。
灵敏度也就是标准曲线的斜率。
斜率越大,灵敏度就越高光分析法:利用光电转换或其它电子器件测定“辐射与物质相互作用”之后的辐射强度等光学特性,进行物质的定性和定量分析的方法。
光吸收:当光与物质接触时,某些频率的光被选择性吸收并使其强度减弱,这种现象称为物质对光的吸收。
原子发射光谱法:元素在受到热或电激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱,依据特征光谱进行定性、定量的分析方法。
主共振线:在共振线中从第一激发态跃迁到激发态所发射的谱线。
分析线:复杂元素的谱线可能多至数千条,只选择其中几条特征谱线检验,称其为分析线。
多普勒变宽:原子在空间作不规则的热运动所引起的谱线变宽。
洛伦兹变宽:待测原子和其它粒子碰撞而产生的变宽。
助色团:本身不吸收紫外、可见光,但与发色团相连时,可使发色团产生的吸收峰向长波方向移动,且吸收强度增强的杂原子基团。
分析仪器的主要性能指标是准确度、检出限、精密度。
根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。
原子发射光谱仪由激发源、分光系统、检测系统三部分组成。
使用石墨炉原子化器是,为防止样品及石墨管氧化应不断加入(N2)气,测定时通常分为干燥试样、灰化试样、原子化试样、清残。
光谱及光谱法是如何分类的?⑴产生光谱的物质类型不同:原子光谱、分子光谱、固体光谱;⑵光谱的性质和形状:线光谱、带光谱、连续光谱;⑶产生光谱的物质类型不同:发射光谱、吸收光谱、散射光谱。
原子光谱与发射光谱,吸收光谱与发射光谱有什么不同原子光谱:气态原子发生能级跃迁时,能发射或吸收一定频率的电磁波辐射,经过光谱依所得到的一条条分立的线状光谱。
《仪器分析》复习资料
《仪器分析》课程期末复习资料. 《仪器分析》课程讲稿章节目录:第一章绪论及课程导学第一节仪器分析概述第二节常见分析仪器概论第二章电化学分析法第一节电化学分析法概述第二节电位法的基本原理第三节直接电位法第四节电位滴定法第五节永停滴定法第三章光谱分析法概论第一节电磁辐射及其与物质的相互作用第二节光学分析法的分类第三节光谱分析仪器第四章紫外-可见分光光度法第一节紫外-可见分光光度法的基本原理和概念第二节紫外-可见分光光度计第三节紫外-可见分光光度分析方法第五章荧光分析法第一节荧光分析法的基本原理第二节荧光定量分析方法第三节荧光分光光度计和荧光分析技术第六章红外吸收光谱法第一节红外吸收光谱法的基本原理第二节有机化合物的典型光谱第三节红外吸收光谱仪第四节红外吸收光谱分析第七章原子吸收分光光度法第一节原子吸收分光光度法的基本原理第二节原子吸收分光光度计第三节原子吸收分光光度实验方法第八章核磁共振波谱法第一节核磁共振波谱法的基本原理第二节核磁共振仪第三节化学位移第四节偶合常数第五节核磁共振氢谱的解析第九章质谱法第一节质谱法的基本原理和质谱仪第二节质谱中的主要离子及其裂解类型第三节有机化合物的质谱解析第十章色谱分析法概论第一节色谱法的分类第二节色谱过程和色谱流出曲线第三节色谱参数第四节色谱法的基本原理第五节色谱法的基本理论第十一章平面色谱法第一节平面色谱法的分类和有关参数第二节薄层色谱法第三节纸色谱法第十二章气相色谱法第一节气相色谱法的分类和气相色谱仪第二节气相色谱法的固定相和载气第三节气相色谱检测器第四节气相色谱速率理论和分离条件选择第五节气相色谱法定性与定量分析方法第十三章高效液相色谱法第一节高效液相色谱法的主要类型第二节高效液相色谱法的固定相和流动相第三节高效液相色谱速率理论和分离方法选择第四节高效液相色谱仪第五节高效液相色谱定性与定量分析方法第十四章毛细管电泳法第一节毛细管电泳基础理论第二节毛细管电泳的主要分离模式第三节毛细管电泳仪第十五章色谱联用分析法第一节色谱-质谱联用分析法第二节色谱-色谱联用分析法客观部分:(单项选择、多项选择、判断)(一)、单项选择部分1. 分析化学的方法可分为化学分析和仪器分析,这是按照(D)分的。
《仪器分析》复习提纲.doc
基于测量待测元索 的基态原子对其特征谱线的 吸收程度而建立起来的分析 方法。
2.原子吸收光谱的产生:电 子基态・> 激发态
3.谱线变宽
1.组成:光源、原子化器、分 光系统,检测系统四部分
2.光源:锐线光源、空心阴极 灯(结构);
3.原子化器:将试样待测元素 转化为基态原子。火焰原子化器, 石墨炉原子化器
3.操作条件的选择:载气、 流速;柱温(程序升温); 载体和固定液的选择;进 样条件;
4.毛细管气相色谱:柱前分 流,柱后尾吹
仪器结构:气路系统.进样系统、 分离系统、检测系统、记录系统、 温控系统;
气相色谱检测器:热导检测器、 火焰离子化检测器、屯子捕获检 测器、火焰光度检测器。
高效液相色谱
1.HPLC的特点及其适用范 围;
传质阻力项C, Cm颗粒细度小且相对分子质量小的流动相来提高柱效;Cs减小固定相液膜厚度,增大柱温)
分离度R:相邻两色谱峰的保留值之差与两峰宽度平均值之比。
方法名称
理论
仪器
分析
方法
定性
定量
光谱
原了发射光谱
AES
1.定义:在一定条件下受激 后所发射的特征光谱来研究 物质化学组成及含量的方法。
2.原子发射光谱的产生:电 子激发态・> 基态
3.常见化合物的特征基团 频率
变换型;
2•压片法IR样品制备
谱进行比对
团的特征性的 红外吸收峰的 位置、强度和形 状
定律
分子发光法
1.定义:
2.分子荧光、磷光的产生原 理;
3.荧光激发光谱,荧光发射 光谱
4.荧光强度与荧光量了产率
5.荧光与分了结构的关系
6.化学发光,生物发光
(word完整版)仪器分析期末考试重点总结,文档
气相色谱根根源理: 借在两相间分配原理而使混杂物中各组分分别。
气相色谱就是依照组分与固定相与流动相的亲和力不相同而实现分别。
组分在固定相与流动相之间不断进行溶解、挥发〔气液色谱〕 ,或吸附、解吸过程而相互分离,尔后进入检测器进行检测。
载气系统、进样系统、色谱柱与柱箱、检测系统、记录与数据办理系统。
气相色谱仪拥有一个让载气连续运行,管路密闭的气路系统.进样系统包括进样装置平和化室.其作用是将液体或固体试样,在进入色谱柱前刹时气化,尔后迅速定量地转入到色谱柱中.固定液:是一些高沸点的有机化合物,比方,角鲨烷,作为固定相被平均地涂抹在担体上。
担体:多孔,比表面积大,表面无吸附性,是用来担当固定液的物质。
比方:硅藻土。
气相色谱法的特点: 高选择性 〔复杂混杂物, 有机同系物、 异构体。
手性异构体〕 高矫捷度〔能够检测出μ g.g-1(10-6)级至 (10-9)级的物质量〕高效能、迅速、应用范围广 (气 :沸点低于 400℃的各种有机或无机试样的解析)(液:高沸点、热不牢固、生物试样的分别解析〕缺:被分别组分的定性较为困难。
分配过程:组分在固定相和流动相间发生的吸附、脱附,或溶解、挥发的过程分配系数:在必然温度下,组分在两相间分配到达平衡时的浓度〔单位:g / mL 〕比, K组分在固定相中的浓度c s k组分在固定相中的质量m sKc Mm M组分在流动相中的浓度 组分在流动相中的质量分配比 :在必然温度下,组分在两相间分配到达平衡时的质量比(容量因子 容量比 )k m SmSV SV S Kt R t Mt R 'k 容量因子越大,保存时间越长。
V Sc Skm Mc M V Mkt Mt Mβ为对照。
β = VM/VSm MβVM 为流动相体积 ,即柱内固定相颗粒间的空隙体积;VSV M V Mr21 = t ′R2 / t ′R1= V ′R2 / V ′R1= α为固定相体积 ,气 -液色谱柱 (为固定液体积 );气 -固色谱柱 :为吸附剂表面貌量u Sus :组分在色谱柱内的线速度;u :流动相在色谱柱内的线速度R S滞留因子 =质量分数 ω:u塔板理论的假设 : 在每一个平衡过程间隔内,平衡能够迅速到达;将载气看作成脉动〔间歇〕过程;试样沿色谱柱方向的扩散可忽略;每次分配的分配系数相同。
(完整word版)仪器分析复习笔记
一、色谱分析色谱法的分离原理:混合物中各组分在经过由固定相和流动相组成的体系时,由于各组分性质上的差异,在两相中具有不同的分配系数;当两相作相对运动时,各组分随流动相一起流动,并在两相中进行反复多次的分配,使各组分最终得以分离。
一、气相色谱a.概念气相色谱:流动相是气体,固定相是固体或液体的色谱法称为气相色谱法.基线:反映检测器系统噪声随时间变化的线基线漂移:基线随时间定向的变化基线噪声: 由各种因素引起的基线起伏保留值:试样中各组分在色谱柱中的滞留时间,由色谱分离过程中的热力学因素控制,作定性参数死时间tM:不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现极大值所需时间保留时间tR:试样从进样到柱后出现峰极大值所经历的时间调整保留时间tR’: tR’= tR—tM程序升温:指色谱柱的温度按照组分沸程设置的程序连续地随时间线性或非线性逐渐升高,使柱温与组分的沸点相互对应,以使低沸点组分和高沸点组分在色谱柱中都有适宜的保留、色谱峰分布均匀且峰形对称.各组分的保留值可用色谱峰最高处的相应温度即保留温度表示。
b.流程示意图c。
分离过程溶解-脱溶解-再溶解-再脱溶d.原理气相色谱法亦称气体色谱法或气相层析法,是以气体为流动相的柱色谱分离技术。
它分离的主要依据是利用样品中各组分在色谱柱中吸附力或溶解度不同,也既是利用各组分在色谱住中气相和固定相的分配系数不同来达到样品的分离。
对于气—固色谱(也叫吸附色谱),它的分配系数确切地讲,应称吸附平衡常数,主要用于永久性气体或气态烃等的分离分析。
本课程主要介绍气-液色谱。
e。
色谱流出曲线这种以组分的浓度变化(或某种信号)作为纵坐标,以流出时间(或相应流出物的体积)作为横坐标,所绘出的曲线称为色谱流出曲线.f。
色谱分析的依据(1)色谱峰的位置(即保留时间或保留体积)决定于物质的性质,是色谱定性的依据;(2)色谱峰的高度或面积是组分浓度或含量的量度,是色谱定量的依据;(3)色谱峰的位置与其宽度,可以对色谱柱分离的情况进行评价。
实用仪器分析复习要点.docx
实用仪器分析复习要点第一章绪论1. 仪器分析:利用精密仪器进行物理或物理化学分析的方法(或用精密仪器测量表征物质的某些物理或物理化学性质的参数以确定其化学组成.含量及化学结构的一类分析方法L 2、仪器分析的特点:(1 )灵敏度高。
远高于化学分析,可测定含量极低(如10-6. 10-9,甚至10-12级)的组分,也可以测定微量试样中的组分。
(2) 选择性好。
适合于复杂组分试样的分析,在单组分测定时,只要把仪器调整到适宜条件,其他组分的干扰通常可以避免。
(3) 分析迅速。
适于批量试样分析,用精密分析仪器测量时速度很快,加上计算机技术的应用,分析操作的自动化,结果的自动记录,数字的显示或自动处理, 使分析更为迅速。
(4) 适于痕量组分的测定。
仪器分析相对误差较大,但测定痕量组分时,绝对误差则较小,因此仪器分析虽不适于测定常量组分,但适于测定微量甚至痕量组分。
微量分析一固体0.1-10 mg 液体0.01-1ml超微量分析一固休v 0. 1 mg液体v 0.01 ml(5) 适应性强,应用广泛。
仪器分析方法有数十种之多,方法功能各不相同。
(6) 易于自动化。
仪器分析使用复杂的精密仪器测量,被测组分的理化性质经检测器可转化为电信号而记录下来,特别是将微机与仪器相连结,很多操作过程都可以实现自动化。
第二章光学分析基础1. 光学分析方法:依据物质发射的电磁辐射以及电磁辐射与物质的相互作用而建立的分析方法。
2、电磁辐射:高速通过空间传播的光子流,也称为光,具有波粒二象性。
普朗克(P)量子理论认为,辐射能的发射或吸收不是连续的,而是量子化的,每个光量子的能量(E )与其频率(v )及波长(入)之间的关系为:E=h v = h c /A=h c(h为普朗克常数,c为光速,为波数)3、电磁波谱:电磁波按波长顺序排列得电磁波谱,各波谱区所具有的能量不同,其产生的机理也各不相同。
4、分子光谱:在辐射能作用下,分子内能级间的断迁产生的光谱称为分子光谱。
仪器分析知识点总结大全
仪器分析知识点总结大全仪器分析是化学分析领域中重要的分支,它借助各种仪器设备对物质进行定性、定量和结构分析。
以下是对仪器分析中一些关键知识点的详细总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的方法。
关键知识点:1、锐线光源:通常使用空心阴极灯,能发射出半宽度很窄的特征谱线。
2、原子化器:常见的有火焰原子化器和石墨炉原子化器。
火焰原子化器操作简便、重现性好;石墨炉原子化器灵敏度高,但精密度稍差。
3、定量分析方法:常用的有标准曲线法和标准加入法。
(二)原子发射光谱法(AES)原子发射光谱法是通过测量原子由激发态回到基态时发射的特征谱线来定性和定量分析元素的方法。
重点内容:1、激发源:如电弧、火花和电感耦合等离子体(ICP)等。
ICP 具有温度高、稳定性好、自吸效应小等优点。
2、定性分析:依据元素的特征谱线进行。
3、定量分析:内标法是常用的定量方法,选择合适的内标元素很关键。
(三)紫外可见分光光度法(UVVis)这是基于物质分子对紫外可见光区的电磁辐射的吸收特性而建立的分析方法。
知识点包括:1、吸收光谱:物质对不同波长光的吸收程度不同,形成吸收光谱。
2、朗伯比尔定律:A =εbc,其中 A 为吸光度,ε 为摩尔吸光系数,b 为光程,c 为物质浓度。
3、显色反应:为了提高测定的灵敏度和选择性,常需要进行显色反应。
二、电化学分析法(一)电位分析法通过测量电池电动势来确定溶液中被测物质浓度的方法。
要点如下:1、指示电极和参比电极:指示电极的电位随被测离子浓度变化而变化,参比电极的电位恒定。
2、 pH 玻璃电极:对氢离子有选择性响应。
3、离子选择性电极:选择性地响应特定离子。
(二)电解与库仑分析法电解分析法是通过电解使被测物质在电极上析出,然后称重求得其含量。
库仑分析法是依据电解过程中消耗的电量来进行定量分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH1 绪论仪器分析常用方法分为三大类:光学分析法、电学分析法、色谱分离法CH2 光学分析法导论光学分析法是基于物质发射的电磁辐射(光)[或电磁辐射(光)与待测物质相互作用]所建立起来的一类分析方法。
原子光谱来源于原子的外层电子在不同能级之间的跃迁。
荧光法灵敏度比吸收、发射高是因为荧光是从入射光的直角方向检测,即在黑背景下检测荧光的发射。
CH3 原子发射光谱1.AES:根据待测物质的气态原子或离子受激发后所发射的特征光谱的波长及其强度来测定物质中元素组成和含量的分析方法。
定性原理:不同元素的原子具有不同的结构,因而受激时就能发射出不同波长的谱线。
定量原理:I=aC b罗马金公式。
真正应用是内标法(相对强度法)一个元素的“最后线”,往往也是这个元素的“最灵敏线”,但不一定是“最强线”2. 原子发射光谱仪由三大件组成:光源、光谱仪、检测系统3. 发射光谱分析的光源有:火焰、直流电弧、交流电弧、高压火花、电感耦合等离子体。
其中,电感耦合等离子体要求把试样首先制成溶液,然后将试液雾化,以气溶胶的方式引入光源的激发区进行激发,它具有低干扰、高精度、低检测限和大线性范围的优点.4.常用的定量方法:三标准试样法CH4 原子吸收1.AAS: 原子吸收光谱的产生是由于原子对待测元素特征谱线的吸收,或者说原子吸收光谱是由气态物质中基态原子的外层电子跃迁产生的。
在原子吸收法中, 由于吸收线半宽度很窄, 因此测量积分吸收有困难, 所以用测量峰值吸收系数来代替.原子谱线会有一定的宽度是因为原子本性(自然宽度)和外界因素(热变宽-多普勒变宽、压变宽-劳伦兹变宽)所致。
原子吸收定量原理:在一定条件下,A=KLC2.原子吸收分光光度计由四大件组成:光源(空心阴极灯)、原子化器、单色器和检测器(光电倍增管)。
光源(空心阴极灯)作用:提供待测元素的特征谱线;原子化器作用:①提供能量使试样解离成基态原子;②把基态原子引入光层内原子化方法:火焰法、无火焰法。
其中,火焰原子化器是由雾化器、预混合室、燃烧器组成的。
单色器作用:将被测元素的分析线与其它谱线分开。
检测器(光电倍增管)作用:将光信号转换为电信号,经检波放大,数据处理后显示结果。
3.灵敏度:产生1%的吸收或0.0044吸光度值时溶液中待测元素的质量浓度(mg.L-1/1%)或质量分数火焰原子化法:S1%=ρ×0.0044 / A (mg/L)ρ为质量浓度(mg/L)例1:以3μg/mL的铁溶液,测得透光率为48%,计算铁的特征浓度。
解:A=lg(1/T)= lg(1/48%)=0.3188S=(C×0.0044)/A=(3×0.0044)/0.3188=0.041 μg/mL (1%)例2:在火焰原子吸收分光光度法中,以3μg/mL的钙溶液测得的吸光度为0.319,计算钙的灵敏度。
解:S=C×0.0044/A=3×0.0044/0.319=0.041μg/mL(1%)4.干扰:1.非光谱干扰:物理干扰、化学干扰、电离干扰;2.光谱干扰:谱线干扰、背景干扰。
其中,背景干扰表现为火焰中产生的分子吸收。
5.定量方法:标准曲线法、标准加入法6.原子荧光分光光度计的构造与原子吸收仪器的异同:原子荧光分光光度计的基本构造与原子吸收仪器相似,但光源应置于与单色仪光轴相垂直的位置,目的是为了消除透射光对荧光测量的干扰。
CH5 紫外-可见吸收光谱法紫外-可见吸收光谱:反映分子价电子能级跃迁(故称电子光谱)它的产生是由于原子核外层电子的跃迁。
可用于结构鉴定(不饱和有机物)和定量分析(A= b c)有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果:σ电子、π电子、n电子。
四种跃迁所需能量ΔΕ大小顺序为:n→π*< π→π*< n→σ*< σ→σ*生色团为不饱和基团:C=C、N=O、C=O、C=S等;助色团是指分子中的一些带有非成键电子对的基团(-OH、-OR、-NHR、-SH、-Cl、-Br、-I)本身在紫外-可见光区不产生吸收,但是当它与生色团连接后,使生色团的吸收带向长波移动,且吸收强度增大。
在光学分析法中, 采用钨灯作光源的是可见分子光谱;若采用氘灯作光源的是紫外分子光谱CH6 红外吸收光谱法1.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区远红外光区,中红外光区和近红外光区;其中中红外光区的应用最广。
红外光谱也称分子的振、转动光谱。
2. 红外光谱产生的条件:(1) 辐射能应具有能满足物质产生振动跃迁所需的能量;(2) 辐射与物质间有相互偶合作用,产生偶极炬的变化(保证外界辐射的能量传递给分子)3.分子振动方程式(虎克定律):ν=[1/(2π)]√k/μ;K—连接原子的化学键的力常数(与键能、键长有关);μ—双原子的折合质量例1.CO的红外光谱在2170cm-1处有一振动吸收峰,试计算(1) CO键的力常数为多少? (2) 14C 的对应吸收峰应在多少波数处发生?(1) σ= 2170 cm-1k1/2 = 2170 ÷1302 ×(192/28)1/2 = 4.365k = 19.05 ≈ 19 N/cm(2)4. 红外光谱法主要研究振动中有偶极矩变化的化合物。
因此,除了单原子和同核分子等外,几乎所有的有机化合物在红外光区均有吸收。
双原子分子的振动只有一种,即两原子的相对伸缩振动;多原子分子的振动分成两大类:伸缩振动和变形振动。
5. 某化合物能溶于乙腈, 也能溶于庚烷中, 且两种溶剂在测定该化合物的红外光谱区间都有适当的透过区间, 则选用庚烷溶剂较好,因为乙腈毒性较强。
CH7 分子发光分析法1.分子荧光是由于分子的外层电子在辐射能的照射下,吸收能量跃迁至激发态,在以无辐射弛豫转入第一激发态的最低振动能级,然后跃迁回基态的各个振动能级,并产生光辐射。
2.化学发光是由于分子的外层电子在化学能的作用下使分子处于激发态,在以无辐射弛豫转入第一激发态的最低振动能级,然后跃迁回基态的各个振动能级,并产生光辐射。
分子荧光与化学发光的区别在于能源的不同,前者是辐射能,后者是化学能。
它们的相同在于均为分子外层电子的跃迁,产生的光辐射为紫外或可见光。
3.激发(吸收)光谱与发射(荧光)光谱的镜像关系有机物产生荧光的电子跃迁类型有:n →π*和π→π*。
4. 定量原理:即稀溶液的荧光强度与浓度成正比。
S S 能λ 2 λ 1 λ 3λ '2 0 4321 14315. 斯托克斯荧光:λex < λem ; 反斯托克斯荧光:λex > λem ; 共振荧光:λex = λemCH9 电分析化学法导论1. 电解分析的理论基础表现为, 外加电压的量由电解方程来决定, 产生的量由法拉第定律来计算, 电解时间的长短与离子扩散有关, 它由 Fick 定律来描述。
E 外 = (E 阳 + η阳)- (E 阴 + η阴) + iR ―――电解方程式产生超电位的原因:① 浓差极化;② 电极极化 m = MQ /Fn =Mit /Fn (F=96487)―――法拉第电解定律2.液体接界电位产生的原因是两种溶液中存在的各种离子具有不同的迁移速率。
目前既难于单独测定,又不好准确计算,故采用盐桥消除或减小液接电位。
3. 电极参比电极--电极电位是稳定的、已知的。
常用的有甘汞电极、Ag-AgCl 电极。
如: Hg │Hg 2Cl 2(固)│KCl(饱和)指示电极--电极电位能随着溶液中待测离子的活度(或浓度)不同而变化。
其作用:用来指示被测离子的活度。
(它是0电流测量,故测定过程中溶液主体浓度不发生变化。
)(-) Ag, AgCl | HCl | 玻璃膜 | 试液溶液 ∣∣ KCl(饱和) | Hg 2Cl 2(固)Hg (+)指示电极(内参比电极+内充液) 参比电极(饱和甘汞电极)工作电极--在电解及库仑分析中,被测离子在某些电极上发生电解反应,溶液中的离子浓度也随之改变,这类电极叫工作电极。
用于测定过程中主体浓度会发生变化的情况。
极化电极――电极电位完全随外加电压的改变而改变(或电极电位改变很大而电流改变很小) 去极化电极――电极电位完全不随外加电压的改变而改变(或电极电位改变很小而电流改变很大)CH10 电位分析法(离子选择性电极法,玻璃电极为代表)1.电位分析法测量的前提:0电流测量; 测量原理:能斯特方程式玻璃电极的内参比电极是:Ag-AgCl 电极。
玻璃电极使用前需要浸泡24h ,主要目的是使不对称电位值固定。
用pH 计测定某溶液pH 时, 其信号源是被测溶液;传感器是pH 玻璃电极.采用标准pH 溶液进行定位的目的是校正公式中的K ’。
RO C C nF RT E E ln /+=÷K’包括:外参比电极电位、内参比电极电位、不对称电位、液接电位。
K’理论上是计算不出来的。
2.选择性系数的意义为:在相同的测定条件下,待测离子i和干扰离子j产生相同电位时待测离子的活度与干扰离子活度的比值: K ij = αi/αj K ij越小,表明电极选择性越高;K i j是与测量浓度无关的常数,可以用来校对干扰离子产生的误差,使测量更准确;从相对误差公式可见,测定高价离子的灵敏度低,测量的误差大。
3.电位分析法是根据能斯特公式,通过测量电极电位来求得电极活性物质的浓度的方法。
测量方式分为直接电位法和电位滴定法(基于电位突跃来确定滴定终点的方法)。
直接电位法测定离子的活度通常采用:标准曲线法和标准加入法。
标准曲线法一般要加总离子强度缓冲剂TI SAB。
TISAB的作用:①保持较大且相对稳定的离子强度,使活度系数恒定;②维持溶液在适宜的pH范围内,满足离子电极的要求;③掩蔽干扰离子。
例如:测F-过程所使用的TISAB典型组成:1mol/L的NaCl,使溶液保持较大稳定的离子强度;0.25mol/L的HAc和0.75mol/L的NaAc, 使溶液pH在5左右;0.001mol/L的柠檬酸钠, 掩蔽Fe3+、Al3+等干扰离子。
注意:氟离子选择电极需要在pH5—7之间使用,这是因为pH高时,溶液中的OH-与氟化镧晶体膜中F-交换;而pH较低时,溶液中的F-生成HF 或HF-2,产生较大误差。
CH11 电解与库仑分析法1. 库仑分析的前提:电流效率100%。
理论依据为法拉第电解定律。
要保证电流效率100%,二条途径实现:①控制电位库仑分析法;②恒电流库仑滴定。
2. 在控制电位库仑分析法中,是在控制电位电解法的基础上,串联一个精密库仑计,直接测量电量通过法拉第定律求算。
3. 在恒电流库仑滴定中,由于电流是恒定的, 主要测量的参数是电解时间;因而通过精确测定电解进行的时间及电流强度,即可计算出电量.具体做法:以恒电流通过电解液,由电极产生一种能与被测物定量反应的滴定剂,其量与消耗的电量成正比。