二次函数专题复习学案
二次函数复习学案
二次函数复习(一)知识点归纳:1.二次函数的定义:一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)2.二次函数解析式的三种形式:一般式:)0(2≠++=a c bx ax y顶点式:)0()(2≠+-=a k h x a y交点式:)0)()((21≠--=a x x x x a y3.)0(2≠++=a c bx ax y 图象的特征:(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2ab ac a b --,对称轴为:直线ab x 2-=,图象在y 轴的截距为c .4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)(二) 例题分析例1.考查二次函数的定义:(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:(1) 在同一坐标系中一次函数y ax b =+和二次函数2例3 考查函数、方程、不等式之间的关系:(1)抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)((2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x的取值范围.(d )若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是(2)抛物线()y x =-+23212的顶点坐标是( )A. (2,1)B. (-21,)C. 231,⎛⎝ ⎫⎭⎪D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?②第10 min 时,学生的接受能力是多少?③第几分钟时,学生的接受能力最强?例5.考查用待定系数法求二次函数的解析式:(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
二次函数复习教案-【通用,经典教学资料】
二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
二次函数专题复习教案与学案(4)
九年级数学集体备课教案中心备课者:黄新总第4课时二次函数专题复习学案(4)一、典型例题讲评例1、点O 是坐标原点,点A (n ,0)是x 轴上一动点(n <0)。
以AO 为一边作矩形AOBC ,使OB =2OA ,点C 在第二象限。
将矩形AOBC 绕点A 逆时针旋转90°得矩形AGDE 。
过点A 得直线y =kx +m (k ≠0)交y 轴于点F ,FB =F A 。
抛物线y =ax 2+bx +c 过点E 、F 、G 的垂线,垂足为点M 。
(1)求k 的值;(2)点A 位置改变使,△AMH 的面积和矩形AOBC二、课堂练习2、如图1,点A 是直线y =kx (k >0,且k 为常数)上一动点,以A 为顶点的抛物线y =(x -h)2+m 交直线y =x 于另一点E ,交 y 轴于点F ,抛物线的对称轴交x 轴于点B ,交直线EF 于点C .(点A,E,F 两两不重合)(1)请写出h 与m 之间的关系;(用含的k 式子表示)(2)当点A 运动到使EF 与x 轴平行时(如图2),求线段AC 与OF 的比值; (3)当点A 运动到使点F 的位置最低时(如图3),求线段AC 与三、课后作业3、已知:抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA<OC )是方程x 2-5x+4=0的两个根,且抛物线的对称轴是直线x=1. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.4、如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC .(1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪]图1图2(备用)。
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。
2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。
二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。
三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。
2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。
四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。
二次函数中考复习专题教案
二次函数中考复习专题教案一、教学目标1. 理解二次函数的定义、性质及图像;2. 掌握二次函数的求解方法,包括顶点式、标准式和一般式;3. 能够运用二次函数解决实际问题,提高数学应用能力;4. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容1. 二次函数的定义与性质二次函数的定义:函数f(x) = ax^2 + bx + c(a≠0);二次函数的图像:开口方向、顶点、对称轴、单调区间。
2. 二次函数的图像与性质图像特点:开口方向、顶点、对称轴;性质:单调性、最值。
3. 二次函数的求解方法顶点式:f(x) = a(x h)^2 + k;标准式:f(x) = ax^2 + bx + c;一般式:ax^2 + bx + c = 0。
4. 实际问题求解应用二次函数解决几何问题;应用二次函数解决物理问题;应用二次函数解决生活中的问题。
5. 二次函数的综合应用二次函数与其他函数的结合;二次函数与方程组的结合;二次函数与不等式的结合。
三、教学过程1. 复习导入:回顾一次函数和指数函数的相关知识,为二次函数的学习打下基础;2. 知识讲解:分别讲解二次函数的定义、性质、图像与求解方法;3. 案例分析:分析实际问题,引导学生运用二次函数解决实际问题;4. 课堂练习:布置练习题,巩固所学知识;四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况;2. 练习完成情况:检查学生完成练习题的情况,巩固所学知识;3. 课后作业:布置课后作业,检查学生对知识的掌握程度;4. 小组讨论:评估学生在小组讨论中的表现,培养团队合作精神。
五、教学资源1. PPT课件:展示二次函数的相关概念、性质、图像等;2. 练习题:提供不同难度的练习题,巩固所学知识;3. 实际问题案例:提供与生活相关的实际问题,引导学生运用二次函数解决;4. 教学视频:讲解二次函数的求解方法和解题技巧。
六、教学策略1. 案例分析:通过分析具体案例,让学生了解二次函数在实际问题中的应用;2. 数形结合:利用图形展示二次函数的性质,加深学生对二次函数的理解;3. 小组讨论:鼓励学生进行小组讨论,培养团队合作精神和沟通能力;4. 分层教学:针对不同学生的学习水平,给予相应的指导和辅导;5. 激励评价:及时给予学生鼓励和评价,提高学生的学习积极性。
九年级数学《二次函数》总复习教案
教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
《二次函数》复习导学案教学设计
《二次函数》复习导学案教学设计学习目标:知识与技能目标:理解二次函数和抛物线的有关概念,从整体上掌握二次函数的图象和性质,并应用图象和性质解决一些简单的问题,提高学生对知识的整合能力和分析能力。
识的整合能力和分析能力。
过程与方法目标:过程与方法目标:经历本节课的复习的过程,经历本节课的复习的过程,经历本节课的复习的过程,形成比较完整的知识体系,形成比较完整的知识体系,形成比较完整的知识体系,进一步进一步感受数形结合这一重要数学思想方法的应用。
感受数形结合这一重要数学思想方法的应用。
情感态度价值观目标:情感态度价值观目标:通过对一些基础题型的练习,通过对一些基础题型的练习,通过对一些基础题型的练习,增加学生的成就感,增加学生的成就感,增加学生的成就感,培养学培养学生自信心,逐步消除学生对数学科的畏难情绪。
并在教学中培养学生同他人合作完成任务,以及及时反思、总结的良好学习习惯。
同他人合作完成任务,以及及时反思、总结的良好学习习惯。
学习重点:二次函数图象及其性质的灵活运用:二次函数图象及其性质的灵活运用学习难点:利用数形结合的思想解决二次函数的有关问题。
:利用数形结合的思想解决二次函数的有关问题。
情景引入【设计意图】PPT 辅助展示,动画展示篮球运动等生活实例,提高同学们学习的兴奋点和积极性,使学生感受数学来源于生活,服务于生活。
【课前复习学案】下列函数中,哪些是二次函数?下列函数中,哪些是二次函数? (1)32y=2x-8x +3 (2)21y= -x(3)2y=mx-x-1(4)y=x(1-x)【课内探究学案】【自主复习】一、一、 如果你是二次函数223y x x =--,请你做下自我介绍,比一比谁介绍的最全面!(提示:可以从图像、性质和特点等入手)(提示:可以从图像、性质和特点等入手)【设计意图】抛弃枯燥的习题复习课模式,采用“角色扮演”的方式,假如你是二次函数如何来进行自我介绍?极大带动了学生的学习兴趣。
(完整版)二次函数复习课教案.docx
二次函数复习2016.06二次函数复习课题二次函数课型复习课掌握二次函数的图象及其性质,能灵活运用抛物线的知识解一些实际问题.通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.教学目标学生亲自经历巩固二次函数相关知识点的过程,体会解决问题策略的多样性.经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.教学重点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.教学难点二次函数性质的灵活运用,能把相关应用问题转化为数学问题.课前准备(教具、活制作课件动准备等)教学过程教学步骤基础知识之自我构建基础知识之基础演练师生活动设计意图通过一个具体二次函数,请学生说出尽可能多的结论,x2主要让学生回忆二次函数有让学生思考函数 y4x 3 并写出相关关基础知识.同学们之间可以结论相互补充,体现团结协作精神.同时发展了学生的探究意识,培养了学生思维的广阔性.教者让学生思考 1-4题,然后让学生回答,第 1 题主要考查二次函其他同学可以补充.数图像平移知识点,二次函数1、求将二次函数y x22x 图像向右平移1图像平实质上就是点的平移.第 2,3,4 题都是开放性个单位,再向上平移 2 个单位后得到图像的函数题,答案不唯一,只要正确即表达式.可,让学生很大发挥空间,其2、请写出一个二次函数解析式,使其图像的中涉及二次函数解析式的求对称轴为 x=1,并且开口向下.法.3、请写出一个二次函数解析式,使其图象与第 5,6 题涉及二次函数x 轴的交点坐标为( 2,0)、(- 1, 0).图象性质,根据图象,正确表4、请写出一个二次函数解析式,使其图象与示解析式中字母的取值范y 轴的交点坐标为( 0, 2),且图象的对称轴在 y围.教者也可以在原图形基础轴的右侧.改变形状,让学生经历和体验教者让学生口答第5、 6 题.图形的变化过程,引导学生感悟知识的生成、发展和变化.情感态度解决问题知识技能数学思考5、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y①a0;②b0;③c0;x④ b24ac0;6、如图 ,抛物线y ax2bx c ,请判断下列各式的符号:y① abc0;② 2a-b0;?x③ a+b+c0; 1 0 1④ a-b+c0.1、二次函数y ax2bx c 的图象如下图,则方程 ax2bx c0 的解为当 x 为时, ax2bx c当 x 为时, ax2bx cy数形结合思想是一种重要的数学思想,第 1 题看似复杂,其实对照图象,很容易找;出题目答案.第 2 题考查学生二次函0 ;数与一元二次方程关系,具体为:一元二次方程无实根说明0 .相应二次函数图象与 x 轴无交点,再根据隐含条件对称轴为直线 x1,可见顶点在第301x2一象限.第 3题考查学生从图表基础知识之提炼信息的能力.灵活运用x n0 无实数根,2、关于 x 的一元二次方程x2则抛物线 y x2x n 的顶点在()A .第一象限 B.第二象限C. 第三象限D.第四象限3、根据下列表格的对应值:x 3.23 3.24 3.25 3.26y ax2 bx c-0.06-0.020.030.09不解方程,试判断方程 ax2bx c0(a0,a,b,c 为常数)一个解 x 的范围是()A 、 3 x 3.23B、 3.23x 3.24C、 3.24x 3.25D、 3.25x 3.26难点突破之思维激活1、已知抛物线y ax2bx c 的对称轴为x=2,第 1,2 题考查抛物线轴对称性.且经过点(3,0),则 a+b+c 的值为.第 3 题考查二次函数图像2、已知抛物线y ax2bx c 经过点A(-2,7),及其性质的相关知识.本部分 3 道题目不能呆板B(6,7), C(3,- 8),则该抛物线上纵坐标为地应用二次函数的基础知识,-8 的另一点坐标是 ___________.而要综合相关知识,以达到能3、下图是抛物线y ax2bx c 的一部分,且经力提升之目的.过点(- 2 , 0),则下列结论中正确的个数有()①a <0;②b<0;③c>0;④抛物线与 x 轴的另一个交点坐标可能是(1,0);⑤抛物线与 x 轴的另一个交点坐标可能是( 4,0).A.2 个B.3 个C.4 个D.5 个y20x难点突破之聚焦中考教者出示一道函数类应用题,让学生思考,本题首先读懂题意,正确教者点拨.求出二次函数解析式.二次函例题:某商场销售一批名牌衬衫,平均每天可售数的最值是体现二次函数实出 20 件,进价是每件 80 元,售价是每件 120 元,际应用价值的一种常见题型,为了扩大销售,增加盈利,减少库存,商场决定它在优选方案、减小投入、增采取适当的降价措施,经调查发现,如果每件衬大收益中意义非凡.解题时通衫降低 1 元,商场平均每天可多售出 2 件,但每常借助顶点坐标来求,但有时件最低价不得低于108 元.由于实际问题实际意义的限⑴若每件衬衫降低x 元( x 取整数),商场平制,需结合自变量的取值范围均每天盈利 y 元,试写出 y 与 x 之间的函数关系进行调整.本题由图象可知,式,并写出自变量x 的取值范围.抛物线顶点(15,1250)不在⑵每件衬衫降低多少元时,商场每天(平均)本题图象上,它不是最高点,盈利最多?最高点应该是(12,1232)或者这样理解:顶点横坐标是反思与提高1、本节课你印象最深的是什么?2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?3、在下面的函数学习中,我们还需要注意15,不满足 0 x 12 ,因此不能理解为:当 x 15 时, y 取最大值为 1250 元.让学生自己总结一节课的得失,教者进行适当的点评.真正体现出学生是学习的主体.为今后自主学习奠定基哪些问题?础,由此达到数学教学的新境教者归纳本章知识网络图示界——提升思维品质,形成数学素养.实际问题二次函数y ax2bx c目标实际问题利用二次函数的图的答案象和性质求解。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
《二次函数》的复习教学设计
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
期末二次函数复习学案 文档
二次函数复习学案一、基础知识点:1、二次函数的一般形式:y=ax ²+bx+c(a ≠0) 顶点为 ,对称轴是 。
2、如果函数y=(k-3) +kx+1是二次函数,则k 的值一定是______ .3、y=ax 2, y=ax 2+k, y=a(x-h)2, y=a(x-h)2+k 写出它们的顶点,对称轴。
。
4、y = -2(x -3)²+4的图像的顶点为 , 其图像是由y= -2x 2向 平移 个单位,再向5 把 y=2x²- 8x+7 配方成 ,其顶点为 ,对称轴为 。
6 、 y=2x 2-x+1 的顶点是______,对称轴是______;当x ______时,y 随x 的增大而减小;当x ______时, y 有最______值是______。
7、二次函数y=2x 2+x -n 的最小值是2,那么n = 8、y=x 2(1≤ x ≤2)的最小值是 。
9、函数 y=2x ²- 8x+7 的图象是由y=2x ²的图象怎样平移得到的? 二、知识拓展1、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 。
2、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足( ).(A )a <0,b <0,c >0;(B )a <0,b <0,c <0; (C )a <0,b >0,c >0;(D )a >0,b <0,c >0。
口诀: 。
.3、 已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、54、比较大小:1、已知12(2,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 2、已知12(0,),(3,)q q 二次函数22y x x m =-++上两点,试比较12q q 与的大小 3、若二次函数24y ax bx =+-的图像开口向上,与x 轴的交点为(4,0),(-2,0),此抛物线上121,2x x =-=,对应的y 1 与y 2的大小关系是 。
二次函数专题复习教案
二次函数专题复习教案求线段长、面积问题一.教学目标:1.学生熟悉二次函数基础知识并会灵活运用。
2.学生能熟练计算二次函数中有关线段长及面积问题。
二.教学重点、难点:重点:计算二次函数中线段长及面积。
难点:二次函数有关线段长及面积的计算方法。
三.教具:多媒体课件四.教学过程:(一)知识回顾:1. 二次函数的概念及图象特征 二次函数:如果 ,那么y 叫做x 的二次函数.通过配方,可写成 ,它的图象是以直线 为对称轴,以 为顶点的一条抛物线.2. 二次c bx ax y ++=2函数的性质值 开口方向 对称轴 顶点坐标 最大(或)最小值>0<03. 二次函数图象的平移规律 y=a y=a y=a +k抛物线c bx ax y ++=2可由抛物线y=ax 2(a ≠0)平移得到. 由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况. 因此有关抛物线的平移问题,需要利用二次函数的顶点式y=a +k 来讨论. 4. 、、及的符号与图象的关系⑴a →决定抛物线的 ;2x 2)(h x -2)(h x -2)(h x -a >0. ;a <0, .⑵a 、b →决定抛物线的 位置:a 、b 同号,对称轴(2b x a=-<0)在y 轴的 侧; a 、b 异号,对称轴(2b x a =->0)在y 轴的 侧. ⑶c →决定抛物线与y 轴的交点(此时点的横坐标x =0)的位置: c >0,与y 轴的交点在y 轴的 ;c =0,抛物线经过 ;c <0,与y 轴的交点在y 轴的 .⑷b 2-4ac →决定抛物线与x 轴交点的个数:①当b 2-4ac >0时,抛物线与x 轴有 交点;②当b 2-4ac =0时,抛物线与x 轴有 个交点;③当b 2-4ac <0时,抛物线与x 轴 交点.5. 二次函数解析式的确定用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:⑴设一般形式: (a≠0);⑵设顶点形式: (a≠0);⑶设交点式: (a≠0).(二)例题讲解:例1:二次函数y =-2x + 2x+3通过向 (左、右)平移 个单位,再向___________(上、下)平移 个单位,便可得到二次函数y= --2x 的图象.例2. 已知二次函数y=ax 2+bx+c 的图象如下图所示,则下列5个代数式:ab ,ac ,a -b+c ,b 2-4ac ,2a+b 中,值大于0的个数有( )A. 5B. 4C. 3D. 2例3:如图抛物线与x轴相交于A(-1,0),B(3,0)与y轴相交于C(0,-3),若P为线段BC上一动点,过P作x轴的垂线交抛物线于点M,设P点的横坐标为t.(1)求抛物线的解析式.(2)求线段PM的最大值.(3)用含t的代数式表示△BCM的面积并求最大值.(三)达标测评在平面直角坐标系中,已知抛物线经过A)0,4(-,B)4,0(-,C)0,2(三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.MC BA O xy(四)课堂小结请同学们总结一本节课你收获了什么?(五) 课堂作业如图,在平面直角坐标系中,直线112y x =+与抛物线23y ax bx =+-交于A ,B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上一动点(不与A ,B 重合),过点P 作x 轴的垂线交直线AB 与点C ,作PD ⊥AB 于点D.(1)求,a b 及sin ACP ∠的值(2)设点P 的横坐标为m①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②求当m 为何值时,△APB 面积最大,并求出最大面积.(六)教学反思。
九年级数学《二次函数》总复习教案
一、教学目标:1.复习二次函数的定义、性质和图像;2.复习二次函数的解析式的推导和应用;3.复习二次函数与一次函数的关系;4.加强学生对二次函数的理解和运用能力。
二、教学内容及教学步骤:1.复习二次函数的定义和性质。
(1)复习二次函数的定义:二次函数定义为:y = ax^2 + bx + c,其中a、b、c为常数,a≠0。
(2)复习二次函数的性质:①函数的对称轴:二次函数的对称轴是x轴的垂直平分线,方程为x=-b/2a。
②函数图像的开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
③ 函数的顶点:二次函数的图像的最高点或最低点即为函数的顶点,顶点的横坐标为-x_0 = -b/2a,纵坐标为y_0 = f(x_0) = -(b^2 -4ac)/4a。
④ 函数的零点:二次函数与x轴交点的横坐标即为函数的零点,方程为ax^2 + bx + c = 0,解方程得到的根为x_1 和 x_2(x_1≤ x_2)。
2.复习二次函数的图像与性质。
(1)通过例题让学生绘制各种不同开口方向、对称轴位置的二次函数的图像,并让学生总结不同性质之间的关系。
(2)使用计算机软件或网站上的图像工具辅助显示二次函数的图像,让学生在电脑屏幕上直观地观察二次函数的图像特点。
3.复习二次函数的解析式推导和应用。
(1)复习二次函数的解析式推导的基本步骤:已知二次函数的顶点坐标(x_0,y_0)和过另一点(x_1,y_1)的条件,推导二次函数的解析式。
(2)举例说明二次函数解析式推导的具体过程,并让学生进行练习。
(3)通过应用题,让学生理解二次函数的解析式在实际问题中的应用。
4.复习二次函数与一次函数的关系。
(1)复习二次函数与一次函数的关系:当二次函数的a=0时,二次函数退化成一次函数。
(2)通过例题让学生理解二次函数与一次函数的关系,以及在一次函数的基础上加上二次函数的图像特点后的整个函数图像的变化。
二次函数复习课教案精选全文完整版
可编辑修改精选全文完整版《二次函数》复习课教案一、课标要求二、命题分析三、复习目标:知识目标:1、了解二次函数解析式的三种表示方法;2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;3、掌握二次函数的图像和性质以及抛物线的平移规律技能目标:培养学生运用函数知识解决数学综合题和实际问题的能力。
情感目标:1、通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。
复习重、难点:函数综合题型复习方法:自主探究、合作交流四、复习过程:(一)、二次函数的定义•定义: y=ax²+ bx + c ( a 、 b 、 c 是常数, a ≠ 0 )•定义要点:①a ≠ 0 ②最高次数为2•③代数式一定是整式•练习:1、y=-x²,y=2x²-2/x,y=100-5 x²,•y=3 x²-2x³+5,其中是二次函数的有____个。
2.当m_______时,函数y=(m+1)χm^2-m - 2χ+1是二次函数?(二)、二次函数的图像及性质1、填表:2、二次函数y=ax+bx+c,当a>0时,在对称轴右侧,y随x的增大而,在对称轴左侧,y随x的增大而;当a<0时,在对称轴右侧,y随x的增大而 , 在对称轴左侧,y随x的增大而3、抛物线y=ax2+bx+c,当a>0时图象有最点,此时函数有最值;当a<0时图象有最点,此时函数有最值4、巩固练习:已知二次函数y=x2+2x-3 的图象是一条,它的开口方向,顶点坐标是,对称轴是,它与x 轴有个交点,交点坐标是;在对称轴的左侧,y 随着x 的增大而;在对称轴的右侧,y随着x的增大而;当x= 时,函数y 有最值,是.(三)、二次函数解析式的三种表示方法:1、(1)顶点式:(2)交点式:(3)一般式:2、求抛物线解析式的三种方法:(1)、一般式:已知抛物线上的三点,通常设解析式为________________(2)、顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________ 求出表达式后化为一般形式.(3)、交点式:已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________求出表达式后化为一般形式.3、例1、已知二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。
二次函数的复习课教案
二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。
复习重点:1、二次函数的图像与性质。
2、二次函数解析式的确定。
复习难点:如何正确利用图像信息解决二次函数的相关问题。
复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。
通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。
1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。
二次函数复习课教案
二次函数复习课(一)
一、教学目标:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,提高观察、分析、归纳和概括的能力.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
-43
2
问:从图像上得到什么信息?你如何求?。
二次函数专题复习教学设计
《二次函数》专题复习教学设计一、教材分析1.地位和作用(1)函数是初中最基本的概念之一,也是实际生活中数学建模的重要工具之一。
二次函数在初中函数的教学中具有重要地位,它不仅是一元二次方程及不等式的引申和提高,更为高中学习一元二次不等式和圆锥曲线奠定基础。
在历届中考试题中,二次函数都是压轴题中不可缺少的内容;(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
2.课标要求:(1)通过对实际问题的分析,体会二次函数的意义;(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质;(3)会用配方法将数字系数的二次函数的表达式化为y二a(x-h)2+k的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题;(4)会利用二次函数的图像求一元二次方程的近似解。
二、学情分析(1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识;(2)学生的分析、理解能力较学习新课时有明显提高;(3)九年级学生具有一定的自主探究和合作学习的能力。
三、复习目标知识目标:1.能够构建出本专题的知识结构图;2.巩固二次函数的基础知识:二次函数的图像及基本性质;二次函数解析式的三种表示方法及解析式求法;一元二次方程与抛物线的结合与应用;3.能够利用二次函数解决实际问题。
技能目标:1.培养学生运用函数知识解决数学综合题和实际问题的能力;2.体会数形结合、函数建模、转化、分类讨论等数学思想方法的运用。
情感目标:1.通过问题情境和探索活动的创设,激发学生的学习兴趣;2.让学生感受到数学与人类生活的密切联系,体会到学习数学的乐趣。
四、复习重、难点:二次函数图像及性质和二次函数的应用。
五、复习方法:1.以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合九年级学生的求知心理和已有的认知水平开展教学。
教师着眼于引导,学生着眼于 探索,侧重于学生能力的提高、思维的训练。
(教案)二次函数图象和性质复习教案(共五篇)
(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。
2.会利用二次函数的图象判断a、b、c的取值情况。
3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。
教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。
本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。
学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。
本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。
通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。
教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。
3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。
九年级数学二次函数复习教案
一、教学目标:1.知识与能力目标:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.过程与方法目标:1.通过提问、讲解和练习等方式,引导学生复习二次函数的主要知识点;2.引导学生灵活运用所学知识解决实际问题。
3.情感态度价值观目标:1.培养学生对数学的兴趣;2.提高学生的数学思维和解决问题的能力;3.培养学生的合作意识和实际应用能力。
二、教学重点与难点:1.教学重点:1.复习二次函数的基本概念、性质及图像;2.复习二次函数的平移、伸缩变换;3.复习解二次函数的相关问题;4.复习利用二次函数解决实际问题。
2.教学难点:1.通过实际问题解决中运用二次函数;2.灵活运用二次函数的平移、伸缩变换。
三、教学过程设计:1.导入新课进行一个小组讨论,让学生回顾一下二次函数的知识点,并提出自己的问题和疑惑。
然后学生将自己的问题汇报给全班。
2.概念复习与演练1.复习二次函数的基本概念和性质,例如函数的定义域、值域、最值等。
2.复习二次函数的图像和特征,例如开口方向、对称轴、顶点坐标等。
3.利用教材上的例题和习题进行讲解和练习。
3.平移、伸缩变换的复习与演练1.复习并讲解二次函数平移和伸缩的概念和方法。
2.复习并讲解平移后的二次函数的图像和特征。
3.利用教材上的例题和习题进行讲解和练习。
4.解二次函数的复习与演练1.复习二次函数的解的方法,例如配方法、求解方程组等。
2.复习并讲解二次函数解相关问题的方法,例如求最值、求交点等。
3.利用教材上的例题和习题进行讲解和练习。
5.实际问题的解决1.提供一些与实际生活相关的问题,让学生结合所学知识解决问题。
2.分组讨论和汇报,互相学习和交流。
6.小结与反馈对本节课的重点和难点进行小结,并进行学生的反馈和问答环节。
四、教学资源准备:1.教材和课件;2.相关练习题和习题;3.与实际生活相关的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题复习-----符号问题
一.学习目标
1、由抛物线的位置确定系数a,b,c,∆及有关a,b,c的代数式的问题;
2、由a,b,c,∆的符号确定抛物线在坐标系中的大致位置;
3、体会函数与方程之间的联系及数形结合思想.
一、知识点
1.二次函数的一般表达式:(a、b、c为常数,a____ )
2.二次函数y=ax²+bx+c (a≠0)的图像是,对称轴为:.
3.已知y=ax²+bx+c的图象如图所示,请根据图像判断下列代数式的符号.(1)a ___0,b____0,c_____0,b2-4ac_____0
(2)a+b+c____0, a-b+c____0,4a-2b+c____0
(3)2a-b____0, 2a+b____0
-11
-2
二、合作学习
方法小结:1、a的符号由抛物线确定,
(1)开口向上(2)开口向下
2、b的符号由的位置确定,
(1)对称轴在y轴左侧
(2)对称轴在y轴右侧
(3)对称轴是y轴
3、C的符号由抛物线与位置确定.
(1)交点在y轴正半轴
(2)交点在y轴负半轴
(3)交点在坐标原点
4、b2-4ac 的符号由抛物线与确定.
(1)与x轴没有交点
(2)与x轴有一个交点
(3)与x轴有两个交点
5、a+b+c的符号由时抛物线上的点的位置确定; a-b+c的符号由时抛物线上的点的位置确定;
6、2a+b的符号由抛物线的对称轴和直线的位置确定;
2a-b的符号由抛物线的对称轴和直线的位置确定
三、中考链接
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;
③2a﹣b=0;④<0,
其中,正确结论的个数是()
四、拓展
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图中所提供的信息,请你写出有关a、b、c的结论,看谁写的又快又多。