ABAQUS应用培训热分析实例
ABAQUS热应力分析实例详解
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
ABAQUS顺序热力耦合分析实例
ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。
温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。
由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。
此实例中使用国际单位制。
1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0)(0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0)使用creat Fillet功能对模型倒角处设置0.005的倒圆角。
倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。
2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。
所不同的是,热分析还需要指定热传导系数以及比热。
在Thermal里输入参数,热铲刀系数25.96,比热451。
3、创建截面属性以及装备部件,和普通的静力分析设置一样。
4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。
在Edit Step窗口中,使用默认的瞬态分析(Transient),时长设置为3s。
切换到Incrementatin进行相应的设置,如下图。
5、Load模块中,设置左边温度为100度,右边及上边温度为20度。
Creat BC,类型选择Other>Temperature。
在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。
6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的Heat Transfer,查看下面确保使用的单元为DCAX4。
使用结构化的全四边形网格划分方法。
7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。
ABAQUS热分析专题PPT课件
•在 ABAQUS/Explicit 中,没有单纯的热传导分析选项, 然而可以进 行全耦合的热-应力分析。
•这个功能通过设定适当的边界条件,可以模拟纯热传导工程; •除空腔辐射和利用用户子程序定义的不均匀热载荷之外,其他在 ABAQUS/Standard 中可以使用的热属性,都可以用在 Explicit 中。
型插值方法决定的。
热传导单元定义 •复合材料壳单元
多层复合材料热壳可以被构建 每一层可以是不同厚度,不同主 方向的不同材料组成
t4 材料1 t3 材料1 t2 材料1 t1 材料1
材料特性在 *SHELL SECTION 中定义:
*SHELL SECTION,COMPOSITE LAYER1的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER2的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER3的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称
x 2
1
t
2
x 2
k c
热扩散率
介绍 -- 类比
Stress
u
I TdV
V
D
T DdV
V
Heat
q
I T qdV
V
K
T KdV
V
分析过程
•在 ABAQUS/Standard 中,热传导分析的执行是通过将几何体离散 成扩散热传导单元,并且使用 *HEAT TRANSFER 过程选项
确定温度的分布。
Abaqus热分析实验报告
(一)创建部件1:模块:部件2:点击创建部件工具,弹出创建部件对话框名称:CUP模型空间:三维类型:可变形形状:实体类型:旋转大约尺寸:2003:点击继续,进入草绘模式,首先应当绘制一条构造线,然后为旋转实体绘制如下截面草图4:点击完成,选择上一步创建的构造线作为中心线,弹出编辑旋转对话框,将角度修改为360度5:点击确定,旋转的结果如下(二)定义材料和截面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框名称:steel通用→密度,将密度修改为7.85e-9力学→弹性→弹性,将杨氏模量修改为2.1e5,泊松比改为0.3热学→传导率,将传导率修改为36热学→比热,将比热修改为9e8点击确定3:点击创建截面工具名称:Section-1类别:实体类型:均质4:点击继续,弹出编辑截面对话框,材料为steel,点击确定5:点击指派截面工具,框选整个模型为要指派截面的区域6:点击完成,弹出编辑截面指派对话框,选取默认设置,点击确定(三)生成装配件1:模块:装配2:点击创建实例工具,弹出创建实例对话框,选取默认设置,点击确定(四)定义分析步1:模块:分析步2:点击创建分析步工具,弹出创建分析步对话框名称:Step-1程序类型:通用(热传递)3:点击继续,弹出编辑分析步对话框,将响应修改为稳态,点击确定(五)定义相互作用1:模块:相互作用2:点击相互作用管理器工具,弹出相互作用管理器对话框,点击创建,弹出创建相互作用对话框名称:Int-1分析步:Step-1类型:表面热交换条件点击继续,选择如下外圆面点击完成,弹出编辑相互作用对话框膜层散热系数:10e-3环境温度:20点击确定,结果如下图示:3:按照上述类似方法,定义其他4个相互作用关闭相互作用管理器,完成相互作用的定义(六)网格划分为了便于进行网格划分,先对部件进行分区1:模块:部件2:点击拆分几何元素:定义切割平面工具,选择一点及法线指定平面选择下图示一点及法线指定分割平面点击创建分区,完成拆分,结果如下图3:模块:网格对象:部件4:点击为边布种工具,框选整个部件为要布置局部种子的区域5:点击完成,弹出局部种子对话框,将近似单元尺寸修改为5,其余地方选用默认设置,点击确定6:点击指派网格控制属性工具,框选整个部件7:点击完成,弹出网格控制属性对话框,按如下设置,点击确定单元形状:六面体技术:扫掠算法:进阶算法8:点击指派单元类型工具,框选整个部件,点击完成,弹出单元类型对话框,将分析类型修改为热传递,点击确定9:点击为部件划分网格工具,点选是确定为部件划分网格结果如下图(七)创建作业1:模块:作业2:点击作业管理器工具,弹出作业管理器对话框3:点击创建,弹出创建作业对话框4:点击继续,弹出编辑作业对话框,选取默认设置,点击确定5:点击提交,提交作业6:运行过程中,可以点击监控,查看运行状态7:点击结果,进入可视化模块,并在变形图上绘制云图,结果如下。
Abaqus实例教程——交叉管的热分析
Surface film condition(曲面薄膜狀態)
接著我們要加上曲面對流的邊界條件.
w16-Surface film condition.avi
1. 在模型樹中的 Interactions 上快點兩下來製作一個新的互動(interaction).
2. 在 Create Interaction 對話框中, 選取 Surface film condition 作為互動類型
要分析模擬這個零件的熱反應, 需要使用一個熱傳遞(heat transfer)的分析步. 1. 在模型樹中的Steps上快點兩下來製作一個新的分析步. 2. 在 Create Step 對話框中, 選取 Heat transfer 做為分析步的類型然後用以下的 參數來製作一個暫態的熱傳遞分析步: • 描述說明(Description): Thermal analysis • 整個分析時間(Total time period) = 200 • 時間增量之最大數量(Max. number of increments allowed) = 100 • 初始增量值(Initial increment size) = 1 • 停止分析步之最小溫度變動率 = 0.5 • 每個增量中所允許之最大溫度變動率= 10 3. 使用其預設之 ODB 輸出資料項. 設定restart frequency 為 5.
plasticProps.inp 檔中讀進這些資料
將此選項打開
在這裡按下 滑鼠右鍵
Figure W16–8 Reading plastic material properties from a file.
Copyright 2004 ABAQUS, Inc.
Introduction to ABAQUS
ABAQUS热应力分析解析实例详解
ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。
热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。
在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。
首先,我们需要创建一个ABAQUS模型。
模型包括几何形状、材料属性和边界条件。
在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。
在这个实例中,我们将模拟一个烤箱的加热过程。
模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。
下一步是定义材料属性。
我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。
这些属性通常可以从材料手册或实验中获得。
我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。
在这个实例中,我们将模拟一个恒定的热流输入。
我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。
在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。
我们将选择1000W的热流输入。
然后,我们需要定义分析步骤。
在这个实例中,我们将使用一个稳态热分析步骤。
在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。
我们将选择0.1s的时间步长和10s的总时间。
在模拟之前,我们需要定义网格划分。
网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。
ABAQUS中有多种网格划分方法可供选择。
我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。
当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。
ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。
计算结果将显示在ABAQUS的图形界面中。
在热应力分析完成后,我们可以查看结果并进行后处理。
ABAQUS热分析课稿
q k
T x
Ta L
Q
A
Tb
T T b a Q qA kA L
介绍 -- 比热 ,衡量物质储存热的能力 单位: J/M/℃
Q t Vc
时间增量 比热 温度增量
-- 一维热传导公式
2 c k 2 t x
1 2 2 t x
介绍
ABAQUS 中的热传导特性 -- 稳态响应 -- 瞬态响应 , 包括自适应时间步长 -- 全套热传导边界条件 -- 材料属性(和载荷)可以是温度相关 -- 热“接触”允许在“接触表面”有热流动 -- 可以方便的将温度场导入热应力分析中 -- 特性 •潜热项(由相变产生) •强制对流 •应力-热传导耦合分析功能 •热传导壳单元(沿厚度方向温度梯度) •空腔辐射(加热炉升温)功能
热传导单元定义 •复合材料壳单元
多层复合材料热壳可以被构建 每一层可以是不同厚度,不同主 方向的不同材料组成
t4 材料1 t3 材料1 t2 材料1 t1 材料1
材料特性在 *SHELL SECTION 中定义:
*SHELL SECTION,COMPOSITE LAYER1的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER2的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 LAYER3的厚度, 温度自由度数量(截面点数), 材料名,材料方向参考的 orientation 名称 …
k c
热扩散率
介绍 -- 类比
Stress Heat
u
I TdV
V V
q
I T qdV
abaqus案例
abaqus案例Abaqus是一款由法国达索系统公司开发的有限元分析软件。
它提供了强大的分析工具和高度可定制的建模环境,使工程师能够在各种领域进行准确的仿真分析。
在本文中,我们将介绍一些使用Abaqus的真实案例,以便更好地了解该软件的功能和应用。
1. 案例一:汽车碰撞分析汽车碰撞是交通事故中最常见的一种,也是最危险的一种。
利用Abaqus进行汽车碰撞仿真分析可以帮助工程师更好地理解碰撞过程和车辆的结构变形情况。
在这个案例中,我们将对一辆小型轿车进行碰撞测试。
首先,我们需要建立一个准确的车辆模型。
通过CAD软件,我们可以设计出车辆的外形,并将其导入Abaqus中。
接下来,我们需要添加材料属性和约束条件,以便对车辆进行仿真分析。
在这个案例中,我们使用了钢材作为车辆的材料,并设置了车辆的边界条件和碰撞速度。
通过Abaqus进行汽车碰撞仿真分析后,我们可以得到车辆在碰撞过程中的应力、应变和变形情况。
此外,我们还可以观察到车辆的安全性能和结构强度是否符合标准要求。
这些结果可以帮助汽车制造商更好地设计和改进汽车结构,以提高车辆的安全性能和耐用性。
2. 案例二:桥梁结构分析桥梁是重要的基础设施之一,其结构的稳定性和安全性对人们的出行和生活具有重要影响。
利用Abaqus进行桥梁结构分析可以帮助工程师更好地了解桥梁的结构特性和受力状态,以便更好地设计和改进桥梁结构。
在这个案例中,我们将对一座悬索桥进行分析。
首先,我们需要建立一个准确的桥梁模型,并添加材料属性和约束条件。
接下来,我们需要对桥梁进行荷载分析,以便了解桥梁在不同荷载下的受力状态和变形情况。
通过Abaqus进行桥梁结构分析后,我们可以得到桥梁在不同荷载下的应力、应变和变形情况。
此外,我们还可以观察到桥梁的结构稳定性和安全性能是否符合标准要求。
这些结果可以帮助桥梁工程师更好地设计和改进桥梁结构,以提高其安全性能和耐用性。
3. 案例三:电子设备热分析电子设备的热管理是一个重要的问题,因为过热会导致设备故障或损坏。
Abaqus热分析实验报告
(一)创建部件1:模块:部件2:点击创建部件工具,弹出创建部件对话框名称:CUP模型空间:三维类型:可变形形状:实体类型:旋转大约尺寸:2003:点击继续,进入草绘模式,首先应当绘制一条构造线,然后为旋转实体绘制如下截面草图4:点击完成,选择上一步创建的构造线作为中心线,弹出编辑旋转对话框,将角度修改为360度5:点击确定,旋转的结果如下(二)定义材料和截面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框名称:steel通用→密度,将密度修改为7.85e-9力学→弹性→弹性,将杨氏模量修改为2.1e5,泊松比改为0.3热学→传导率,将传导率修改为36热学→比热,将比热修改为9e8点击确定3:点击创建截面工具名称:Section-1类别:实体类型:均质4:点击继续,弹出编辑截面对话框,材料为steel,点击确定5:点击指派截面工具,框选整个模型为要指派截面的区域6:点击完成,弹出编辑截面指派对话框,选取默认设置,点击确定(三)生成装配件1:模块:装配2:点击创建实例工具,弹出创建实例对话框,选取默认设置,点击确定(四)定义分析步1:模块:分析步2:点击创建分析步工具,弹出创建分析步对话框名称:Step-1程序类型:通用(热传递)3:点击继续,弹出编辑分析步对话框,将响应修改为稳态,点击确定(五)定义相互作用1:模块:相互作用2:点击相互作用管理器工具,弹出相互作用管理器对话框,点击创建,弹出创建相互作用对话框名称:Int-1分析步:Step-1类型:表面热交换条件点击继续,选择如下外圆面点击完成,弹出编辑相互作用对话框膜层散热系数:10e-3环境温度:20点击确定,结果如下图示:3:按照上述类似方法,定义其他4个相互作用关闭相互作用管理器,完成相互作用的定义(六)网格划分为了便于进行网格划分,先对部件进行分区1:模块:部件2:点击拆分几何元素:定义切割平面工具,选择一点及法线指定平面选择下图示一点及法线指定分割平面点击创建分区,完成拆分,结果如下图3:模块:网格对象:部件4:点击为边布种工具,框选整个部件为要布置局部种子的区域5:点击完成,弹出局部种子对话框,将近似单元尺寸修改为5,其余地方选用默认设置,点击确定6:点击指派网格控制属性工具,框选整个部件7:点击完成,弹出网格控制属性对话框,按如下设置,点击确定单元形状:六面体技术:扫掠算法:进阶算法8:点击指派单元类型工具,框选整个部件,点击完成,弹出单元类型对话框,将分析类型修改为热传递,点击确定9:点击为部件划分网格工具,点选是确定为部件划分网格结果如下图(七)创建作业1:模块:作业2:点击作业管理器工具,弹出作业管理器对话框3:点击创建,弹出创建作业对话框4:点击继续,弹出编辑作业对话框,选取默认设置,点击确定5:点击提交,提交作业6:运行过程中,可以点击监控,查看运行状态7:点击结果,进入可视化模块,并在变形图上绘制云图,结果如下。
abaqus热应力分析实例_200105
Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
Abaqus热辐射分析单入门实例
NUAA-Kong Xianghong
Page � 2
2. Solution
2.1. Edit Model Attributes
NUAA
设置: Absolute zero temperature: 0 Stefan-Boltzmann constant: 5.67E-8
NUAA-Kong Xianghong
2. Solution
2.10. Create & Edit Interaction
NUAA
辐 射 率:1 环境温度:300K
NUAA-Kong Xianghong
Page � 12
2. Solution
2.11. Create Predefined Field
NUAA
NUAA-Kong Xianghong
NUAA
NUAA-Kong Xianghong
Page � 19
2. Solution
2.13. Results & Visualization (6)
NUAA
NUAA-Kong Xianghong
Page � 20
Thanks for your attention!
/kxh86 /kxh86
Page � 3
2. Solution
2.2. Create Part
NUAA
创建轴对称部件Part-1,在草图中绘 制以坐标点(0,0)和(0.5,1)为对角线顶 点的矩形。
NUAA-Kong Xianghong
Page � 4
2. Solution
2.3. Create Material & Section
Page � 13
abaqus 热传导案例
abaqus 热传导案例
案例概述:
我们有一段50m长的金属管,流体持续流入,入口速度为20m/s。
入口处对流体进行100℃的加温。
金属管和流体的初始温度均为23℃。
我们需要
查看流体与管壁的温度变化。
案例分析:
这个案例涉及到流体(水)和固体(金属管),分析目标是二者的温度变化。
我们可以使用CFD(计算流体动力学)、热传导、耦合分析和Abaqus的
联合仿真来进行模拟。
由于重力作用在这个案例中可以忽略,因此我们不需要考虑重力对流体的影响。
联合仿真流程简介:
联合仿真流程基本可概括为分别建立相互耦合的独立模型(例如
Standard&Explicit Model和CFD Model),然后创建联合执行任务,设定耦合区域,然后提交运算即可。
具体步骤:
1. 建立模型:使用Abaqus建立金属管的模型,并设置初始温度为23℃。
2. 定义材料属性:为金属管定义热传导系数等材料属性。
3. 建立边界条件:在入口处设置100℃的加热边界条件,出口处设置自然对流边界条件。
4. 划分网格:对金属管进行网格划分,以便进行数值计算。
5. 运行仿真:使用Abaqus进行热传导仿真,得出流体与管壁的温度变化。
6. 结果分析:根据仿真结果,分析流体与管壁的温度变化趋势,并评估传热效果。
ABAQUS热分析课稿
分布热流量(通过关键字 *DFLUX 或 DSFLUX 施加 *DFLUX 可以施加在面或体上 *DSFLUX 只能施加在面上
*DFLUX, AMP= amp-1 ELHOL, S1, 300
*DSFLUX, AMP= amp-1 SHOL, S, 300
q
边界条件与载荷
3. 边界层(薄膜)条件 -- 热传导中最常见的一种边界条件是一个自由表面被紧临的流体加热或降温 -- 关键字 *CFLIM, *FILM 和 *SFILM 用于定义边界层条件。 -- 边界层系数 h 是 ABAQUS 的一个输入参数,量纲: JL-2T-1-1 -- 边界层系数的重要性: 热传导的结果严重依赖这个参数
边界条件与载荷
1. 预设的温度 温度值不变:
*BOUNDARY TNODE, 11,
节点集 第一个 自由度
11,
最后个 自由度
500
温度
变化的温度:
*BOUNDARY, AMPLITUDE = amp-1 TNODE, 11, 11, 500
温度幅值
T
1 500
温度受幅值曲线 amp-1控制
0 1 t 0 1 t
材料热性质定义 •材料的热性质在inp 中的 *MATERIAL 关键字定义
材料热性质定义
热传导率:*CONDUCTIVITY,可以定义各向同性(默认)或各 向异性(正交或完全)用 TYPE 参数: *CONDUCTIVITY,TYPE=ISO|ORTHO|ANISO -- 热传导率可以是温度的函数,这样就成了一个非线性问题。 -- 热传导率也可以是任意数量预设的场变量的函数 -- 预设场变量相关的材料性质不会涉及非线性,ABAQUS 使用 简单的插值方法确定材料性质。例如: *CONDUCTIVITY,DEPENDENCIES=1 设置包括的预设场变量数量 63.0,20,160 70.5,200,200 温度 场变量 … *INITIAL CONDITIOINS,TYPE=FIELD,VAR=1 NALL,160 … *STEP … *FIELD,VARIABLE=1,AMPLITUDE=TIMEVAR NALL,180 … *END STEP
ABAQUS热分析
h *FILM 二维情况下施加在单边上,三维情况下施加在单元面上 *FILM ELSET, F3., 450, 2.3E-3 温度 *SFILM 二维情况下施加在面上
h
页码,5/14
/view/d16dff05cc17552707220897?pn=2&vw=all&ssid=&from=&bd_page_type=1&uid=806880DB5C59C1... 2013-10-9
/view/d16dff05cc17552707220897?pn=2&vw=all&ssid=&from=&bd_page_type=1&uid=806880DB5C59C1... 2013-10-9-Boltzmann常数和绝对零度 *PHYSICAL CONSTANTS, ABSOLUTE ZERO = -273.16 STEFAN BOLTZMANN = 5.6697E-8 边界条件与载荷 4. 向环境的辐射 辐射率 emissivity 是衡量一个表面有多接近理想黑体的指标
页码,6/14 第3/6页
NT13 NT12 NT11
n
-- 壳单元表面下方的温度自由度为11(输出变量为NT11) -- 在正表面的温度自由度为 10+n, n 为壳截面上使用截面点的数量 -- 在单层(均质)壳 中,截面点在厚度上均匀分布,默认为5个点 -- 每层壳必须是奇数个截面点,这是由 ABAQUS/standard 在厚度上使用分段抛物线 型插值方法决 定的.6页
的. 热传导分析中,这对共轭变量是 温度 --- 热率(单位时间的能量流) 默认情况下温度是未知的,热率是已知的 -- 已知的热率 = 0, 相当于绝 热边界条件; -- 没有外部的能量流进或流出节点. ABAQUS 中的几种热边界条件和热载荷 1. 在某些节点上预设温度, *BOUNDARY, 自由度1 1 2. 在某些点上或者某些表面上或者体积内预设热率 q *CFLUX, *DFLUX, *DSFLUX 3. 在某些点上或者某些表面上的边界层(薄膜)条件 *C FILM, *FILM 和 *SFILM 4. 在某些点上或者某些表面上的辐射条件 *CRADIATE, *RADIATE, 和 *SRADIATE 5. 自然边界条件(默认)
Abaqus热应力分析、热诱导振动分析简单实例
NUAA
NUAA--Kong Xianghong
Page � 3
2. Solution
2.2. Create Material & Section
壳厚度为3mm。
NUAA
NUAA--Kong Xianghong
Page � 4
2. Solution
2.3. Assign Section
NUAA
NUAA--Kong Xianghong
NUAA--Kong Xianghong
Page � 21
3. Comparative Study
3.2. Create Field Output
NUAA
NUAA--Kong Xianghong
Page � 22
3. Comparative Study
3.3. Define Element Type
2. Solution
2.16. Results & Visualization (2)
NUAA
NUAA--Kong Xianghong
Page � 18
2. Solution
2.17. Results & Visualization (3)
NUAA
NUAA--Kong Xianghong
Page � 19
NUAA
NUAA--Kong Xianghong
Page � 8
2. Solution
2.7. Edit Field Output Request
NUAA
NUAA--Kong Xianghong
Page � 9
2. Solution
2.8. Create a Set for History Output
Abaqus在热分析中的应用
Abaqus在热分析中的应用1.前言热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统等。
Abaqus热分析类型包括稳态传热和瞬态传热,传热方式有热传导,热对流,热辐射三种。
2.问题描述分析电饭煲内的米饭在加热完成后放置6个小时,锅体及米饭的最终温度。
以一套双层锅体双层锅盖的电饭煲的设计为例说明Abaqus/Standard在热分析中的应用。
3.计算模型3.1.有限元模型建立网格划分在Hypermesh中完成,注意网格尺寸,以保证合适的单元数目保证计算时间和计算精度。
有限元模型主要包含以下几个部分:内层锅体、外层锅体、锅底、内层锅盖、外层锅盖、米饭、内外层锅体之间的空气、内外层锅盖之间的空气以及米饭和内层锅盖之间的空气,见图1。
模型中多个接触区域采用了共点划分,如:米饭和锅体之间、米饭和空气之间、空气和锅盖之间,这些地方采用共点的方式来实现他们之间的热传导,在不影响计算结果的情况下大大节省了设模型的时间,也使模型简单化。
图1 有限元模型(剖视图)3.2.材料模型中所用材料参数包含:密度、比热、热传导率和发射率。
3.3.传热方式和加载3.3.1 传热方式:热传递是通过热传导、对流和热辐射三种方式来实现。
在实际的传热过程中,这三种方式往往是伴随着进行的。
模型中通过多种设置实现这三种热传递方式。
传导—热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导,热传导是固体中热传递的主要方式。
模型中通过两种方式来实现热传导。
1)共点网格:模型中除了锅盖和锅体之间的接触外其他的的接触部位假设完全接触,而在接触表面不存在热阻,通过共点来实现模拟。
2)接触对:锅盖与锅体之间的接触部分通过添加接触对来模拟二者之间的热传导,假设二者之间存在0.1mm的空气间隙,通过计算得到热阻系数。
热阻系数=空气热传导率/空气间隙对流—液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程,对流是液体和气体中热传递的特有方式,气体的对流现象比液体明显,对流可分自然对流和强迫对流两种。
abaqus热分析
abaqus热分析尽管Abaqus最常用于力学分析,但也能用于其他许多分析,热分析也是其中一种。
在此文中,我将展示如何使用Abaqus进行热分析。
例例如,我一直想知道的烘烤自制蛋糕的传热问题。
用金属器皿烘焙巧克力饼,效果很好。
但是,当切换到另一个不适合金属锅的烤箱时,只能改用陶瓷器皿。
不幸的是,这种方法效果不佳:即使增加了烘烤时间,锅底糊了表面未熟的情况不止一次。
我一直怀疑陶瓷器皿是造成此问题的原因,毕竟钢和陶瓷的材料特性完全不同。
为了增进对此问题的了解,我决定用ABAQUS来寻求答案。
几何与应力分析一样,我们需要定义几何形状。
尽管我实际的蛋糕锅是矩形的,但我不希望圆形锅中的结果有太大差异,而使用轴对称假设时,运行时间会少得多。
因此,请记住,模型应尽可能简单(但不要更简单),使用图1所示的轴对称几何形状。
器皿和蛋糕是分开的两部分。
该模型使用常规的SI单位(m,kg等)。
网格:单元类型网格划分也类似于应力分析的网格划分,因此首先要对零件进行种子设定,然后进行网格划分。
主要区别在于所使用的单元类型:我们将使用传热族的单元。
它们具有单一的温度自由度,而不是位移自由度。
材料特性控制热分析的方程式为:这里ρ是密度,c是比热,T是温度,t是时间,k是热导率,x是位置。
因此,需要定义材料的密度,比热和热导率,而不需要机械刚度。
对于钢和陶瓷,可在网上发现或多或少的合理参数。
正如我所期望的那样,陶瓷的热性能参数并不容易获得。
实际上,有关模拟面包,纸杯蛋糕等的烘焙的数据比我预期的要多,因此我决定使用纸杯蛋糕/黄蛋糕的参数。
当然,这并不是完全准确的,但是可能足够了,请记住,当前我们的主要目的是更好地解释我们的疑惑,不计算确切值。
ABAQUS热应力分析实例详解
ABAQUS热应力分析实例详解热应力分析是指在材料受到热载荷的作用下,由于温度和热应力的非均匀分布而产生的应力状态。
ABAQUS是一种常用的有限元分析软件,可以用于进行热应力分析。
下面将以一个实例来详细介绍ABAQUS热应力分析的流程和步骤。
假设我们有一个具有热源的方形材料板,需要分析其热应力分布情况。
首先,我们需要确定仿真模型的几何尺寸和材料属性。
假设板材的尺寸为10cm x 10cm,材料为铝,具有线膨胀系数α=23.1×10^-6/°C和热导率λ=237W/m·K。
1. 创建模型:打开ABAQUS软件,创建一个新模型,并在模型中创建一个二维平面应变比例等效热应力分析。
选择“3D”模型,然后在“Parts”面板中点击右键,选择“Create”->“Part”,设置尺寸为10cm x 10cm。
2. 材料属性定义:在“Model”面板中选择“Materials”->“Create”->“Isotropic”来定义材料的力学性能。
输入铝的杨氏模量E=71 GPa和泊松比ν=0.333. 模型网格划分:在“Model”面板中选择“Mesh”->“Create”->“Part”,选择要进行网格划分的实体和面,然后定义网格大小。
可以根据需要设置不同大小的网格。
4. 网格单元类型选择:在“Mesh”面板中选择网格划分的网格单元类型。
可以选择线性三角形元、线性四边形元或其他类型的单元。
5. 温度加载:在“Model”面板中选择“Loads”->“Create”->“Temperature”来定义温度加载。
选择加载的表面或体实体,并设置温度大小和类型(恒定温度或温度曲线)。
6. 边界条件定义:在“Model”面板中选择“Bounadry Conditions”->“Create”->“Encastre”来定义边界条件。
选择边界条件所在的边或节点,并设置边界条件类型(固支、自由度约束等)。