直方图均衡化图像增强与彩色图像处理算法分析

直方图均衡化图像增强与彩色图像处理算法分析
直方图均衡化图像增强与彩色图像处理算法分析

直方图均衡化图像增强与彩色图像处理算法分析

2012.05.29

目录

1. 前言 (1)

2. 理论分析 (2)

2.1 直方图修正技术的基础 (2)

2.2 直方图的均衡化 (3)

2.3 直方图均衡化的算法步骤 (4)

3. 仿真实验与结果 (6)

3.1直方图均衡化Matlab程序 (6)

3.2 彩色图形处理Matlab程序 (8)

3.3 直方图均衡化仿真结果: (10)

3.4 彩色图像处理仿真结果: (13)

4. 结论 (14)

参考文献 (15)

1. 前言

在实际应用中,无论采用何种输入装置采集的图像,由于光照、噪声等原因,图像的质量往往不能令人满意。例如,检测对象物的边缘过于模糊;在比较满意的一幅图像上发现多了一些不知来源的黑点或白点;图像的失真、变形等等。所以图像往往需要采取一些手段进行改善以求达到较好的效果。图像增强技术正是在此基础上提出的。图像增强是图像分析与处理的一个重要的预处理过程,其主要有两个目的:一是运用一系列技术手段改善图像的视觉效果,提高图像的清晰度;二是将图像转化成一种更适合于人或计算机进行分析处理的形式。即改善图像质量是图像增强的根本目的。图像增强的意义一般可以理解为:按需要进行适当的变换,对图像的某些特征,如边缘、轮廓、对比度进行强调或锐化,突出某些有用的信息,去除或削弱无用的信息以便于显示、观察或进一步分析和处理。

图像增强技术是一类基本的图像处理技术,是指有选择地突出图像中感兴趣的特征或者抑制图像中某些不需要的特征,其目的是使处理后的图像更适合于人的视觉特性或机器的识别系统,包括图像的轮廓线或者纹理加强、图像去噪、对比度增强等。因此图像增强处理是图像分析和图像理解的前提和基础。在图像的获取过程中,特别是对于多媒体监控系统采集的图像,由于监控场景光线照射复杂、拍摄背景也比较复杂等环境因素的影响。加之摄像设备、传感器等因素引入的噪声,使监控图像在一定程度上存在对比度差、灰度分布范围窄、图像分辨率下降。因此,为得到一幅清晰的图像必须进行增强处理。传统的图像增强算法通常是基于整幅图像的统计量,这样在计算整幅图像的变换时,图像中的低频信息、高频信息以及含有的噪声,同时进行了变换,因而在增强图像的同时增强了噪声,导致信息熵下降,给监控图像的分析和后期处理带来了困难。针对此问题,提出一种新算法。

图像增强处理方法根据图像增强处理所在的空间不同,可分为基于空间域的增强方法和基于频率域的增强方法两类。空间域处理方法是在图像像素组成的二维空间里直接对每一个像素的灰度值进行处理,它可以是一幅图像内像素点之间的运算处理,也可以是数幅图像间的相应像素点之间的运算处理。频率域处理方法是在图形的变换域对图像进行间接处理。其特点是先将图像进行变换,在空间域对图像作傅里叶变换得到它的频谱按照某种变化模型(如傅里叶变换)变换到频率域,完成图像由空间域变换到频率域,然后在频率域内对图像进行低通或高通频率域滤波处理。处理完之后,再将其反变换到空间域。

直方图均衡化算法是图像增强空域法中的最常用、最重要的算法之一。它以概率理论作基础,运用灰度点运算来实现直方图的变换,从而达到图像增强的目的。本文介绍一种基于累积分布函数变换法为基础的直方图修正法。它可以通过对直方图进行均匀化修正,可使图像的灰度间距增大或灰度均匀分布、增大反差,是图像的细节变得清晰。

2. 理论分析

2.1 直方图修正技术的基础

一幅给定图像的灰度级经归一化处理后,分布在01r ≤≤范围内。这时可以对[0,1]区间内的任意一个r 值进行如下变换:

()s T r = (1)

也就是说,通过上述变换,每个原始图像的像素值r 都对应产生一个s 值。变换函数()T r 应该满足下列条件:

① 在01r ≤≤区间内,()T r 是单值单调增加; ② 对于01r ≤≤,有0()1T r ≤≤

这里第一个条件保证了图像的灰度级西欧哪个白到黑的次序不变和反变换函数1

()

T

s -的存在。第二个条件则保证了映射变化后的像素灰度值在允许的范围内。从s 到r 的反变换可用式(2)表示,同样也满足上述两个条件

1

()r T

s -= (2)

由概率论理论可知,若已知随机变量ξ的概率密度为()r P r ,而随机变量η是ξ的函数,即'

()T ηξ=,η的概率密度为()s P s ,所以可以由()r P r 求出()s P s 。

因为()s T r =是单调增加的,由数学分析可知,它的反函数1

()r T

s -=也是单调函数。

在这种情况下,当s η<,且仅当r ξ<时发生,所以可以求得随即变量η的分布函数为:

()()[]()r

r F s P s p r p x dx ηηξ-∞

=<=<=

?

(3)

对式(3)两边求导,即可得到随即变量η的分布密度函数()s P s 为:

11

1

()()()()[()][()]()

s r r r r T s dr d dr P s P r p r T

s p r T

s ds

ds

ds

---==?

=?

=?

=

(4)

由式(4)可知,对于连续情况,设()r P r 和()s P s 分别表示原图像和变换后图像的灰度级概率密度函数。根据概率论的知识,在已知()r P r 和变换函数()s T r =时,反变换函数

1

()r T

s -=也是单调增长,则()s P s 可由式(4)求出。

2.2 直方图的均衡化

对于连续图像,设r 和s 分别表示被增强图像和变换后图像的灰度。为了简单,在下面的讨论中,假定所有像素的灰度已被归一化了,就是说,当0r s ==时,表示黑色;当

1r s ==时,表示白色;变换函数()T r 与原图像概率密度函数()r P r 之间的关系为:

()()()r

r

s T r p

r d r ==

? 01r ≤≤ (5)

式中:r 为积分变量。式(5)的右边可以看作是r 的累积分布函数(CDF ),因为CDF 是r 的函数,并单调地从0增加到1,所以这一变换函数满足了前面所述的关于()T r 在

01r ≤≤内单值单调增加,对于01r ≤≤,有0()1T r ≤≤的两个条件。

由于累积分布函数是r 的函数,并且单调的从0增加到1,所以这个变换函数满足对式(5)中的r 求导,则:

()r ds P r dr

= (6)

再把结果带入式(4),则

11()()1

1()[()

]()

[

][()

]1/()

s r r r r T s r T s r dr d

p s p r p r p r ds

ds ds dr

p r --====== (7)

由以上推到可见,变换后的变量s 的定义域内的概率密度是均匀分布的。由此可见,用r 累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。其结果扩展了像素取值的动态范围。

上面的修正方法是以连续随机变量为基础进行讨论的。为了对图像进行数字处理,必须引入离散形式的公式。当灰度级是离散值的时候,可用频数近似代替概率值,即:

()k r k n p r N

=

(01k r ≤≤ 0,1,2,k =…,L-1) (8)

式中,L 是灰度级数;()r k p r 是取第k 级灰度值的概率;k n 是在图像中出现第k 级灰度的次数;N 是图像中像素数。

通常把为得到均匀直方图的图像增强技术叫做直方图均衡化处理或直方图线性化处理。式(5)的直方图均衡化累积分布函数的离散形式可由式(9)表示:

()()k

k

j k k r j i i n s T r p r N

====

=

(01j r ≤≤ 0,1,2,k =…,L-1) (9)

其反变换为

1

()k k r T

s -= (10)

2.3 直方图均衡化的算法步骤

直方图均衡化的算法步骤如下: ● 列出原始图像和变换后图像的灰度级:I,j =0,1,,L -1,其中L 是灰度级的个数; ● 统计原图像各灰度级的像素个数i n ; ●

计算原始图像直方图:()i n p i N

=

,N 为原始图像像素总个数;

计算累积直方图:0

()j

j k p p k ==

● 利用灰度变换函数计算变换后的灰度值,并四舍五入:[(1)0.5]j j IN T L p =-+; ● 确定灰度变换关系i j →,据此将原图像的灰度值(,)f m n i =修正为(,)g m n j =; ●

统计变换后各灰度级的像素个数j n ;

● 计算变换后图像的直方图:()j n p j N

=;

● 对均衡化后的的直方图进行区间统计,显示图像。

流程图

3. 仿真实验与结果

3.1直方图均衡化Matlab程序

clear all;

close all;

clc;

I1=imread('lena.jpg');

figure(1);

imshow(I1);

I2=rgb2gray(I1);

figure(2); %原始图像的灰度图像

imshow(I2);

D=double(I2);

imsize=size(D);

nbrTot=imsize(1)*imsize(2);

nbrEach=zeros(1,256);

for K1=1:imsize(1)

for K2=1:imsize(2)

nbrEach(D(K1,K2)+1)=nbrEach(D(K1,K2)+1)+1; %统计各灰度级像素个数end

end

Y1=nbrEach/nbrTot;

S1=zeros(1,256);

for i=1:256

for k=1:i

S1(i)=S1(i)+Y1(k); %均衡后第K级灰度级(包括K)之前各级像素点所占的比率之和end

end

S2=round(S1*255);

for i=1:256

if S2(i)>255

S2(i)=255;

end

end

D2=zeros(size(D));

for K1=1:imsize(1)

for K2=1:imsize(2)

D2(K1,K2)=S2(D(K1,K2)+1); %均衡后个像素的灰度值end

end

Y3=uint8(D2);

Y2=S2;

S3=zeros(1,256);

for j=1:256

S3(S2(j)+1)=S3(S2(j)+1)+Y1(j); %均衡后各灰度级的像素点数

end

for i=1:32

for j=1:7

S3(8*i)=S3(8*(i-1)+j)+S3(8*i); %对均衡后的像素点进行区间统计end

S3(8*i)=S3(8*i)/8

for j=1:7

S3(8*(i-1)+j)=0;

end

end

Y2=S3;

figure(3);

plot(0:255,Y1); %自编函数均衡化前归一化的直方图

figure(4) %自编函数均衡化后归一化的直方图plot(0:255,Y2);

figure(5); %自编函数所得的直方图均衡化后的图像imshow(Y3);

figure(6); %系统函数均衡化前的直方图

imhist(I2);

J=histeq(I2);

figure(7); %系统函数均衡化后的直方图

imhist(J);

figure(8); %系统函数所得直方图均衡化后的图像imshow(J);

3.2 彩色图形处理Matlab程序

将RGB图像转换为HIS,分别对H、S、I分量进行均衡化,主要程序代码为:

clear all;

close all;

clc;

I1=imread('lena.jpg');

rm=double(I1(:,:,1));

gm=double(I1(:,:,2));

bm=double(I1(:,:,3));

D=double(bm);

imsize=size(D);

nbrTot=imsize(1)*imsize(2);

nbrEach=zeros(1,256);

for i=1:imsize(1)

for j=1:imsize(2)

I(i,j)=(rm(i,j)+gm(i,j)+bm(i,j))/3;

S(i,j)=1-3*min(min(rm(i,j),gm(i,j)),bm(i,j))/(rm(i,j)+gm(i,j)+bm(i,j));

if(bm(i,j)<=gm(i,j))

H(i,j)=abs(acos(double((rm(i,j)-gm(i,j)+(rm(i,j)-bm(i,j))/2)/sqrt(double((rm(i,j)-g m(i,j))^2+(rm(i,j)-bm(i,j))*(gm(i,j)-bm(i,j)))))));

else

H(i,j)=abs(2*pi-acos(double((rm(i,j)-gm(i,j)+(rm(i,j)-bm(i,j))/2)/sqrt(double((rm(i ,j)-gm(i,j))^2+(rm(i,j)-bm(i,j))*(gm(i,j)-bm(i,j)))))));

end

end

end

for i=1:imsize(1)

for j=1:imsize(2)

I(i,j)=(rm(i,j)+gm(i,j)+bm(i,j))/3;

if(H(i,j)<=2*pi/3)

r(i,j)=cos(pi/3-H(i,j));

b(i,j)=I(i,j)*(1-S(i,j));

g(i,j)=3*I(i,j)-b(i,j)-r(i,j);

elseif(H(i,j)<=4*pi/3)

r(i,j)=I(i,j)*(1+S(i,j)*cos(H(i,j)-2*pi/3)/cos(pi-H(i,j)));

b(i,j)=I(i,j)*(1-S(i,j));

g(i,j)=3*I(i,j)-b(i,j)-r(i,j);

else r(i,j)=I(i,j)*(1+S(i,j)*cos(H(i,j)-4*pi/3)/cos(5*pi/3-H(i,j))); b(i,j)=I(i,j)*(1-S(i,j));

g(i,j)=3*I(i,j)-b(i,j)-r(i,j);

end

end

end

J0(:,:,1)=H;

J0(:,:,2)=I1(:,:,2);

J0(:,:,3)=I1(:,:,3);

figure(1);

imshow(I1);

figure(2);

imshow(uint8(J0));

3.3 直方图均衡化仿真结果:

1.1:

原始图像原始图像灰度图像

自编函数均衡化前归一化的直方图系统函数均衡化前的直方图

自编函数所得的直方图均衡化后的图像系统函数所得直方图均衡化后的图像

自编函数均衡化后归一化的直方图系统函数均衡化后的直方图1.2:

原始图像原始图像灰度图像

自编函数均衡化前归一化的直方图系统函数均衡化前的直方图

自编函数所得的直方图均衡化后的图像系统函数所得直方图均衡化后的图像

自编函数均衡化后归一化的直方图系统函数均衡化后的直方图

3.4 彩色图像处理仿真结果:

原始图像在H分量的直方图均衡化

在S分量的直方图均衡化在I分量的直方图均衡化

4. 结论

图像增强有图像平滑和锐化两种。图像平滑就是减少图像的高频分量,突出低频分量,使图像整体效果均匀自然;图像锐化是减少图像的低频分量,突出高频分量,使图像边缘突出。该论文的直方图均衡化方法是一种图像平滑方法,直方图均衡化方法把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图, 然后按均衡直方图修正原图像。当图像的直方图为一均匀分布时,图像包含的信息量最大,图像看起来就显得清晰。但是使图像清晰的同时也会增加图像噪声,因此本论文在改进方法中使用了中值滤波,以避免噪声干扰。

图像增强的方法有很多,既可对图像时域进行处理,也可在频域中处理。各种处理方法都可进行改进,也有许多新的图像增强方法不断出现。该论文只介绍了一种图像增强方法,即时域的直方图均衡化方法,并对传统方法进行了改进。但是无论是用什么方法都要遵循图像增强的原则,即在增强图像的视觉效果的基础上,要尽量减少图像的噪声,并且使图像清晰可见。

算法应用举例及误差分析说明,本文提出的直方图均衡化算法是可行的,结果证明该算法可改善直方图均衡化的精度。在直方图均衡化算法的基础上,该论文所取的改进的处理方法可以有效防止图像细节信息丢失和图像噪声幅度增大,并经过实验证明, 本文所用的算法处理的图像, 整体视觉效果得到改善,细节信息更为丰富,从中可以提取出更有意义的图像特征。

创新点:提出了改进组映射规则及详细的算法,并用于直方图均衡化,提高了直方图均衡化的精度。

以上图像处理实例只是对MA TLAB 图像工具箱的一小部分进行运用,经过更进一步的图像分割、二值化、归一化等处理,可以把芯片中的字符特征提取出来送入神经网络分类器进行识别,我们应用MA TLAB 神经网络工具箱对字符分类进行模拟仿真也取得了较好的效果。由此可以看出MA TLAB 语言简洁,可读性强,工具箱涉及的专业领域广泛且功能强大。图像工具箱几乎包括所有经典的图像处理方法。由于工具箱具有可靠性和开放性,我们可以方便地直接加以使用,也可以把自己的代码加到工具箱中以改进函数功能,同时,MA TLAB 中的小波工具箱也有许多函数可运用于图像处理技术。因此,在图像处理技术中使用MA TLAB 语言可以快速实现模拟仿真,大大提高实验效率,如果要开发实用程序,MA TLAB 语言还可以通过MEX 动态连接库实现与C 语言的混合编程,为工程应用提供了更多的便利条件

参考文献

[1] 冈萨雷斯. 数字图像处理学[M]. 北京: 电子工业出版社, 2004.

[2] Dah-Chung Chang,Wen-Rong Wu.Image Contrast Enhancement Based on a Histogram

Transformation of Local Standard Deviation[J].IEEE Transactions on Medical Imageing,1998,17(4):518-530

[3] CHENG H D, XU HU I2JUAN. A novel fuzzy logic app roach to mammogram contrast

enhancement[J ]. Information Sciences, 2002,148: 167 - 184.

[3] Zhou S M, Gan J Q. A new fuzzy relaxation algorithm for image enhancement [J].

International Journal of Knowledge-based and Intelligent Engineering Systems, 2006, 10(3): 181—192.

[4] 李旭超,朱善安.基于小波模极大值和Neyman Pearson准则阈值的图像去噪.中国图象图

形学报,10(8):964-969

[5] Tai-Chiu Hsung,Daniel Pak-Kong Lun,Wan-Chi Siu.Denoising by Singularity

Detection[J].IEEE Transactions on Signal Processing,1999,47(11)

[6] Lei Zhang,Paul Bao.Denoising by Spatial Correlation Thresholding[J]. IEEE Transactions on

Circuts and Systems for Video Technology,2003,13(6):535-538

[7] Shih-Chung B.Lo,Huai Li,Matthew T.Freedman Optimization of Wavelet Decomposition for

Image Compression and Feature Preservation.IEEE Transactions on Medical Imaging,2003,22(9):1141-1151

[8] Junmei Zhong,Ruola Ning.Image Denoising Based on Wavelets and Multifractals for

Singularity Detection[J].IEEE Transactions on Image Processing,2005,14(10):1435-1447 [9] Z Cai,T H Cheng,C Lu,K R Subramanian. Efficient wavelet based image demising

algorithm.Electron.Lett,2001,37(11):683-685

[10] Ahmed,J,Jafri,Ahmad.Target Tracking in an Image Sequence Using Wavelet Features and a

Neural Network[J].TENCON 2005,10(11):1-6

[11] Y unyi Y an,Baolong Guo,Wei Ni.Image Denoising:An Approach Based on Wavelet Neural

Network and Improved Median Filtering[J].WCICA 2006:10063-10067

[12] Changjiang Zhang,Jinshan Wang,Xiaodong Wang,Huajun Feng.Contrast Enhancement for

Image with Incomplete Beta Transform and Wavelet Neural Network[J].Neural Networks and Brain,2005,10:1236-1241

[13] Cao Wanpeng,Che Rensheng,Y e Dong An illumination independent edge detection and fuzzy

enhancement algorithm based on wavelet transform for non-uniform weak illumination images[J]Pattern Recognition Letters 29(2008)192-199

[14] 陈佳娟,陈晓光,纪寿文.基于遗传算法的图像模糊增强处理方法[J].计算机工程与应用,

2001,21:109-111

[15] 朱云芳,戴朝华,陈维荣.小波信号消噪及阈值函数的一种改进方法[J].中国测试技术,

2006,32(7):28-30

[16] 凌毓涛,姚远,曾竞.基于小波的医学图像自适应增强[J].华中师范大学学报(自然科学

版),2004,38(1):47-51

基于Matlab编程仿真的直方图均衡化图像质量改善

基于直方图均衡的图像质量改善 班级:测控1004学号:2013270162姓名:杨明 摘要:为了解决灰度图像的灰度值分布集中在较窄的范围内,图像的细节不够清晰,对比度较低的问题。通过直方图均衡化使图像的灰度范围拉开或使灰度均匀分布,从而增大反差,使图像的细节清晰,以达到增强目的,直方图均衡化可得到任意的均匀直方图灰度图像。直方图均衡化是一种行之有效的图像增强方法,直方图均衡化是将原灰度图像的直方图通过变换函数变为均匀的直方图,然后按均匀直方图修改原图像,从而获得一幅灰度分布均匀的新图像。基于Matlab编程和工具箱的使用,实现图像直方图均衡化的图像仿真。 关键词:直方图均衡化;图像增强;Matlab Abstract: In order to solve the gray image gray value distribution concentrated in a narrow range of image detail is not clear enough, the problem of low contrast. Gray histogram equalization range so that the gradation image or pulled evenly distributed, thereby increasing the contrast, so that a clear image detail, in order to achieve the purpose of enhancing, histogram equalization histogram obtained arbitrary uniform gray image . Histogram equalization is an effective method for image enhancement, histogram equalization is the histogram of the original gray-scale image by histogram transformation function becomes uniform, a uniform histogram modification then the original image, thereby obtaining a a gray uniform distribution of the new image. Matlab toolbox based programming and the use of image histogram equalization image simulation. Keywords: histogram equalization; image enhancement; Matlab

数字图像处理与分析实验作业(DOC)

数字图像处理与分析实验作业 作业说明:作业题目分为基本题和综合应用题。基本题主要是考察大家对教材涉及的一些基本图像处理技术的理解和实现。而综合应用题主要是考察大家综合利用图像处理的若干技术来解决实际问题的能力。 注:所有实验用图像均可从网上下载,文档中的图片只是示例。 作业要求: 编程工具:Matlab或者VC(可以使用OpenCV:https://www.360docs.net/doc/439542041.html,/)。因为很多基本的图象处理算法已经集成在很多的编程工具中,而编程训练中基本题的目的是让同学们加深对这些算法的理解,所以基本题要求同学们只能使用图像读取和显示相关的函数(例如Matlab的imread imshow,imwrite,OpenCV的cvCreateImage,cvLoadImage,cvShowImage),而不要直接调用相关的API(例如二维DFT,图象均衡等等),但在综合应用题中则无此限制。 上交的作业包括:实验报告和程序。其中实验报告要求写出算法分析(必要时请附上流程图),函数说明(给出主要函数的接口和参数说明),实验结果(附图)及讨论分析。提交的程序,一定要确保可以运行,最好能写个程序说明。 基本题一共有10道,可以从中任选2道题来完成。综合应用题有2道,可以从中任选1道来完成。 请各位同学务必独立完成,切忌抄袭! 基本题 一、直方图变换 要求对原始Lena 图像实现以下三种取整函数的直方图均衡化: 线性函数: t k= int[(L -1) t k+ 0.5]; 对数函数: t k= int[( L-1)log(1+9t k) + 0.5] ; 指数函数: t k= int[(L -1)exp( t k-1) + 0.5] ; 要求给出: 1、原始图像和分别采用上述三种方式均衡化后的图像; 2、原始图像的直方图和上述三种方式对应均衡化后的直方图。

数字图像处理实验报告--直方图均衡化

数字图像处理实验报告 实验名称:直方图均衡化 : 班级: 学号: 专业:电子信息工程(2+2) 指导教师:华华 实验日期:2012年5月24日

直方图均衡化 图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。直方图均衡化是最常见的间接对比度增强方法。直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。 直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度围的均匀分布。直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度围的像素数量大致相同。直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。 缺点: 1)变换后图像的灰度级减少,某些细节消失; 2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。 直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。 这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。 直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态围从而可达到增强图像整体对比度的效果。设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数): (1)EQ(f)在0≤f≤L-1围是一个单值单增函数。这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。 (2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态围的一致性。 累积分布函数即可以满足上述两个条件,并且通过该函数可以完成将原图像f的分布转换成g的均匀分布。此时的直方图均衡化映射函数为: gk = EQ(fk) = (ni/n) = pf(fi) , (k=0,1,2,……,L-1) 上述求和区间为0到k,根据该方程可以由源图像的各像素灰度值直接得到直方图均衡化后各像素的灰度值。在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并计算出原始直方图分布,然后根据计算出的累计直方图分布求出fk到gk的灰度映射关系。在重复上述步骤得到源图像所有灰度级到目标图像灰度级的映射关系后,按照这个映射关系对

彩色图像处理

1种颜色 颜色定义:颜色是对象的一种属性,它取决于三个因素。 (1)光源-照射光的光谱特性或光谱能量分布 (2)物体-被照射物体的反射特性 (3)成像接收器(眼睛或成像传感器)-光谱能量吸收特性 2色模型 颜色模型,也称为颜色空间或颜色系统,是用于精确校准和生成各种颜色的一组规则和定义。其目的是在某些标准下以通常可接受的方式简化颜色规格。可以通过坐标系描述颜色模型,并且系统中的每种颜色都可以由坐标空间中的单个点表示。 RGB模型:此模型是行业中的颜色标准。通过更改红色和绿色蓝色三种颜色的亮度及其叠加,可以获得各种颜色。该标准几乎涵盖了人类视觉可以感知的所有颜色,并且是目前使用最广泛的颜色模型之一。

CMY模型:颜色合成方法由绿色,品红色和黄色三种基本原色组成。因为彩色显示不是直接来自光的颜色,而是光被对象吸收并被产生的残留光反射,所以CMY模型也称为减法混合模型。 CMYK模型:将黑色添加到CMY模型。 RGB和CMY之间的转换:在MATLAB中,可以通过imcompliance()函数轻松实现RGB和CMY之间的转换 cmy = imcomplement(rgb); rgb = imcomplement(cmy); HSI模型:HSI模型基于人类视觉系统,并通过使用色相,饱和度和强度三个元素直接描述颜色 @亮度是指人们感到光亮的阴影。光的能量越大,亮度越大。 @Hue是颜色的最重要属性,它决定颜色的本质,颜色的本质由反射光的主波长确定。不同的波长产生不同的色彩感觉。

@饱和度是指颜色的深度和强度,饱和度越高,颜色越深。饱和深度与白色的比率有关,白色比率越大,饱和度越低。 从RGB到HSI的颜色转换及其实现 数字; 子图(1,2,1); rgb = imread('plane.bmp)。 imshow(rgb); title('rgb'); 子图(1,2,2); hsi = rgb2hsi(rgb); imshow(hsi); title('hsi'); 从HSI到RGB的颜色转换及其实现 数字 子图(1,2,1);

数字图像处理实验四

数字图像处理 实验 实验四:图像增强—直方图变换学院:信息工程学院 姓名: 学号: 专业及班级: 指导教师:

一、实验目的 1.掌握灰度直方图的概念及其计算方法; 2.熟练掌握直力图均衡化和直方图规定化的计算过程; 3.熟练掌握空域滤波中常用的平滑和锐化滤波器; 4.掌握色彩直方图的概念和计算方法; 5.利用MATLAB程序进行图像增强。 二、实验内容 图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。本实验以直方图均衡化增强图像对比度的方法为主要内容,其他方法同学们可以在课后自行联系。 直方图是多种空间城处理技术的基础。直方图操作能有效地用于图像增强。除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割。直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具。 直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况。直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果。灰度直方图是图像预处理中涉及最广泛的基本概念之一。 图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律。直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果。 直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 三、实验具体实现 显示原图像的直方图和经过均衡化处理过的图像直方图: I=imread('1.jpg'); % 读入原图像 J=histeq(I); %对原图像进行直方图均衡化处理 subplot(2,2,1) ;imshow(I); %显示原图像 title('原图像'); %给原图像加标题名 %对原图像进行屏幕控制;显示直方图均衡化后的图像 subplot(2,2,2) ;imshow(J); %给直方图均衡化后的图像加标题名 title('直方图均衡化后的图像') ; %对直方图均衡化后图像进行屏幕控制;作一幅子图,并排两幅图的第1幅 subplot(2,2,3) ; imhist(I,64); %将原图像直方图显示为64级灰度 title('原图像直方图') ; %给原图像直方图加标题名

直方图均衡化

图像增强是数字图像处理的基本内容。遥感图像增强是为特定目的,突出遥感图像中的某些信息,削弱或除去某些不需要的信息,使图像更易判读。图像增强的实质是增强感兴趣目标和周围背景图像间的反差。它不能增加原始图像的信息,有时反而会损失一些信息。它也是计算机自动分类一种预处理方法。 目前常用的图像增强处理技术可以分为两 大类:空间域和频率域的处理。主要内容包括基于直方图的处理、图像平滑以及图像锐化等。空间域处理是指直接对图像进行各种运算以得到需要的增强结果。频率域处理是指先将空间域图像变换成频率域图像,然后在频率域中对图像的频谱进行处理,以达到增强图像的目的。 6.2.1 图像灰度的直方图 图像灰度直方图反映了一幅图像中灰度级 与其出现概率之间的关系。对于数字图像,由于图像空间坐标和灰度值都已离散化,可以统计出灰度等级的分布状况。数字图像的

灰度编码从0,1,2,…,2n-1(n为图像量化时的比特数),每一个灰度级的像元个数mi可以从图像中统计出来,整幅图像的像元数为M,则任意灰度级出现的频率为: (6-20) (6-21) 由2n个P值即可绘制出数字图像的灰度直方图,如图6-5。图像直方图随图像不同而不同,不同图像有不同的直方图。 图6-5数字图像直方图 灰度直方图可以看成是一个随机分布密度函数,其分布状态用灰度均值和标准差两个参数来衡量。灰度均值为: (6-22)

式中:为整幅图像灰度平均值; X ij为(i,j)处像元的灰度值; R为图像行数; L为图像列数; M=R*L为图像像元总数; 标准差: Xi:i处像元的灰度值 直方图分布状态不同,图像特征不同,如图6-6所示。

直方图均衡化处理教学内容

实验 1.直方图均衡化程序的原理及步骤 直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某灰度区间变成在全部灰度范围内的均匀分布。 直方图均衡化的原理: 直方图均衡化是把原图像的直方图通过灰度变换函数修正为灰度均匀分布的直方图,然后按均衡直方图修正原图像,其变换函数取决于图像灰度直方图的累积分布函数。概括地说,就是把一已知灰度概率分布的图像,经过一种变换,使之演变成一幅具有均匀概率分布的新图像。当图像的直方图为一均匀分布时,图像的信息熵最大,此时图像包含的信息量最大,图像看起来更清晰。灰度直方图用各灰度值出现的相对频数(该灰度级的像素数与图像总像素数之比)表示。 直方图表示数字图像中每一灰度级与其出现频数的的统计关系,用横坐标表示灰度级,纵坐标表示频数。直方图就能给出该图像的概貌性描述,例如图像的灰度范围、每个灰度级的频数和灰度的分布、整幅图像的亮度和平均明暗对比度等,由此可得出进一步处理的重要依据。计算每个灰度级出现的概率为: P r (r k )=N k /N k=0,1,2,…,L-1 上式中, P r (r k )表示第k 个灰度级出现的概率,N k 为第 k 个灰度级出现的频数,N 为图像像素总数,L 为图像中可能的灰度级总数。由此可得直方图均衡化变换函数,即图像的灰度累积分布函数Sk 为: 1,...,2,1,0)()(00-====∑∑==L k r P r T s k j N N k j j r k k j 上式中, S k 为归一化灰度级。 这个变换映射称做直方图均衡化或直方图线性化。 直方图均衡化过程如下: (1) 输出原图像; (2) 根据公式P r (r k )=n k /m*n ( k=0,1,2,…,L-1)计算对应灰度级出现的概率, 绘制原图像的直方图。 (3) 计算原图象的灰度级累积分布函数:sk=Σp r (r k ); (4) 取整Sk=round((S1*256)+0.5);将Sk 归一到相近的灰度级,绘制均衡化后的 直方图。 (5) 将每个像素归一化后的灰度值赋给这个像素,画出均衡化后的图像。 2.根据直方图均衡化步骤对输入的原图象进行处理,输出的图像如下图所示。

数字图像处理-作业题及部分答案解析演示教学

1.数字图像与连续图像相比具有哪些优点?连续图像f(x,y与数字图像I(c,r中各量的含义 是什么?它们有何联系和区别? (To be compared with an analog image, what are the advantages of a digital image? Let f(x,y be an analog image, I(r, c be a digital image, please give explanation and comparison for defined variables: f/I, x/r, and y/c 2.图像处理可分为哪三个阶段? 它们是如何划分的?各有什么特点? (We can divide "image processing" into 3 stages, what are they? how they are divided? What are their features? 答:低级处理---低层操作,强调图像之间的变换,是一个从图像到图像的过程; 中级处理---中层操作,主要对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述,是一个从图像到数值或符号的过程; 高级处理---高层操作,研究图像中各目标的性质和相互联系,得出对图像内容含义的理解以及对原来客观场景的解释; 3.试从结构和功能等角度分析人类视觉中最基本的几个要素是什么?什么是马赫带效应? 什 么是同时对比度?它们反映了什么共同问题? (According to the structure and function of the eyes, what are the basic elements in human vision? What is the Mach Band Effect? What is Simultaneous Contrast? What common facts can we infer from both Mach Band Effect and Simultaneous Contrast? 答:人的视觉系统趋向于过高或过低估计不同亮度区域边界的现象称为“马赫带”效应;同时对比度指的是人的视觉系统对某个区域感觉到的亮度除了依赖于它本身的强度,还与背景有关.

基于直方图均衡化的彩色图像增强

基于直方图均衡化的彩色图像增强 摘要:现实生活中经常遇到所照图片清晰度不好,亮度不够,能辨率低,这样就需要将图像进行处理以得到清晰度和亮度更好的图像。文章首先介绍彩色图像和图像增强的定义与方法,以及彩色图像转换为灰度图像的方法,然后对直方图均衡化作出解释,最后通过实验先将彩色图像转换为hsi 图像,并对hsi 图像中的i分量的灰度图像进行直方图均衡化的处理,再将经过处理后的hsi 图像还原成彩色图像,即可得到增强的彩色图像效果图。实现了通过直方图均衡化的处理得到彩色图像的增强。 关键词:彩色图像;灰度图像;图像增强;直方图均衡化;hsi 图像 中图分类号:tp751 文献标识码:a 文章编号:1009-3044(2013)04-0833-03 color image enhancement based on histogram equalization jiang dong-qin,li ming-dong (computer department, china west normal university,nanchong 637009,china) abstract: in the real world, the photographs that were took, which are lack of clarity and brightness, and visibilities are low. so there is need to deal with these photographs to get better clarity and brightness of pictures. in the article, at first, recommending the definitions and

彩色图像处理存在的问题及应对策略(附图)

彩色图像处理存在的问题及应对策略(附图)相对于黑白图像处理,彩色图像处理有明显的优势,但是应考虑以下关键问题: 一、色彩准确性 色彩准确性即彩色图像处理需要考虑的颜色精度和差异程度。 许多图像处理中,处理算法必须区分检测到的颜色和目标值之间的差异。因此颜色的准确性非常重要,决定里一个算法的成败。 决定色彩准确性的的是插值算法,插值可能导致颜色检测的细微差异,因为它需要周围像素来确定每个像素的颜色值。 二、色彩串扰性 色彩串扰也是影响色彩准确性的关键因素。色彩串扰是由于红、蓝、绿通道的光谱响应之间相当大的重叠造成的。 当通道之间有大量重叠时,某些颜色系列,尤其是黄或蓝绿色系列,会有很大的不确定性。 色彩串扰会导致色彩伪像和色彩混淆。色彩处理时需要注意提取目标与背景色彩串扰的大小,可通过偏光镜等尽量避免色彩串扰。 ▲棱镜相机中使用的二向色涂层比拜耳滤光片产生更陡的光谱曲线,以最大限度地减少由色彩串扰引起的不确定性。

三、莫尔图案 当图像中包含重复阵列图像时,图像会出现摩尔条纹。 大规模混叠可导致莫尔图案的出现。虽然任何需要捕获更高空间频率的相机都会出现这种效果,但拜耳相机 - 再次因为插值技术 - 更容易出现这种情况。 ▲具有重复颜色混叠的区域中的人造颜色图案可以出现在拜耳图像中。 四、色彩对分辨率的影响 与单色系统相比,彩色相机大大降低了相机的有效分辨率。 虽然拜耳相机可能有500万像素(5百万像素),但插值过程会“平均”许多小细节,使有效分辨率达到整个像素数的三分之一左右。 彩色图像处理存在以上四个问题,因此进行彩色图像处理时需要采取以下四种措施: 一、光照水平和灵敏度 根据系统的亮度级别和可容忍的增益/噪声级别,选择合适的关照说以及相机色彩灵敏度。

数字图像处理点运算和直方图处理

实验1 点运算和直方图处理 一、实验目的 1. 掌握利用Matlab图像工具箱显示直方图的方法 2. 掌握运用点操作进行图像处理的基本原理。 3. 进一步理解利用点操作这一方法进行图像处理的特点。 4. 掌握利用Matlab图像工具箱进行直方图均衡化的基本方法。 二、实验的硬件、软件平台 硬件:计算机 软件:操作系统:WINDOWS 7 应用软件:MATLAB 三、实验内容及步骤 1. 了解Matlab图像工具箱的使用。 2. 利用Matlab图像工具箱对图像进行点操作,要求完成下列3个题目中 的至少2个。 ⑴图1灰度范围偏小,且灰度偏低,改正之。 ⑵图2暗处细节分辨不清,使其能看清楚。 ⑶图3亮处细节分辨不清,使其能看清楚。 图1 图2 图3 3. 给出处理前后图像的直方图。 4. 利用MatLab图像处理工具箱中函数对以上图像进行直方图均衡化操 作,观察结果。 四、思考题 1. 点操作能完成哪些图像增强功能? 2. 直方图均衡化后直方图为何并不平坦?为何灰度级会减少? 五、实验报告要求

1.对点操作的原理进行说明。 2.给出程序清单和注释。 3.对处理过程和结果进行分析(包括对处理前后图像的直方图的分析)。 实验代码以及解读 点操作: I = imread('POINT1.BMP')。 %读入图像 j=rgb2gray(I)。%将图像转为灰度图像 INFO=IMFINFO('POINT1.BMP') %获取图片的格式、尺寸、颜色数量、修改时间等信息[l,r]=size(j)。%图片大小 figure。%建立一个图形框 subplot(221) imshow(j) %在两行两列的第一个位置放置图片j title('POINT1.BMP') %给该图片加上标题POINT1.BMP for m=1:l for n=1:r %从第一个像素循环到最后一个像素p1(m,n)=j(m,n)*1.2。%把各点乘上1.2得到p1图 end end for m=1:l for n=1:r p2(m,n)=j(m,n)*2。%%把各点乘上2得到p2图 end end for m=1:l for n=1:r p3(m,n)=j(m,n)*2+50。%把各点乘上2再加50得到p2图 end end subplot(222) imshow(p1) title('j(m,n)*1.2') %p1图放在第二个位置且冠名j(m,n)*1.2 subplot(223) imshow(p2) title('j(m,n)*2') %p1图放在第三个位置且冠名j(m,n)* 2 subplot(224) imshow(p3) title('j(m,n)*2+50') %p1图放在第四个位置且冠名j(m,n)*2+50 figure。%建立一个新的窗口并且依次显示以上四个图的直方图

均值滤波 中值滤波 直方图均衡

实验报告 一.实验目的 对图像进行空域增强,实现均值滤波、中值滤波、直方图均衡。 二.实验内容 对加入椒盐噪声的图像进行均值滤波、中值滤波,对图像实现直方图均衡,通过改变图像的直方图来改变图像中像素的灰度,以达到图像增强的目标。 三.实验原理 均值滤波的原理 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。再用模板中的全体像素的平均值来代替原来像素值。 均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,) x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,) u x y,即 x y,作为处理后图像在该点上的灰度值(,)

1 (,)(,)u x y f x y m = ∑,m 为该模板中包含当前像素在内的像素总个数。 中值滤波的原理 中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。中值滤波的目的是保护图像边缘的同时去除噪声。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口,在处理之后,将窗口正中的像素灰度值用窗口内各像素灰度值的中值来代替。设有一个维序列 12,,...n f f f ,取窗口长度为奇数m ,对此序列进行中值滤波,就是从输入序列中 相续抽出m 个数,,,,,i v i i v f f f -+,其中为窗口的中心值(1)/2v m =-,再将这 m 个点的数值按其数值大小排列,取其序号为正中间的那个数作为滤波输出。中 值滤波表达式为: {}v i i v i i f f f Med F +-=,,,, 对二维序列{X i,j }的中值滤波,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。二维中值滤波可表示为: {}为滤波窗口,A x Med F j i A j i ,,= 在实际使用窗口时,窗口的尺寸一般先用33?再取55?逐渐增大,直到其滤波效果满意为止。 由于中值滤波是非线性运算,在输入和输出之间的频率上不存在一一对应关系,故不能用一般线性滤波器频率特性的研究方法。设G 为输入信号频谱,F 为输出信号频谱,定义F G H /=为中值滤波器的频率响应特性,实现表明H 是与G 有关,呈不规则波动不大的曲线,其均值比较平坦,可以认为信号经中值滤波后,传输函数近似为1,即中值滤波对信号的频域影响不大,频谱基本不变。

亮图像和暗图像的直方图均衡化

一、亮图像和暗图像的直方图均衡化 原理及应用 由于许多原始图像的灰度经常分布在一个小范围内,不易观察分辨,通过直方图均衡化使图像灰度均匀分布,使一定范围内象元值的数量大致相等,以此加强细节,提高图像的清晰度,便于观察以及计算机进行分析处理 代码 clear; I=imread('F:\matlab\p1.jpg'); %读入图像 I=rgb2gray(I); %转换为灰度图像 high=histeq(I); %直方图均衡化,指定灰度级数n,缺省为64 subplot(2,2,1),imshow(I); %显示图像 subplot(2,2,2),imshow(high); subplot(2,2,3),imhist(I); subplot(2,2,4),imhist(high); 代码结果 图1 亮图像均衡化前后对比

图2 暗图像直方图均衡化前后对比 二、用频域高斯低通、高斯高通滤波器分别对图像进行平滑和锐化。 原理: 高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器,它用像素邻域的加权均值来代替该点的像素值,通过一系列傅里叶变换达到平滑或者锐化的效果。 代码: clear; clc I=imread('p3.jpg'); %读取图像 J=rgb2gray(I); %将图像变为二维灰度图象 f=double(J); %MATLAB的矩阵运算中要求所有的运算变量为double型 f=fft2(f);%二维的傅里叶变换 f=fftshift(f);%将中心从矩阵的原点移到矩阵的中心 [row,col]=size(f); d0=60; %截止频率为60,数值越小越平滑 row1=fix(row/2); col1=fix(col/2); for i=1:row %d0为60的高斯低通滤波器 for j=1:col d=sqrt((i-row1)^2+(j-col1)^2); h(i,j)=exp(-d^2/(2*d0^2)); % 若为高斯高通滤波器,达到锐化效果则h(i,j)=1-exp(-d^2/(2*d0^2)); g(i,j)=h(i,j)*f(i,j); end end

数字图像处理之彩色图像的处理

实验六彩色图像的处理 一、实验目的 1、掌握matlab中RGB图像与索引图像、灰度级图像之间转换函数。 2、了解RGB图像与不同颜色空间之间的转换。 3、掌握彩色图像的直方图处理方法。 二、实验内容及步骤 1、RGB图像与索引图像、灰度级图像的转换。 close all RGB=imread('flowers.tif'); [R_i,map]=rgb2ind(RGB,8);%RGB图像转换为8色的索引图像 figure imshow(R_i,map) [R_g]=rgb2gray(RGB);%RGB图像转换为灰度级图像 figure imshow(R_g)

思考: 将RGB 图像’flowers.tif ’分别转换为32色、256色、1024色索引图像,是否调色板所表示的颜色值越多图像越好? close all

RGB=imread('flowers.tif'); [R_i1,map]=rgb2ind(RGB,8);%RGB图像转换为8色的索引图像 [R_i2,map]=rgb2ind(RGB,32);%RGB图像转换为32色的索引图像 [R_i3,map]=rgb2ind(RGB,256);%RGB图像转换为256色的索引图像 [R_i4,map]=rgb2ind(RGB,1024);%RGB图像转换为1024色的索引图像 Subplot(221);imshow(R_i1,map);title('8色的索引图像'); Subplot(222);imshow(R_i2,map);title('32色的索引图像'); Subplot(223);imshow(R_i3,map);title('256色的索引图像'); Subplot(224);imshow(R_i4,map);title('1024色的索引图像'); 结论:随着索引值的增加图像的质量也有增加,更加清晰,色彩也更加鲜明。但不是不是颜色值越多越好。当索引值过高时,会出现无法识别而致模糊的情况出现。 2、RGB图像与不同颜色空间的转换。 (1) RGB与HSI颜色空间的转换 HSI应用于彩色图像处理。实验六文件夹中rgb2hsi( )函数将RGB颜色空间转换为HSI 空间并显示各分量,hsi2rgb( )函数是将HSI颜色空间转换为RGB颜色空间。 close all

直方图图像处理实验报告

数字图像处理实验 实验一 直方图处理 实验目的 ● 理解图像直方图的概念,掌握图像直方图的绘制方法 ● 掌握直方图均衡化的原理,并会用直方图均衡化对图像进行处理。 实验要求 1.读入图像,可使用imread 。 2.输出图像,可使用imshow 。 3.绘制图像pout.tif 的归一化的直方图,可使用IPT 函数imhist 。 4.对图像进行直方图均衡化,可使用IPT 函数histeq ,对均衡化前后的图像以及直方图进行对比。 实验原理 一幅数字图像在范围[0, G ]内共有L 个灰度等级,其直方图定义为离散函数 k k n r h =)( 其中r k 是区间[0, G ]内的第k 级亮度,n k 是灰度级为r k 的图像中的像素数。 通常,我们会用到归一化直方图,即使所用所有元素h (r k )除以图像中的像素总数n 所得到的图形: n n n r h r p k k k ==)()( 其中k =1,2,…,L 。 Matlab 中提供了IPT 函数imhist 来绘制图像的直方图,但是除此之外绘制直方图的方法还有很多,可以通过条形图、杆状图等方式来表示直方图。 直方图均衡化主要用于增强动态范围偏小的图像的反差。该方法的基本思想是把原始的直方图变换为均匀分布的形状,这样就增加了像素灰度值的动态范围,从而达到增强图像整体对比度的效果。 直方图均衡化一般采用原始图的累计分布函数作为变换函数。假设灰度级归一化至范围[0, 1]内,p r (r )表示给定图像中的灰度级的概率密度函数,对于离散的灰度级,均衡化变换为: ∑ ∑=====k j j k j j r k k n n r p r T s 1 1 )()( 式中k =1,2,…,L ,s k 是输出图像中的亮度值,它对应于出入图像中的亮度值r k 。 实验心得: 1. matlab 的函数的功能很强大,一个简单的函数调用就可以解决复杂的问题。这样,就需要在函数调用时注意函数的参数,否则很容易出错。比如函数 histeq(a,n),就要注意其中的n 为灰度值的个数。 2. 对于自己编写函数实现某些特定的功能时,需要对原理掌握清楚,如实验二中需自己编写函数实现图像的均衡,就要求对直方图的均衡原理掌握到位。

基于直方图均衡的图像质量改善

基于直方图均衡的图像质量改善 摘要:为了解决灰度图像的灰度值分布集中在较窄的范围内,图像的细节不够清晰,对比度较低的问题。通过直方图均衡化使图像的灰度范围拉开或使灰度均匀分布,从而增大反差,使图像的细节清晰,以达到增强目的,直方图均衡化可得到任意的均匀直方图灰度图像。直方图均衡化是一种行之有效的图像增强方法,直方图均衡化是将原灰度图像的直方图通过变换函数变为均匀的直方图,然后按均匀直方图修改原图像,从而获得一幅灰度分布均匀的新图像。基于Matlab编程和工具箱的使用,实现图像直方图均衡化的图像仿真。 关键词:直方图均衡化;图像增强;Matlab Abstract:In order to solve the gray image gray value distribution concentrated in a narrow range of image detail is not clear enough, the problem of low contrast. Gray histogram equalization range so that the gradation image or pulled evenly distributed, thereby increasing the contrast, so that a clear image detail, in order to achieve the purpose of enhancing, histogram equalization histogram obtained arbitrary uniform gray image . Histogram equalization is an effective method for image enhancement, histogram equalization is the histogram of the original gray-scale image by histogram transformation function becomes uniform, a uniform histogram modification then the original image, thereby obtaining aa gray uniform distribution of the new image. Matlab toolbox based programming and the use of image histogram equalization image simulation. Keywords: histogram equalization; image enhancement; Matlab 引言

图像直方图的均衡化处理图的均衡化

图像直方图的均衡化处理 一,技术要求 1.1,利用matlab提供的函数处理 (2) 1.2,利用matlab自行编辑代码处理 (3) 二,基本原理 (3) 2.1,直方图的均衡化 (3) 2.2,直方图的标准化 (3) 三,建立模型描述 ......................................................................... 3~4 3.1,利用matlab提供的函数处理 (4) 3.2,利用matlab自行编辑代码 (4) 四,源程序代码 ............................................................................. 5~6 4.1,绘制图像直方图的代码 (5) 4.2,绘制图像均衡化后直方图的代码 (5) 4.3,显示均衡化后图像的代码 (6) 五,调试过程及结论 ..................................................................... 6~8 5.1,在编辑窗口键入绘制直方图的源代码得到的输出结果为图2 (6) 5.2,利用matlab函数绘制的图像直方图标准化的输出结果如图3..7 5.3,直方图均衡化输出结果如图4所示。 (8) 六,心得体会 (9) 七,参考文献 (9)

图像直方图的均衡化处理 一,技术要求 1.1,利用matlab提供的函数处理 利用matlab提供的函数画出一幅图像的直方图,对其进行均衡化和标准化处理,并比较均衡化(标准化)后图像和原图像的区别。 1.2,利用matlab自行编辑代码处理 利用matlab自行编辑代码,实现一幅图像的直方图显示和均衡化的处理,同样比较处理前后两幅图像的区别,了解图像均衡化的效果和实际运用。 二,基本原理 直方图是多种空域处理技术的基础。它能有效的用于图像增强。 2.1,直方图的均衡化 直方图的均衡化是把原始图像的灰度直方图从比较集中的某个区域变成全部灰度范围内的均匀分布,实际上是对图像进行非线性拉伸。使一定灰度范围内的像素个数大致相同。这样就能增强图像的局部对比度,亮度可以更好的在直方图上分布。 2.2,直方图的标准化 直方图的标准化实际上原理和直方图的均衡化原理大致相同,也是将原始图像的灰度值从比较集中地部分扩展到较大范围内的均匀分布,但是它和均衡化的不同在于均衡化是将灰度值范围变成全部灰度范围的均匀分布,而标准化是将灰度值范围扩展到一个相对以前要大一些的范围内,并不要求要变成全部灰度范围内的均匀分布。 三,建立模型描述 3.1,利用matlab提供的函数处理

图像处理和分析-王伟强-作业题和答案解析汇总-2017版

【作业1】 1、完成课本习题3.2(a)(b), 课本中文版《处理》第二版的113页。可以通过matlab帮助你分析理解。 a: b:E控制函数的斜坡,也就是函数的倾斜程度,E越大,函数倾斜程度越大,如下图1,图2所示: 图1:E=5

图2:E=20 2、一幅8灰度级图像具有如下所示的直方图,求直方图均衡后的灰度级和对应概率,并画出均衡后的直方图的示意图。(计算中采用向上取整方法,图中的8个不同灰度级对应的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02]) 【解答】直方图均衡采用公式 式中,G为灰度级数,取8,p r(w)为灰度级w的概率,S r为变换后的灰度,计算过程如下表所示: 则新灰度级的概率分别是: P s(0) = 0 P s(1) = P r(0) = 0.17 P s(2) = 0 P s(3) = P r(1) = 0.25 P s(4) = 0 P s(5) = P r(2) = 0.21 P s(6) = P r(3) + P r(4) = 0.23

P s(7) = P r(5) = P r(6) = P r(7) = 0.14 编写matlab程序并绘制直方图: s=0:1:7; p=[0 0.17 0 0.25 0 0.21 0.23 0.14]; bar(s,p); axis([-1 8 0 0.3]); 可以看出,此图较题目原图更加“均匀”。 【作业2】1、完成课本数字图像处理第二版114页,习题3.10。 【解答】 由图可知

将两图做直方图均衡变换 令上面两式相等,则 因为灰度级非负,所以 2、请计算如下两个向量与矩阵的卷积计算结果。 (1)[ 1 2 3 4 5 4 3 2 1 ] * [ 2 0 -2 ] (2) 【解答】 (1)设向量a=[ 1 2 3 4 5 4 3 2 1 ],下标从-4到4,即a(-4)=1,a(-3)=2……a(4)=1;设向量b=[ 2 0 -2 ],下标从-1到1,即b(-1)=2,b(0)=0,b(1)=-2;设向量c=a*b,下标从-5到5。根据卷积公式可知 其中,,则 c(-5)=a(-4)b(-1)=1*2=2 c(-4)=a(-4)b(0)+a(-3)b(-1)=1*0+2*2=4 c(-3)=a(-4)b(1)+a(-3)b(0)+a(-2)b(-1)=1*(-2)+2*0+3*2=4 c(-2)=a(-3)b(1)+a(-2)b(0)+a(-1)b(-1)=2*(-2)+3*0+4*2=4 c(-1)=a(-2)b(1)+a(-1)b(0)+a(0)b(-1)=3*(-2)+4*0+5*2=4 c(0)=a(-1)b(1)+a(0)b(0)+a(1)b(-1)=4*(-2)+5*0+4*2=0 c(1)=a(0)b(1)+a(1)b(0)+a(2)b(-1)=5*(-2)+4*0+3*2=-4 c(2)=a(1)b(1)+a(2)b(0)+a(3)b(-1)=4*(-2)+3*0+2*2=-4 c(3)=a(2)b(1)+a(3)b(0)+a(4)b(-1)=3*(-2)+2*0+1*2=-4 c(4)=a(3)b(1)+a(4)b(0)=2*(-2)+1*0=-4

相关文档
最新文档