最新苏科版八年级下册数学《用反比例函数解决问题》同步练习题及答案.docx

合集下载

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试卷及答案解析.doc

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试卷及答案解析.doc

(新课标)苏科版八年级下册第11单元 反比例函数 综合测试卷(B)一、选择题1.某反比例函数的图像经过点(一1,6),则下列各点中,此函数的图像也经过的点是( )A .(一3,2)B .(3,2)C .(2,3)D .(6,1)2.已知一次函数y kx b =+的图像经过第一、二、四象限,则反比例函数kby x =的图像在( )A .第一、二象限B .第三、四象限C .第一、三象限 D .第二、四象限3.如图关于x 的函数y kx k =-和(0)ky k x =-≠,它们在同一坐标系内的图像大致是 ( )4.如图,反比例函数(0)ky k x =-≠的图像上有一点A ,AB 平行于x轴交y y 轴于点B ,△ABO 的面积是1,则反比例函数的表达式是 ( ) A .12y x=B .1y x=c .2y x =D .14y x =5.如图,点P 、Q 是反比例函数1y x =的图像上在第一象限内的任两点,分别过P 、Q 作x 轴、y 轴的垂线段PA 、PB 、QC 、QD ,垂足分别为A 、B 、C 、D ,又已知线段PA 、QD 相交于点E ,四边形PEDB 、QEAC 的面积分别记为12s s 、时,则 ( ) A .12>s s B .1s <2s C .1s =2s D .1s ·2s 的大小不确定 6.已知点P 12,2)(,2)x x -3(、Q 、R(x ,3)三点都在反比例函数21a y x +=的图像上,则下列关系正确的是 ( )A .123<<x x xB .132<<x x xC .321<<x x xD .231<<x x x 7.如图,反比例函数(>0)ky x x =的图像经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为 ( )A .1B .2C .3D .4 二、填空题 8·已知函数1y x a=-,当2x =时没有意义,则a的值为 .9.若反比例函数ky x =的图像经过(一2,则函数y kx k =-的图像一定过第象限.10.在平面直角坐标系内,从反比例函数(>0)ky k x =的图像上的一点分别作x y 、轴的垂线段,与x y 、轴所围成的矩形面积是12,那么该函数解析式是 .11.若点A(7,1y ),B(5,2y )在反比例函数3y x =-图像上,则12y y 、的大小关系是 . 12.关于x 的反比例函数25(1)k y k x-=-y(k 为常数)的图像在第一、三象限,则k的值为.13.若一次函数y y mx n=+与反比例函数33nyx+=的图像相交于点(1(,2)2,那么该直线与双曲线的另一交点为.14·双曲线3yx=在第象限内,经过点(一1. ) .15.已知反比例函数6yx=在第一象限的图像如图所示,点A在其图像上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则AOBSV= .16.如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y x=上,其中A点的横坐标为l,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线(0)ky kx=≠与△ABC有交点,则k的取值范围是.17.如图,已知函数11y x =(>0)x ,24(>0)y x x =,点P 为函数24y x =的图像上的一点,且PA x ⊥轴于点A ,PB y ⊥,轴于点B ,PA 、PB 分别交函数11y x=的图像于D 、C 两点,则△PCD 的面积为 . 三、解答题(共57分)18.(本题8分)已知反比例函数(k y kx =为常数,k ≠0)的图像经过点A(2,3).(1)求这个函数的表达式;(2)判断点B(一1,6)、C(3,2)是否在这个函数的图像上,并说明理由;(3)当一3<x <一1时,求y 的取值范围.19.(本题8分)如图,已知一次函数11(0)y k x b k =+≠的图像分别与x 轴,y轴交于A 、B两点,且与反比例函数22(0)k y k x =≠的图像在第一象限的交点为C ,过点C 作x 轴的垂线,垂足为D ,若OA=OB=OD=2. (1)求一次函数的解析式; (2)求反比例函数的解析式.20.(本题8分)如图,一次函数y ax b =+的图像与反比例函数ky x=的图像交于A(一2,m ),B(4,-2)两点,与x 轴交于C 点,过A 作AD ⊥x 轴于D . (1)求这两个函数的解析式; (2)求△ADC 的面积.21.(本题9分)一辆汽车匀速通过某段公路,所需时间()t h 与行驶速度υ(km /h)满足函 数表达式kt υ=.其图像为如图所示的一段曲线,且端点为A(40,1)和B(m ,0.5) (1)求k 和m 的值。

2020—2021年最新苏科版八年级数学下册《反比例函数》同步练习题及答案.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》同步练习题及答案.docx

(新课标)苏科版八年级下册11.1 反比例函数一、选择题1.反比例函数y =k x(k ≠0)中自变量的范围是( ) A. x ≠0 B.x =0 C.x ≠1D.x =-12.下列函数中,y 与x 成反比例函数关系的是()A .(1)1x y -=B .11y x =+ C .21y x =D .13y x = 3.下列关系式:(1)y =-x ;(2)y =2x -1;(3)y =2x;(4)y =k x (k >0).其中y 是x 的反比例函数的有( ) A.1个 B.2个 C.3个D.4个4.下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( ) A. y x =-19 B. 23x y =- C. 32y x =-+ D.152xy =- 5.若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随x 增大而增大二、填空题6.已知反比例函数xy 2=,当y =6时,x =_________ 7.已知y 与2x -1成反比例,且当x =1时,y =2,那么当x =0时,y =________.8.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h=________,这时h 是a 的__________.9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成__________.10.当m=__________时,函数22(1)m y m x -=+是反比例函数。

三、解答题11.下列各题中,哪些是反比例函数关系。

(1)三角形的面积S 一定时,它的底a 与这个底边上的高h 的关系;(2)多边形的内角和与边数的关系;(3)正三角形的面积与边长之间的关系;(4)直角三角形中两锐角间的关系;(5)正多边形每一个中心角的度数与正多边形的边数的关系;(6)有一个角为30ο的直角三角形的斜边与一直角边的关系。

2020—2021年最新苏科版八年级数学下册《反比例函数》同步检测题及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》同步检测题及答案解析.docx

(新课标)苏科版八年级下册第十一章检测卷(满分:100分时间:90分钟)一、选择题(每题2分,共20分)1. (2015·崇左)若反比例函数k=的图像经过点(2,-6),则kyx的值为()A. -12B. 12C. -3D. 32. (2015·张家界)函数(0)=≠与ay ax ay=在同一坐标系中的大x致图像是()A B C D3. 下列函数关系中,成反比例函数的是( )A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L ,与边长a 的函数关系4. 两位同学在描述同一个反比例函数的图像时,甲同学说:“这个反比例函数图像上的任意一点到两坐标轴的距离的积都是3.”乙同学说:“这个反比例函数的图像与直线y x =有两个交点.”你认为这两位同学所描述的反比例函数的表达式应是 ( ) A. 3y x= B. 3y x =- C. 3y x=-D. 3y x=5. 若反比例函数k y x=在第一象限内的图像如图所示,则k 的值可能是 ( )A. 1B. 2C. 3D. 4第5颗 第7题第8题6. 已知1(1,)A y -、2(2,)B y 两点在双曲线32my x+=上,且12y y >,则m 的取值范围是( )A. 0m <B. 0m >C. 23m >- D. 23m <-7. ( 2014·抚顺)如图,在平面直角坐标系中,A 是x 轴正半轴上的一个定点,点P 是双曲线3(0)y x x=>上的一个动点,PB y ⊥轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会 ( )A.逐渐增大B.不变C.逐渐减小D.先增大后减小8. 如图,点(,1)A a 、(1,)B b -都在双曲线3(0)y x x=-<上,P 、Q 分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的表达式是 ( )A.y x =B.1y x =+C.2y x =+D.3y x =+9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为 ( )A .12-B .27-C .32-D .36-10.如图,直线3y x =-+与y 轴交于点A ,与反比例函数(0)k y k x=≠的图像交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO,则反比例函数的解析式为 ( )A .4y x= B .4y x=-C .2y x=D .2y x=-二、填空题(每题2分,共20分) 11. 对于函数8a y x+=,当a 时,y 是x 的反比例函数. 12. 若点(一1,2)在双曲线(0)ky k x =≠上,则此双曲线的函数表达式为 . 13. 若常数2k >,则函数36k y x-=在每个象限内,y 都随x 的增大而 .14. 若函数1(2)m y m x -=+为反比例函数,则此函数的图像在第(第9题) yABC O x象限.15. 司机老王驾驶汽车从甲地去乙地,他以80 km/h 的平均速度用6h 到达目的地.当他按原路匀速返回时,汽车的速度v 与时间t 之间的函数表达式为 .16. 有一面积为120的梯形,其上底是下底长的23.若上底长为x ,高为y ,则y 与x 的函数表达式为 ;当高为10时,x = .17. 已知正比例函数4y x =-与反比例函数k y x=的图像交于A 、B两点,若点A 的坐标为(,4)a ,则点B 的坐标为 .18. 小明家距学校1.5 km ,小明步行上学需x min ,那么他步行的速度y (m/min)可以表示为1500y x=;水平地面上有重 1500 N 的物体,与地面的接触面积为x m 2,那么该物体对地面的压强y (N/m 2)可以表示为1500y x=……函数表达式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1个例子: .19. 已知直线(0)y kx k =>与双曲线3y x=交于11(,)A x y 、22(,)B x y 两点,则1221x y x y + 的值为 .20. (2015·烟台)如图,矩形OABC 的顶点A 、C 的坐标分别是(4,0)和(0,2),反比例函数(0)ky x x=>的图像过对角线的交点P 并且与AB 、BC 分别交于D 、E 两点,连接OD 、OE 、DE ,则ODE ∆的面积为 .三、解答题(共60分)21. (6分)已知反比例函数(0)k y k x=≠的图像经过点A (-2,8).(1)求这个反比例函数的表达式; 第20题(2)若1(2,)y 、2(4,)y 是这个反比例函数图像上的两个点,比较1y 、2y 的大小,并说明理由.22. (6分)已知函数y 与1x +成反比例,且当2x =-时,3y =-.(1)求y 与x 的函数表达式; (2)当12x =时,求y 的值.23. (6分)(2015·衢州)如图,(,3)A a 是一次函数1y x b =+图像与反比例函数26y x=图像的一个交点. (1)求一次函数的表达式;(2)在y 轴的右侧,当12y y >时,直接写出x 的取值范围.24.(6分)(2015•吉林)如图,点A (3,5)关于原点O 的对称点为点C ,分别过点A ,C 作y 轴的平行线,与反比例函数y=(0<k <15)的图象交于点B ,D ,连接AD ,BC ,AD 与x 轴交于点E (﹣2,0). (1)求k 的值;(2)直接写出阴影部分面积之和.25. (9分)如图,四边形ABCD 是平行四边形,点A (1,0)、B (3,1)、C (3,3).反比例函数(0)my x x=>的图像经过点D ,点P 是一次函数33(0)y kx k k =+-≠的图像与该反比例函数的图像的一个公共点.(1)求反比例函数的表达式;(2)通过计算,说明一次函数33(0)y kx k k =+-≠的图像一定经过点C ;(3)对于一次函数33(0)y kx k k =+-≠,当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).26.(9分)(2015·黄冈)如图,反比例函数k y x =的图像经过点A (-1,4),直线(0)y x b b =-+≠与双曲线ky x=在第二、四象限分别相交于P 、Q 两点,与x 轴、y 轴分别相交于C 、D 两点. (1)求k 的值.(2)当2b =-时,求OCD ∆的面积.(3)连接OQ ,是否存在实数b ,使得ODQ OCD S S ∆∆=?若存在,请求出b 的值;若不存在,请说明理由.27. (8分)我们已学习过图形的平移,现在可以对反比例函数的图像作类似的变换.(1)将1y x=的图像向右平移1个单位长度,所得图像的函数表达式为 ,再向上平移1个单位长度,所得图像的函数表达式为 .(2)函数1x y x +=的图像可由1y x=的图像向 平移 个单位长度得到, 12x y x -=-的图像可由哪个反比例函数的图像经过怎样的变换得到? (3)一般地,函数(0,x by ab x a+=≠+ 且)a b ≠的图像可由哪个反比例函数的图像经过 怎样的变换得到?28.(10分)(2015•镇江)如图,点M (﹣3,m )是一次函数y=x+1与反比例函数y=(k ≠0)的图象的一个交点. (1)求反比例函数表达式;(2)点P 是x 轴正半轴上的一个动点,设OP=a (a ≠2),过点P 作垂直于x 轴的直线,分别交一次函数,反比例函数的图象于点A ,B ,过OP 的中点Q 作x 轴的垂线,交反比例函数的图象于点C ,△ABC ′与△ABC 关于直线AB 对称.①当a=4时,求△ABC ′的面积;②当a 的值为 时,△AMC 与△AMC ′的面积相等.参考答案一、题号 1 2 3 4 5 6 7 8 9 1答案 A D A A C D C C A B二、11. ≠-8 12. xy 2-= 13. 减小14.一、三 15.t v 480= 16.xy 96= 9.6 17.(1, -4)18.答案不唯一,如体积为1500cm 3的圆柱的底面积为x cm 2 ,那么圆柱的高可表示为xy 1500=19. -6 20.415 三、 21. (1) x y 16-= (2) 1y <2y22. (1) 13+=x y (2) 2=y 23. (1) 11+=x y (2) x >224. (1) k=3 (2) S 阴影=1225. (1) 反比例函数的表达式xy 2=(2)当3=x 时,一次函数33(0)y kx k k =+-≠的图像一定经过点C(3) 设P 点横坐标为a ,则32<a <326.(1) 4-=k (2) OCD ∆的面积=2 (3)存在,且2-=b27.(1) 11-=x y 1-=x x y (2) 上 1 答案不唯一,如 12x y x -=-可由反比例函数1y x=的图像先向右平移2个单位长度,再向上平移1个单位长度得到.(3) 答案不唯一,可由xa b y -=的图像先向左平移a 单位长度,再向上平移1个单位长度得到.28. (1)把M (﹣3,m )代入y=x+1,则m=﹣2.将(﹣3,﹣2)代入y=,得k=6,则反比例函数解析式是:y=;(2)①连接CC ′交AB 于点D .则AB 垂直平分CC ′. 当a=4时,A (4,5),B (4,1.5),则AB=3.5. ∵点Q 为OP 的中点,∴Q(2,0),∴C(2,3),则D(4,3),∴CD=2,∴S △ABC=AB•CD=×3.5×2=3.5,则S△ABC′=3.5;②∵△AMC与△AMC′的面积相等,∴=,解得a=3.。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、,函数与在同一直角坐标系中的大致图象可能是()A. B. C. D.2、若y与x成反比例,x与z成反比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定3、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O 2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1(x1, y1)、P2(x2, y2)在反比例函数y=(x>0)的图象上,则y1+y2=()A.1B. -1C.D. +14、定义:[a,b]为反比例函数(ab≠0,a,b为实数)的“关联数”.反比例函数的“关联数”为[m,m+2],反比例函数的“关联数”为[m+1,m+3],若m>0,则()A.k1=k2B.k1>k2C.k1<k2D.无法比较5、对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6、如图,反比例函数y=的图象经过矩形AOBC的边AC的中点E,与另一边BC 交于点D,连接DE,若S△ECD=2,则k的值为()A.2B.4C.8D.167、如图,△ABC和△DEF的各顶点分别在双曲线y= ,y= ,y= 在第一象限的图象上,若∠C=∠F=90°,AC∥DF∥x轴,BC∥EF∥y轴,则S△ABC ﹣S△DEF=()A. B. C. D.8、反比例函数y= (a>0,a为常数)和y= 在第一象限内的图象如图所示,点M在y= 的图象上,MC⊥x轴于点C,交y= 的图象于点A;MD⊥y轴于点D,交y= 的图象于点B,当点M在y= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0B.1C.2D.39、如图,已知A(﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,则三角形AOB的面积是()A.5B.6C.7D.810、如图,已知P为反比例函数y=(x>0)的图象上一点,过点P作PA⊥y轴,PB⊥x轴,E是PA中点,F是BE的中点.若△OPF的面积为3,则k的值为()A.6B.12C.18D.2411、在同一直角坐标系中,一次函数y=kx-k与反比例函数(k≠0)的图象大致是()A. B. C. D.12、若点P(x0, y)在函数y= (x<0)的图象上,且xy=﹣1.则它的图象大致是()A. B. C. D.13、已知点A(-1,y1)、B(2,y2)都在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0B.m>0C.m>-D.m<-14、如图,点A在反比例函数y=(x>0)的图像上,C是y轴上一点,过点A作AB⊥x轴,垂足为B,连接AC、BC.若△ABC的面积为3,则k的值为()A.9B.6C.3D.1.515、如图,点A在双曲线y=上,点B在x轴上,AD⊥y轴于点D,DC∥AB,交x轴于点C,若四边形ABCD的面积为6,则k的值为()A.-2B.-3C.-4D.-6二、填空题(共10题,共计30分)16、若点在反比例函数的图象上,则代数式的值为________.17、如图,已知直线与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线(x>0)正好经过C,M两点,则直线AC的解析式为:________.18、如图,若双曲线(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为________ .19、如图,在平面直角坐标系中,Rt△AOB的直角顶点A在y轴的正半轴上,顶点B在第一象限,函数y= 的图象与边OB交于点C,并且点C为边OB的中点,若△AOB的面积为12,则k的值为________。

最新苏科版八年级下册数学《反比例函数》单元测试题及答案解析.docx

最新苏科版八年级下册数学《反比例函数》单元测试题及答案解析.docx

(新课标)苏科版八年级下册第11章反比例函数测试题(时间:90分钟满分:120分)(班级:姓名:得分:)一、选择题(第小题3分,共30分)1.已知直线y=ax(a≠0)与双曲线的一个交点坐标为(2,6),则它们的另一个交点坐标是()A.(﹣2,﹣6)B.(﹣6,﹣2)C.(﹣2,6)D.(6,2)2. 近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数表达式为()A.400yx=B.14yx=C.100yx=D.1400yx=3.如图所示为反比例函数1yx=在第一象限的图像,点A为此图像上的一动点.过点A分别作AB x⊥轴和AC┴y轴,垂足分别为B,C.则四边形OBAC的面积为()A.1B.3C.2D.44. 在反比例函数(0)ky kx=<的图像上有两点(-1,y1),(41-,y2),则y1-y2的值是()第3题图A. 正数B.非正数C.负数D.不能确定第8题图 ADC B yxO 2y x= 3y x =-5. 已知直线y=kx (k >0)与双曲线y=3x 交于A (x 1,y 1),B(x 2,y 2)两点,则x 1y 2-x 2y 1的值为( )A.-6 B .-9 C .0 D .96. 在平面直角坐标系xOy 中,如果有点P (-2,1)与点Q (2,-1),那么下列描述:①点P 与点Q 关于x 轴对称;②点P 与点Q 关于y 轴对称;③点P 与点Q 关于原点对称;④点P 与点Q 都在y=x 2-的图像上.其中正确的是( )A .①②B .②③C .①④D .③④ 7.如图,A ,B 是函数2y x =的图像上关于原点对称的任意两点,BC ∥x轴,AC ∥y 轴,若△ABC 的面积记为S ,则( )A .S=2B .2<S <4C .S=4D .S >4第7题图8. 如图,点A 是反比例函数y=2x (x >0)的图像上任意一点,AB ∥x轴交反比例函数y=-3x 的图像于点B ,以AB 为边作□ABCD ,其中C ,D 在x 轴上,则S □ABCD 为( )A.2B .3C .4D .54y x =的图像,下列说法正确的是( )9. 关于反比例函数A .必经过点(1,1)B .两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称10.平面直角坐标系中,已知点O(0,0),A(0,2),B(1,0),点P 是反比xyPQO例函数1y x =-图像上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q.若以点O ,P ,Q 为顶点的三角形与∆OAB 相似,则相应的点P 共有( )A .4个B .3个C .2个D .1个 第10题图二、填空题(第小题4分,共32分) 11 已知函数216(5042016)a y a x -=-,当a =_____时,它的图像是双曲线.12下列函数:①y=2x ﹣1;②20182015y x =-;③y=x 2+8x ﹣2066;④22015y x =;⑤12016y x=;⑥y=.其中是反比例函数的有 (填“序号”).13. 若点P(a,2)在一次函数y=2x+4的图像上,它关于y 轴的对称点在反比例函数x ky =的图像上,则反比例函数的表达式为 .14.反比例函数)0(≠=k x ky 的图像在二、四象限,图像上有一点A ,过点A作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 . y 1=ax+b (a ≠0)与反15 .如图,一次函数比例函数y 2=()0≠k xk的图像交于A (1,4),B (4,1)两点,若y 1>y 2,则x 的取值范围是第15题图 第16题图 第17题图第18题图16. 如图,点A 是反比例函数6y x =-(x < 0)的图像上的一点,过点A 作平行四边形ABCD ,使点B,C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为 17. 如图,点A 在双曲线y=x 6上,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当OA =4时,则△ABC 的周长为 . 18.如图,双曲线()ky k x =>0与⊙O在第一象限内交于P,Q 两点,分别过P,Q两点向x 轴和y 轴作垂线.已知点P 的坐标为(1,3)则图中阴影部分的面积为 . 三 解答题(共58分)19.(10分)已知y=2y 1-3y 2,y 1与x 成正比例,y 2与x 成反比例,当x=1时,y=1,当x=2时,y=5.(1)请你写出y 与x 之间的函数表达式; (2)当x=-1时,求y 的值.20.(10分)如图,一次函数y=kx+b 的图像与坐标轴分别交于A ,B 两点,与反比例函数my x =的图像在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1,(1)求一次函数与反比例函数的表达式; (2)直接写出当x<0时0m kx b x +->的x 的取值范围.21.(12分)已知反比例函数x k y 1-=图像的两个分支分别位于第一、三象限.y xABO第22题图(1)求k 的取值范围;(2)若一次函数y=2x+k 的图像与该反比例函数的图像有一个交点的纵坐标是4. ①求当x=-6时反比例函数y 的值;当210<<x 时,求一次函数y 的取值范围.②分)如图,一次函数b kx y +=1的图像与反比例函数)0(2>=x x my22.(12的图像交于A (1,6),B (a ,2)两点. (1)求一次函数与反比例函数的表达式; (2)直接写出1y ≥2y 时x 的取值范围.23.(14分)据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段OA 和双曲线在A 点及其右侧的部分).根据图像所示信息,解答下列问题:(1)写出药物燃烧及释放过程中,y 与x 之间的函数解析式及自变量的取值范围.(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始后,哪一时间段内师生不能进入教室?参考答案一、1.A 2..C 3.A 4.C 5.C 6.D 7.C 8. D 9.D 10.A 二、11. -4 12.. ② 13.x y 2=14. y=x 4-. 15. x <0或1<x<4. 16. 6 17. 27 18. 4三、19.解:(1)由题意可设11y k x =,22k y x=,则2132k y k x x=-.∵当x=1时,y=1,当x=2时,y=5,∴12212313452k k k k -=⎧⎪⎨-=⎪⎩解得123223k k ⎧=⎪⎪⎨⎪=⎪⎩∴23y x x =-. (2)当x=-1时,2233(1)1(1)y x x =-=⨯--=--.20.解:(1)∵OB=2,△AOB 的面积为1,∴B (-2,0),OA=1,∴A (0,-1).可得11,2201b k k b b ⎧=-=-⎧⎪∴⎨⎨-+=⎩⎪=-⎩∴一次函数的表达式为112y x =--.∵OD=4,OD ⊥x 轴,∴C (-4,y ).将x= - 4代入112y x =--,得y=1, ∴C(-4,1),∴14m =-,∴m= - 4, ∴反比例函数的表达式为4y x =-.(2) x<-4.21. 解:(1)∵反比例函数x k y 1-=图像的两个分支分别位于第一、三象限,∴01>-k ,∴1>k .(2)①设交点坐标为(a ,4),代入两个函数表达式,得⎪⎩⎪⎨⎧-=+=a kk a 1424 解得⎪⎩⎪⎨⎧==321k a ∴反比例函数的表达式为x y 2=.当x=-6时反比例函数y 的值为3162-=-=y .②由①可知,两图像交点坐标为(21,4),所以一次函数的表达式是y=2x+3,它的图像与y 轴交点坐标是(0,3). 由图像可知,当210<<x 时,y 的取值范围是43<<y .22.解:(1)∵点A (1,6),B (a ,2)在x my =2的图像上,∴61=m,6=m . 2=a m ,326==a .∵点A (1,6),B (3,2)在函数y 1=kx+b 的图像上,∴⎩⎨⎧=+=+.23,6b k b k 解得⎩⎨⎧=-=.8,2b k∴一次函数的表达式为y 1=-2x+8,反比例函数的表达式为x y 62=.(2)1≤x ≤3.23. 解:(1)设反比例函数的解析式为y=x k,将(25,6)代入解析式,得k=25×6=150,则反比例函数的解析式为y=x 150.将y=10代入y=x 150,得x=15,故A (15,10).所以反比例函数自变量的取值范围为x ≥15. 设正比例函数的解析式为y=nx ,将A (15,10)代入,得n=1510=32,则正比例函数的解析式为y=32x (0≤x ≤15).(2)由32x=2,解得x=3;由x 150=2,解得x=75.所以从消毒开始后,从第3分钟开始直至第75分钟内,师生不能进入教室.。

苏科版八年级数学下册反比例函数同步习题含解析

苏科版八年级数学下册反比例函数同步习题含解析

反比例函数同步习题一.选择题1.货车每次运货吨数、运货次数和运货总吨数这三种量中,成反比例的是()A.货车每次运货吨数一定,运货次数和运货总吨数B.货车运货次数一定,每次运货吨数和运货总吨数C.货车运货总吨数一定,每次运货吨数和运货次数2.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是()A.y=6x B.y=C.y=D.y=3.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是4.下列说法中,两个量成反比例关系的是()A.商一定,被除数与除数B.比例尺一定,图上距离与实际距离C.圆锥的体积一定,圆锥的底面积和高D.圆柱的底面积一定,圆柱的体积和高5.已知y=2x2m是反比例函数,则m的值是()A.m=B.m=﹣C.m≠0D.一切实数6.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数7.若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣18.若y与x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定9.下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=﹣;(3);(4)﹣xy=3;(5);(6);(7)y=2x﹣2;(8).A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)10.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.6二.填空题11.若函数y=是反比例函数,则k0.(填“<”、“>”或“≠”)12.y=(k≠0)叫函数,x的取值范围是.13.给出的六个关系式:①x(y+1);②y=;③y=;④y=﹣;⑤y=;⑥y=x﹣1,其中y是x的反比例函数是.14.已知函数y=是y关于x的反比例函数,则m=.15.下表中,如果a与b成正比例,则“?”中应填的数是,如果a与b成反比例,“?”应填.a35b45?三.解答题16.下列哪些关系式中的y是x的反比例函数?y=4x,=3,y=﹣,y=6x+1,y=x2﹣1,y=,xy=123.17.给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成反比例.18.已知函数y=(m2+2m)(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.参考答案一.选择题1.解:A、因为:运货总吨数÷运货次数=每次运货吨数(一定),所以运货次数和运货总吨数成正比例,不合题意;B、因为:运货总吨数÷每次运货吨数=运货次数(一定),所以每次运货的吨数和运货总吨数成正比例,不合题意;C、因为:每次运货的吨数×运货的次数=运货总吨数(一定),所以每次运货的吨数和运货的次数成反比例,符合题意;故选:C.2.解:把x=2,y=3代入得k=6,所以该函数表达式是y=.故选:C.3.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.4.解:A、=商一定,故两个量成正比例函数,故此选项不合题意;B、,不成反比例函数,故此选项不合题意;C、圆锥的体积=圆锥的底面积×高,圆锥的体积一定,圆锥的底面积和高成反比例关系,故此选项合题意;D、=圆柱的底面积一定,圆柱的体积和高成正比例关系,故此选项不符合题意;故选:C.5.解:y=2x2m是反比例函数,则2m=﹣1,所以.故选:B.6.解:函数y=中,自变量x的取值范围是x≠0,故选:C.7.解:由题意得:m2﹣2=﹣1且m+1≠0;解得m=±1,又m≠﹣1;∴m=1.故选:A.8.解:∵y与x成反比例,x与成正比例,∴设y=,x=a•(k、a为常数,k≠0,a≠0),∴y==z,即y是z的正比例函数,故选:A.9.解:(1)y=3x,是正比例函数,故此选项错误;(2)y=﹣,是反比例函数,故此选项正确;(3)是正比例函数,故此选项错误;(4)﹣xy=3是反比例函数,故此选项正确;(5),y是x+1的反比例函数,故此选项错误;(6),y是x2的反比例函数,故此选项错误;(7)y=2x﹣2,y是x2的反比例函数,故此选项错误;(8),k≠0时,y是x的反比例函数,故此选项错误.故选:A.10.解:y1=﹣=﹣,把x=﹣+1=﹣代入y=﹣中得y2=﹣=2,把x =2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A.二.填空题11.解:函数y=是反比例函数,则k≠0,故答案为:≠.12.解:y=(k≠0)叫反比例函数,x的取值范围是x≠0.13.解:①x(y+1)不是函数,不符合题意;②y=是y关于x+2的反比例函数,不符合题意;③y=是y关于x2的反比例函数,不符合题意;④y=﹣=,是y关于x的反比例函数,符合题意;⑤y=是y关于x的正比例函数,不符合题意;⑥y=x﹣1=,是y关于x的反比例函数,符合题意;故答案为:④⑥.14.解:∵函数y=是y关于x的反比例函数,∴解得m=﹣2,故答案为:﹣2.15.解:如果a与b成正比例,则“?”中应填的数是5×=75,如果a与b成反比例,“?”应填45×3÷5=27.故答案为:75;27.三.解答题16.解:y=4x不是反比例函数,=3不是反比例函数,y=﹣是反比例函数,y=6x+1不是反比例函数,y=x2﹣1不是反比例函数,y=不是反比例函数,xy=123是反比例函数.17.解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.18.解:(1)由y=(m2+2m)是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;(2)由y=(m2+2m)是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.。

苏科版八年级下册数学第11章 反比例函数含答案(满分必备)

苏科版八年级下册数学第11章 反比例函数含答案(满分必备)

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、若反比例函数的图象经过点(-3,2),则这个函数的图象一定经过点( )A.(2,-4)B.(-2,-3)C.D.2、如图,已知△ABO的顶点A和AB边的中点C都在双曲线y=(x>0)的一个分支上,点B在x轴上,CD⊥OB于D,则△AOC的面积为()A.2B.3C.4D.3、如图,在y=(k>0)的图象上有三点P1,P2,P3,过三点分别作x轴垂线,垂足分别为A、B、C,连接OP,OP2,OP3,试比较1△OP1A,△OP2B,△OP3C的面积S1,S2,S3的大小,正确的是()A. S1>S2>S3B. S2>S3>S1C. S3>S2>S1D. S1=S2=S34、已知正比例函数y1=x,反比例函数,由y1, y2构造一个新函数y=x+,其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:①该函数的图象是中心对称图形;②当x<0时,该函数在x=﹣1时取得最大值﹣2;③y的值不可能为1;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是()A.①②④B.①②③C.②③D.①③5、若双曲线y= 与直线y=2x+1的一个交点的横坐标为﹣1,则k的值为()A.﹣1B.1C.﹣2D.26、在平面直角坐标系中,直线y=﹣x+2与反比例函数的图象有唯一公共点,若直线y=﹣x+b与反比例函数的图象有2个公共点,则b的取值范围是()A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣27、给出下列命题及函数y=x与y=x2和的图象:①如果>a>a2,那么0<a<1;②如果a2>a>,那么a>1或﹣1<a<0;③如果>a2>a,那么﹣1<a<0;④如果a2>>a,那么a<﹣1.则()A.正确的命题只有①B.正确的命题有①②④C.错误的命题有②③ D.错误的命题是③④8、如图,是坐标原点,菱形的顶点的坐标为,顶点在轴的负半轴上,函数的图象经过顶点,则的值为( )A.-12B.-27C.-32D.-369、函数y=(a≠0)与y=a(x-1)(a≠0)在同一坐标系中的大致图象是( )A. B. C.D.10、如图,反比例函数y=(x<0)与一次函数y=x+4的图象交于A、B 两点的横坐标分别为-3,-1.则关于x的不等式<x+4(x<0)的解集为()A.x<-3B.-3<x<-1C.-1<x<0D.x<-3或-1<x<11、下列四个点,在反比例函数y= 的图象上的是()A.(﹣6,﹣1)B.(2,4)C.(3,﹣2)D.(1,﹣6)12、已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1, y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.有1对或2对B.只有1对C.只有2对D.有2对或3对13、函数y=ax﹣a与y= (a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.14、下列函数不是反比例函数的是()A.y=B.y=C.y=x ﹣1D.y=15、下列选项中,阴影部分面积最小的是()A. B. C.D.二、填空题(共10题,共计30分)16、若关于t的不等式组,恰有三个整数解,则关于x的一次函数的图象与反比例函数的图象的公共点的个数为________.17、直线y= x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y= (x<0)的图象过点C,则m=________.18、如图,两个反比例函数y= 和y= 在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为________.19、如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y= (x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为________.20、若点在同一个反比例函数的图象上,则m的值为________.21、如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= (x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.22、如图,点是反比例函数图象上的一点,过点向轴作垂线,垂足为,连结,若阴影部分面积为,则这个反比例函数的关系式是________.23、如图,在函数y=(x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P 2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=________ .(用含n的代数式表示)24、如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.25、如图,点P(3a,a)是反比例函数(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、已知双曲线y=和直线y=ax+b相交于A(﹣1,4)和B(2,m)两点,试确定双曲线和直线的函数关系式.28、直线与反比例函数()的图象交于点A(1,2),求这两个函数的表达式.29、如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A(x1,﹣3)、B(x2, y2)两点,已知x1、x2(x1<x2)是方程x2﹣x﹣6=0的两个根.(1)求点B的坐标;(2)求一次函数y=ax+b的表达式.30、如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、B6、C7、B8、C9、A10、B11、A12、A13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。

新苏科版八年级数学下册《用反比例函数解决问题》题及答案.docx

新苏科版八年级数学下册《用反比例函数解决问题》题及答案.docx

(新课标)苏科版八年级下册11.3 用反比例函数解决问题一.选择题(共10小题)1.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=2.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A. B.C.D.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t=B.t=60Q C.t=12﹣D.t=12+10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的函数,t可以写成v的函数关系式是.14.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.15.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x 之间的函数关系式是.16.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围.17.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y (单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)18.若矩形的面积为48,它的两边长分别为x,y.则y关于x 的函数解析式为,其中自变量x的取值范围是.19.京沪铁路全程1463km,某次列车的平均速度v(单位km/h)随此次列车的全程运行时间t(t>0,单位:h)的变化而变化,其对应的函数解析式是.20.学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?参考答案与试题解析一.选择题(共10小题)1.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.2.(2015•临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.【点评】此题主要考查了由实际问题抽象出反比例函数解析式,关键是正确理解题意,找出题目中的等量关系.3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0)B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.【点评】此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y= B.y=C.y= D.y=【分析】利用三角形面积公式得出xy=10,进而得出答案.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=【分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【解答】解:由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.故选;A.【点评】本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.【分析】可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值.【解答】解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.故选:C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x【分析】根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,得出xy+4000=12000,即可求出解析式.【解答】解:∵购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,∴xy+4000=12000,∴y=(x取正整数).故选A.【点评】此题主要考查了根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,注意先根据等量关系得出方程,难度一般.8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A. B.C.D.【分析】根据电压=电流×电阻得到稳定电压的值,让I=即可.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选A.【点评】考查列反比例函数关系式,关键是根据题中所给的值确定常量电压的值.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t=B.t=60Q C.t=12﹣D.t=12+【分析】以12m3/h的速度向水箱进水,5h可以注满,求出水箱的容量,然后根据注满水箱所需要的时间t(h)=可得出关系式.【解答】解:由题意得:水箱的容量=12m3/h×5h=60m3.∴注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为t=.故选A.【点评】本题考查了根据实际问题列反比例函数关系式,属于应用题,难度一般,解答本题的关键是首先得出水箱的容量.10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.【分析】把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:观察图象,函数经过一定点(4,2),将此点坐标代入函数解析式I=(k≠0)即可求得k的值,2=,∴K=8,函数解析式I=.故选A.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解析式.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=.【分析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.【点评】本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为y=.【分析】根据等量关系“x个工人所需时间=工作总量÷x个工人工效”即可列出关系式.【解答】解:由题意得:人数x与完成任务所需的时间y之间的函数关系式为y=300÷15x=.故本题答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的反比例函数,t可以写成v的函数关系式是.【分析】时间=,把相关字母代入即可求得函数解析式,看符合哪类函数的特征即可.【解答】解:t=,符合反比例函数的一般形式.【点评】解决本题的关键是得到所求时间的等量关系,注意反比例函数的一般形式为y=(k≠0,且k为常数).14.(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s (cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.15.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x 之间的函数关系式是y=.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.【点评】考查了根据实际问题列反比例函数关系式的知识,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围y=(2≤x≤).【分析】利用“每天的工作量×天数=土石方总量”可以得到两个变量之间的函数关系.【解答】解:由题意得,y=,把y=90代入y=,得x=,把y=150代入y=,得x=2,所以自变量的取值范围为:2≤x≤,故答案为y=(2≤x≤).【点评】本题考查了根据实际问题列反比例函数关系式,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.17.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y (单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)【分析】根据某户家庭用购电卡购买了2000度电,此户家庭平均每天的用电量为x(单位:度),利用总用电量除以使用的天数得出y与x的函数关系式.【解答】解:∵某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),使用的天数为y(单位:天),∴y与x的函数关系式为:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,利用用电量除以使用的天数得出y与x的函数关系式是解题关键.18.若矩形的面积为48,它的两边长分别为x,y.则y关于x 的函数解析式为,其中自变量x的取值范围是x>0 .【分析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.【解答】解:由题意得:y关于x的函数解析式是y=(x>0).故答案为:y=,x>0.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.19.京沪铁路全程1463km,某次列车的平均速度v(单位km/h)随此次列车的全程运行时间t(t>0,单位:h)的变化而变化,其对应的函数解析式是(t>0).【分析】根据平均速度=总路程÷总时间可列出关系式,即可求解.【解答】解:由题意得平均速度v(单位km/h)与全程运行时间t的关系为:v=(t >0).故本题答案为:v=(t>0).【点评】根据题意,找到所求量的等量关系是解决问题的关键.除法一般写成分式的形式,除号可看成分式线.20.学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为y=.【分析】根据矩形的面积=长×宽,结合题意即可得出另一边的长y(米)与x的函数关系式.【解答】解:由题意得,xy=24,故另一边的长y(米)与x的函数关系式为:.故答案为:y=.【点评】本题考查了根据实际问题列反比例函数关系式的知识,属于基础题,熟练掌握矩形的面积公式是关键.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)【分析】(1)设出反比例函数解析式,把A坐标代入可得函数解析式;(2)把v=1代入(1)得到的函数解析式,可得p;(3)把P=140代入得到V即可.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.【分析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.【解答】解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.【分析】首先根据已知求出V的值,进而代入,即可得出h与s的函数关系式.【解答】解:∵,当h为10cm时,底面积为30,∴V=×10×30=100(cm3),∴100=sh,∴h关于s的函数解析式为:.【点评】此题主要考查了根据实际问题列反比例函数解析式,根据已知得出V的值是解题关键.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).【分析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.【解答】解:本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出(s为常数,s≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出.【点评】本题与日常生活联系在一起,要解答本题,关键是要理解反比例函数的性质.25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.【分析】根据等量关系“工作时间=工作总量÷工作效率”即可列出关系式即可,注意x>0.【解答】解:由题意,得:y=(x>0).故本题答案为:y=(x>0).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.【分析】根据等量关系“长方体的体积=长×宽×高”,再把已知中的数据代入得出y与x之间的函数关系式即可.【解答】解:因为长方体的长是ym,宽是5m,高为xm,由题意,知100=5xy,即y=.由于长方体的高为非负数,故自变量的取值范围是0<x<4.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.【分析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.【解答】解:∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【点评】考查列反比例函数关系式,得到时间的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般式为(k ≠0).28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.【分析】平行四边形一边上的高=面积÷这边长,把相关数值代入即可求得函数解析式,可符合哪类函数的一般形式即可.【解答】解:∵xy=60,∴y=,∴y是x的反比例函数.【点评】考查列反比例函数解析式,得到平行四边形一边上的高的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般形式为y=(k≠0).29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?【分析】(1)先根据梯形的面积公式得到梯形的面积,进而根据梯形的面积表示出梯形的高即可;(2)把y=4代入(1)得到的式子求出上底,再乘以3即为下底长.【解答】解:(1)∵x=5cm,y=6cm,上底长是下底长的,∴下底长为15cm,∴梯形的面积=×(5+15)×6=60。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测卷及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元检测卷及答案解析.docx

(新课标)苏科版八年级下册第11章 反比例函数 检测题 (满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.下列函数是反比例函数的是( )A.y x =B.1y kx -=C.8y x=- D.28y x =2.(福建漳州)若反比例函数8y x=的图象经过点(2,)m -,则m 的值是( )A.14B.14- C.-4 D.43.在同一坐标系中,函数k y x=和3y kx =+的图象大致是( )4.当k >0,x <0时,反比例函数k y x=的图象在( )A.第一象限B.第二象限C.第三象限D.第四象限5.若函数k y x=的图象经过点(3,-7),则它一定还经过点( )A.(3,7)B.(-3,-7)C.(-3,7)D.(2,-7)6.(江苏苏州)如图,菱形OABC 的顶点C 的坐标为(3,4).顶点A 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过顶点B ,则k 的值为( )A.12B.20C.24D.32第6题图第7题图7.如图,A 为反比例函数k y x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A.6B.3C.23 D.不能确定8.已知点1(2,)A y -、2(1,)B y -、3(3,)C y 都在反比例函数4y x=的图象上,则1y 、2y 、3y 的大小关系是( )A.123y y y <<B.321y y y <<C.312y y y <<D.213y y y << 9.在反比例函数1k y x-=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的值可以 是( )A.-1B.0C.1D.210.(兰州)已知1(1,)A y -,2(2,)B y 两点在双曲线32m y x+=上,且12y y >,则m 的取值范围是( )A.0m <B.0m >C.32m >-D.32m <-二、填空题(每小题3分,共24分)11.已知y 与21x +成反比例,且当1x = 时,2y =,那么当0x =时,y =________.12.(海南)点1(2,)y ,2(3,)y 在函数2y x=-的图象上,则1y2y (填“>”或“<”或“=”).13.已知反比例函数32m y x-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数3k y x-=的图象位于第一、三象限内,正比例函数(29)y k x =-的图象经过第二、四象限,则k 的整数值是________.15.(江苏扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V= .16.点(2,1)A 在反比例函数ky x =的图象上,当14x <<时,y 的取值范围是 .17.已知反比例函数4y x=,当函数值2y -≥时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,则12k k 0(填“>”“=”或“<”).yxO第19题图三、解答题(共46分)19.(7分)反比例函数21m y x-=的图象如图所示,1(1,)A b -,2(2,)B b -是该图象上的两点.(1)比较1b 与2b 的大小;(2)求m 的取值范围. 20.(7分)(四川攀枝花)如图,直线11(0)y k x b k =+≠与双曲线22(0)y k x k =≠相交于(1,2)A 、(,1)B m -两点.(1)求直线和双曲线的解析式;(2)若111(,)A x y 、222(,)A x y 、333(,)A x y 为双曲线上的三点,且1230x x x <<<,请直接写出1y 、2y 、3y 的大小关系式;(3)观察图象,请直接写出不等式12k x b k x +<的解集.21.(8分)已知一次函数(0)y kx b k =+≠和反比例函数2k y x=的图象交于点(1,1)A .(1)求两个函数的解析式;(2)若点B 是x 轴上一点,且AOB △是直角三角形,求点B 的坐标.22.(8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象 的一支.(1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围 是什么?(2)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过点A 作x 轴的垂线,垂足为B ,当AOB △的面积为4时,求点A 的坐标及反比例函数的解析式.第22题图xyO23.(8分)如图,在平面直角坐标系中,O 为坐标原点.已知反比例函数(0)k y k x=>的图象经过点(2,)A m ,过点A 作AB x ⊥轴于点B ,且AOB △的面积为12.(1)求k 和m 的值;(2)点(,)C x y 在反比例函数ky x=的图象上,求当13x ≤≤时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数k y x=的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.BO A第23题图24.(8分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把31 200 m的生活垃圾运走.(1)假如每天能运3 m x,所需时间为y天,写出y与x之间的函数关系式;(2)若每辆拖拉机一天能运312 m,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?参考答案1.C 解析:A 项,y x =是正比例函数,故本选项错误; B 项,1y kx -=当0k =时,它不是反比例函数,故本选项错误; C 项,符合反比例函数的定义,故本选项正确; D 项,28y x =的未知数的次数是-2,故本选项错误.故选C .2.C 解析:将点(2,)m -代入反比例函数8y x=,得842m ==--,故选C .3.A 解析:由于不知道k 的符号,此题可以分类讨论.当0k >时,反比例函数k y x=的图象在第一、三象限,一次函数3y kx =+的图象经过第一、二、三象限,可知A 选项符合.同理可讨论当0k <时的情况.4.C 解析:当0k >时,反比例函数k y x=的图象在第一、三象限,当0x <时,函数图象在第三象限,所以选C. 5.C 解析:因为函数k y x=的图象经过点(3,-7),所以21k =-.将各选项分别代入检验可知只有选项C 符合. 6.D 解析:过点C 作CD x ⊥轴,垂足为D , ∵ 点C 的坐标为(3,4), ∴3OD =,4CD =,∴2222345OC OD CD =+=+=,∴5OC BC ==,∴ 点B 坐标为(8,4),∵ 反比例函数(0)k y x x=>的图象经过顶点B ,∴ 32k =,故选D . 第6题图7.A 解析:由题意可得132AOB S k ==△.因为反比例函数位于第一象限,所以k >0.所以k =6.8.D 解析:因为反比例函数4y x=的图象在第一、三象限,且在每个象限内y 随x 的增大而减小,所以12y y >.又因为当0x <时,0y <,当0x >时,0y >,所以30y >,210y y <<,故选D.9.D 解析:由y 随x 的增大而增大,知10k -<,即1k >,故选D. 10.D 解析:将1(1,)A y -,2(2,)B y 两点分别代入双曲线32m y x+=,得123y m =--,2y =322m+.∵ 12y y >,∴ 32232m m +-->,解得32m <-,故选D .11.6 解析:因为y 与21x +成反比例,所以设21ky x =+.将1x =,2y =代入,得6k =,所以621y x =+.再将0x =代入,得6y =.12.< 解析:∵ 函数2y x=-中的-2<0,∴ 函数2y x=-的图象经过第二、四象限,且在每一象限内,y 随x 的增大而增大,∴ 点1(2,)y ,2(3,)y 同属于第四象限.∵ 2<3,∴12y y <.13.>23<23解析:∵ 反比例函数32m y x-=的图象的两个分支在第一、三象限内, ∴320m ->,即23m >. ∵ 其图象在每个象限内y 随x 的增大而增大,∴320m -<,即23m <. 14.4 解析:由反比例函数3k y x-=的图象位于第一、三象限内,得30k ->,即3k >.又正比例函数(29)y k x =-的图象经过第二、四象限,所以290k -<,所以92k <,所以k 的整数值是4.15.400 解析:∵ 在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,∴ 设k p V=.∵ 当V =200时,p =50,∴2005010 000k Vp ==⨯=,∴ 10 000p V=.当p =25时,得10 00040025V ==. 16.122y << 解析:将(2,1)A 代入ky x =,得2k =,所以y 随x 的增大而减小.当1x =时,2y =;当4x =时,12y =,所以y 的取值范围是122y <<.17.x ≤-2或x >0 解析:如图所示:由函数图象可知,当y ≥-2时,x ≤-2或x >0.18.> 解析:∵ 正比例函数1y k x =的图象与反比例函数2k y x=的图象有公共点,∴ 1k 、2k 同号,∴12k k >0. 第17题答图 19.解:(1)由图象知,y 随x 的增大而减小.又12->-,∴12b b <.(2)由210m ->,得12m >.20.解:(1)将(1,2)A 代入双曲线解析式,得22k =,即双曲线解析式为2y x=.将(,1)B m -代入双曲线解析式,得21m-=,即2m =-,(2,1)B --.将A 与B 的坐标代入直线解析式,得112,2 1.k b k b +⎧⎨-+-⎩==解得11k =,1b =,则直线解析式为1y x =+. (2)∵ 1230x x x <<<,且反比例函数在第一象限为减函数,∴2A 与3A 位于第一象限,即230y y >>,1A 位于第三象限,即10y <,则231y y y >>.(3)由(1,2)A 、(2,1)B --,利用函数图象,得不等式21k k x b x+<的解集为2x <-或01x <<.21.解:(1)∵ 点(1,1)A 在反比例函数2ky x=的图象上,∴2k =.∴ 反比例函数的解析式为1y x=. 设一次函数的解析式为2y x b =+.∵ 点(1,1)A 在一次函数2y x b =+的图象上,∴ 1b =-.∴ 一次函数的解析式为21y x =-. (2)∵ 点(1,1)A ,∴o 45AOB ∠=.∵ AOB △是直角三角形 ,∴ 点B 只能在x 轴正半轴上. ①当o 190OB A ∠=,即11B A OB ⊥时, ∵o 145AOB ∠=,∴ 11B A OB =.∴ 1(1,0)B .②当o 290OAB ∠=时,o 2245AOB AB O ∠=∠=, ∴ 1B 是2OB 的中点,∴2(2,0)B .综上可知,点B 的坐标为(1,0)或(2,0). 22.解:(1)这个反比例函数图象的另一支在第三象限. ∵ 这个反比例函数的图象分布在第一、第三象限, ∴50m ->,解得5m >.(2)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为000(,2)(0)x x x >,则点B 的坐标为0(,0)x . ∵4OAB S =△,∴001242x x ⨯=,解得02x =(负值舍去). ∴ 点A 的坐标为(2,4).又∵ 点A 在反比例函数5m y x-=的图象上,xyO BAy=2x 第22题答图lQ PBA xy∴542m -=,即58m -=. ∴ 反比例函数的解析式为8y x=. 23.解:(1)由题意知2OB =.所以111•2222AOB S OB AB m ==⨯⨯=△,所以12m =.所以点A 的坐标为12,2⎛⎫ ⎪⎝⎭.把12,2A ⎛⎫ ⎪⎝⎭代入k y x =,得122k=,解得1k =. (2)因为当1x =时,1y =;当3x =时,13y =,大又反比例函数1y x=在0x >时,y 随x 的增而减小,所以当13x ≤≤时,y 的取值范围为113y ≤≤.(3)如图,由图可得线段PQ 长度的最小值为22. 第23题答图24.解:(1)1200y x=;(2)12560x =⨯=,将其代入 1 200y x=,得 1 2002060y ==(天)答:20天运完.(3)运了8天后剩余的垃圾是31 200860720(m )-⨯=. 剩下的任务要在不超过6天的时间完成则每天至少运37206120(m )÷=,则需要的拖拉机数是120÷12=10(辆).故至少需要增加10-5=5(辆)这样的拖拉机才能按时完成任务.。

苏科版八年级下册数学第11章 反比例函数含答案(2023年最新)

苏科版八年级下册数学第11章 反比例函数含答案(2023年最新)

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A. B. C. D.2、已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限3、如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足,当点A运动时,点C 始终在函数的图象上运动,若,则的值为()A. B. C. D.4、某体育场计划修建一个容积一定的长方体游泳池,设容积为a(m3),泳池的底面积S(m2)与其深度x(m)之间的函数关系式为S=(x>0),该函数的图象大致是()A. B. C.D.5、已知反比例函数的图象经过点P(1,﹣2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限6、设直线与双曲线相交于P,Q两点,0为坐标原点,则∠POQ是( ).A.锐角B.直角C.钝角D.锐角或钝角7、如图,在平面直角坐标系中,一个含有45°角的三角板的其中一个锐角顶点置于点A(-3,-3)处,将其绕点A旋转,这个45°角的两边所在的直线分别交x轴,y轴的正半轴于点B,C,连结BC,函数y=(x>0)的图象经过BC 的中点D,则()A.k=B.k=C. ≤k≤9D. ≤k≤8、如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图像经过点B,与OA交于点P,若OA2-AB2=18,则点P的横坐标为()A.9B.6C.3D.39、如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为12,则k的值为()A.6B.4C.3D.210、某学习小组,在探究1+的性质时,得到了如下数据:x 1 10 100 1000 10000 …3 1.2 1.02 1.002 1.0002 …1+根据表格中的数据,做出了四个推测:①1+(x>0)的值随着x的增大而减小;②1+(x>0)的值有可能等于1;③1+(x>0)的值随着x的增大越来越接近于1;④1+(x>0)的值最大值是3.则推测正确的有()A.1个B.2个C.3个D.4个11、如图,在平面直角坐标系中,菱形的顶点在轴上,对角线平行于轴,反比例函数的图象经过点,与边交于点,若,菱形的面积为6,则的值为()A.2B.4C.6D.812、在函数y= (k>0)的图象上有三点A1(x1, y1)、A2(x2, y2)、A3(x3, y3),若x1>x2>0>x3,则下列各式中,正确的是()A. B. C.D.13、在同一直线坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>014、如图,在平面直角坐标系中,函数y= 的图象与函数y= x的图象相交于A,B两点,点C是函数y= 的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)15、如图,是坐标原点,菱形的顶点的坐标为,顶点在轴的负半轴上,函数的图象经过顶点,则的值为( )A.-12B.-27C.-32D.-36二、填空题(共10题,共计30分)16、如图,正方形ABOC的边长为2,反比例函数y=过点A,则k的值是________17、已知反比例函数y= 的图象经过点A(﹣2,3),则当x=﹣3时,y=________.18、如图,在平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于A、B两点,以AB为边在第二象限作正方形ABCD,点D在双曲线上,将正方形ABCD沿x轴正方向平移a个单位长度后,点C恰好也落在此双曲线上,则a的值是________.19、如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,= ,∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是________.20、如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y= (x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为________.21、正比例函数y1=k1x和反比例函数y2= 交于A、B两点.若A点的坐标为(2,1),则B点的坐标为________.22、已知反比例函数的图象一支位于第一象限,图象的另一分支位于________象限,常数取值范围________,在这个函数上两点,,则________ (填“ ”“ ”或“ ”)23、反比例函数(k≠0)的图象经过点(2,5),若点(1,n)在反比例函数的图象上,则n的值是________.24、如图所示,在某一电路中,保持电压不变,电阻R(欧)与电流I(安)之间的函数关系式是________,则这一电路的电压为________伏.25、如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数y=的图象经过P,D两点,则AB的长是________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、如图,一次函数y=x+1的图象与反比例函数y=(k为常数,且k≠0)的图象都经过点A(m,2).(1)求点A的坐标及反比例函数的表达式;(2)设一次函数y=x+1的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.28、两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是.29、已知y与x﹣1成反比例,且当x=2时,y=3,求当y=6时x的值.30、(1,)是反比例函数图象上的一点,直线AC经过坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的表达式.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、C5、C6、D8、C9、B10、B11、D12、D13、C14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元练习卷及答案解析.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元练习卷及答案解析.docx

(新课标)苏科版八年级下册反比例函数练习卷一、选择题1.下列函数中,y 是x 的一次函数的是( ) ①6y x =-;②2y x=;③8x y =;④7y x =-.A .①②③B .①③④C .①②③④D .②③④2.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0:③b >0;④x <2时,kx+b <x+a 中,正确的个数是( )A .1 B.2 C.3 D.43.如图,一次函数y=ax+b 与x 轴,y 轴交于A ,B 两点,与反比例函数y=相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE ,EF .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC=BD .其中正确的结论个数是( ) A .1 B .2 C .3 D .44.如图,直线l 1:x=1,l 2:x=2,l 3:x=3,l 4:x=4,…,与函数y=(x >0)的图象分别交于点A 1、A 2、A 3、A 4、…;与函数y=的图象分别交于点B 1、B 2、B 3、B 4、….如果四边形A 1A 2B 2B 1的面积记为S 1,四边形A 2A 3B 3B 2的面积记为S 2,四边形A 3A 4B 4B 3的面积记为S 3,…,以此类推.则S 10的值是( ) A . B .C .D .5.下图中表示一次函数n mx y +=与正比例函数mnx y =(m ,n 是常数,且mn ≠0)图像的是( ).6.如图6,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中(11)(21)(22)(12)A B C D ,,,,,,,,用信号枪沿直线2y x b =-+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的b的取值范围为.A . 3<b<6B .2<b<6C .36b ≤≤D .2<b<5 二、填空题7.如图,已知函数y =21-x+b 和y =21x 的图象交于点P ()2,4--,, 则根据图象可得,关于x y b x y 2121=+-=的二元一次方程组的解是____________.8.如图,菱形OABC 的顶点O 是坐标原点,顶点AxyO01 221 图6在x 轴的正半轴上,顶点B 、C 均在第一象限,OA=2,∠AOC=60°.点D 在边AB 上,将四边形OABC 沿直线0D 翻折,使点B 和点C 分别落在这个坐标平面的点B ′和C ′处,且∠C ′DB ′=60°.若某反比例函数的图象经过点B ′,则这个反比例函数的解析式为 .9.如图,在平面直角坐标系中,直线L 经过原点,且与y 轴正半轴所夹的锐角为600,过点A (0,1)作y 轴的垂线交直线L 于点B,过点B 作直线L 的垂线交y 轴于点A 1,以A 1B 、BA 为邻边作□ABA 1C 1;过点A 1作y 轴的垂线交直线L 于点B 1,过点B 1作直线L 的垂线交y 轴于点A 2,以A 2B 1、B 1A 1为邻边做□A 1B 1A 2C 2,…;按此作法继续下去,则点Cn 的坐标是_______.10.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线y=33x 上,则A 2015的坐标是 .11.两个反比例函数xy 3=,xy 6=在第一象限内的图像如图所示,点1P ,2P ,3P ,…,2013P 在函数xy 6=的图像上,它们的横坐标分别是1x ,2x ,3x ,…,2013x ,纵坐标分别是1,3,5,…,共2013个连续奇数,过点1P ,2P ,3P ,…,2013P 分别作y 轴的平行线,与函数xy 3=的图像交点依次是1Q (1x ,1y ),2Q (2x ,2y ),3Q (3x ,3y ),…,2013Q (2013x ,2013y ),则 2013y . 12.如图,在反比例函数位于第一象限内的图象上取一点P 1,连结OP 1,作P 1A 1^x 轴,垂足为A 1,在OA 1的延长线上截取A 1 B 1= OA 1,过B 1作OP 1的平行线,交反比例函数的图象于P 2,过P 2作P 2A 2^x 轴,垂足为A 2,在OA 2的延长线上截取A 2 B 2= B 1A 2,连结P 1 B 1,P 2 B 2,则的值是 . 三、解答题13.如图,在平面直角坐标系中,O 是坐标原点,点A 坐标为(2,0),点B 坐标为(0,b )(b >0),点P 是直线AB 上位于第二象限内的一个动点,过点P 作PC 垂直于x 轴于点C ,记点P 关于y 轴的对称点为Q ,设点P 的横坐标为a .(1)当b=3时:①求直线AB 相应的函数表达式;②当S △QOA =4时,求点P 的坐标;(2)是否同时存在a 、b ,使得△QAC 是等腰直角三角形?若存在,求出所有满足条件的a 、b 的值;若不存在,请说明理由.14.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数k=yx(0k>)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k= ;(2)连接CA,DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.15.如图,直线y=x+2与x轴交于点A,与y轴交于点B,动点P从点A开始沿折线AB﹣BO以1cm/s的速度运动到点O.设点P运动的时间为t(s),△PAO面积为S(cm2).(坐标轴的单位长度为cm)(1)当点P在线段AB上运动到与点O距离最小时,求S的值;(2)在整个运动过程中,求S与t之间的函数表达式;(3)当点P运动几秒后,△PAO面积为2cm2?16.图1,梯形ABCD中,AD∥BC,AB=AD=DC=5,BC=11.一个动点P从点B出发,以每秒1个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,以PQ为边向右作正方形PQMN,点N在射线BC上,当Q点到达D 点时,运动结束.设点P的运动时间为t秒(t>0).(1)当正方形PQMN的边MN恰好经过点D时,求运动时间t的值;(2)在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,当点Q在线段AD上运动时,线段PQ与对角线BD交于点E,将△DEQ沿BD翻折,得到△DEF,连接PF.是否存在这样的t,使△PEF是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.参考答案1.B . 2.B . 3.C4.D 5.C 6.C 7.24-=-=y x 8.y=﹣.9.(-4n-13,4n ). 10.(20153,2017).11.5.2012 12.13.(1)①y=-1.5x+3 ②P (32- ,4)(2)⎩⎨⎧=-=22b a 或⎪⎩⎪⎨⎧=-=132b a14.(1)4;(2)DE ∥AC ,理由见试题解析;(3)D (0.96,5). 15.(1)32;(2) S=043()423(44223)t t t t ≤≤+≤+⎧⎪⎨⎪⎩﹣<;(3) 433秒或2+23秒16.(1)t=4;(2)S=22210()9()1128203243447)?1222(12734)8(t t t t t t t t t ≤+≤≤-+≤⎧⎪⎪⎪⎪⎨-+-⎪⎪⎪⎪⎩<<<<;(3)存在,当t=4、4811或4011时,△PEF 是等腰三角形.。

苏科版八年级下数学用反比例函数解决问题含答案

苏科版八年级下数学用反比例函数解决问题含答案

用反比例函数解决问题 (1)1.已知长方形的面积为20 cm 2,设该长方形一边长为ycm ,另一边长为x cm ,则y 与x 之间的函数图像大致是 ( )2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气球体积V 的反比例函数,其图像如图所示,当气球内的气压大于120 kPa 时,气球将爆炸,为了安全,气球韵体积应该 ( )A .不大于54m 3 B .小于54m 3 C .不小于54m 3 D .小于54m 3 3.圆柱的侧面积为8,高h 与底面半径r 间的函数关系式为_______.4.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为_______.5.某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m 3的生活垃圾运走.(1)假如每天能运xm 3,所需时间为y 天,写出y 与x 之间的函数关系式;(2)若每辆拖拉机一天能运12 m 3,则5辆这样的拖拉机要用多少天才能运完?(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?6.在公式I =U R中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图像大致表示为( )7.某厂现有500吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( )A .()5000y x x =>B .()5000y x x =≥C .y =500x(x ≥0)D .y =500x(x>0)8.有一面积为10的梯形,其上底长是下底长的13,若下底长为x ,高为y ,则y 与x 的函数关系是_______.9.你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(cm)是面条粗细(横截面积)x(cm 2)的反比例函数,假设其图像如图所示,则y 与x 的函数关系式为_______.10.(2013.丽水)如图,科技小组准备用材料围建一个面积为60 m 2的矩形科技园ABCD ,其中一边AB 靠墙,墙长为12 m .设AD 的长为xm ,DC 的长为ym .(1)求y 与x 之间的函数关系式;(2)若围成的矩形科技园ABCD 的三边材料总长不超过26 m ,材料AD 和DC 的长都是整米数,求出满足条件的所有围建方案.11.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?用反比例函数解决问题 (2)1.(2013.泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V ≠0),则S 关于h 的函数图像大致是 ( )2.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I 与电阻R 之间函数关系的图像,则用电阻R表示电流I 的函数解析式为 ( )A .2I R =B .3I R= C .6I R = D .6I R=- 3.(2013.扬州)在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例,当V =200时,p =50,则当p =25时,V =_______.4.(2013.益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x (小时)变化的匾数图像,其中BC 段是双曲线y =k x的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k 的值;(3)当x =16时,大棚内的温度约为多少度?5.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是P =I 2R ,下面说法正确的是 ( )A .P 为定值,I 与R 成反比例B .P 为定值,I 2与R 成反比例C .P 为定值,I 与R 成正比例D .P 为定值,I 2与R 成正比例6.(2013.台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m 3)与体积V(单位:m 3)满足函数关系式p=kV(k为常数,k≠0),其图像如图所示,则k的值为( )A.9 B.-9 C.4 D.-47.如图,一块长方体大理石板的A、B、C三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m帕,则把大理石板B面向下放在地上,地面所受压强是_______m帕.8.已知,在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图像如图所示,则当力达到20牛时,此物体在力的方向上移动的距离是_______米.9.(2013.玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8 min时,材料温度降为600℃,煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x( min)成反比例关系(如图),已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?10.甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.参考答案1.C2.C 3.400 4.(1) 10小时(2)216 (3)13.5℃5.B6.A 7.38.369.(1)y=128x+32(0≤x≤6) ;(2)4分钟10.(1)310元;(2)p=200x,p随x的增大而减小;(3)两家商场花钱一样多参考答案1.B2.C3.h=4r4.y=100x5.(1)y=1200x天(2)20天运完;(3)增加5辆6.D7.A8.y=15 x9.y=128 x10.(1) y=60x(2)满足条件的围建方案:AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m11.(1)y=1200x表中填:300 50 (2)20天(3)60元/千克。

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试题及答案解析一.docx

2020—2021年最新苏科版八年级数学下册《反比例函数》单元测试题及答案解析一.docx

(新课标)苏科版八年级下册第11章反比例函数 单元测试题 (时间:90分钟 满分:120分)(班级: 姓名: 得分: ) 一、选择题(第小题3分,共30分) 1. 观察下列函数:2015y x =,2016x y =-,20181y x =-,2014y x-=.其中反比例函数有( )A. 1个B. 2个C. 3个D. 4个 2. 反比例函数2018y x=,2016y x=-,12019y x=的共同特点是( ) A. 图像位于相同的象限内 B. 自变量的取值范围是全体实数C. 在第一象限内y 随x 的增大而减小D. 图像都不与坐标轴相交 3. 在反比例函数2015ky x-=图像的每一支曲线上,y 都随x 的增大而增大,则k 的值可以是( ) A .2016B.0C.2015D.2016-4. 已知函数210(2)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )A.3B.3-C.3±D.13- 5.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图像交于A (-1,2),B (1,-2)两点,若y 1 <y 2,则x 的取值范围是( )A.x <-1或x >1B. x <-1或0<x <1C. -1<x <0或 0<x <1D. -1<x <0或x >16.如果反比例函数=k y x的图像经过点A(-1,-2),则当x >1时,函数值y的取值范围是( )A.y >1B. 0< y <2C. y >2D.0<y <17. 反比例函数2016y x =图像上的两点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 8.当a ≠0时,函数y=ax+1与函数y=xa在同一坐标系中的图像可能是( )9.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数xk 1y =(x >0)和xk 2y =(x >0)的图像于点P 和Q ,连接OP ,OQ,则下列结论正确的是( )A.∠POQ 不可能等于900B.21K K QM PM=C.这两个函数的图像一定关于x 轴对称D. △POQ 的面积是)(|k ||k |2121+第9题图10.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A,B 两点,若反比例函数k y x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤8 B. 2≤k ≤9 C. 2≤k ≤5D. 5≤k ≤8二、填空题(第小题4分,共32分) 11.已知函数y=-12016x,当x <0时,y__________0,此时,其图像的相应部分在第__________象限.12. 若正比例函数y=kx 在每一个象限内y 随x 的增大而减小,那么反比例函数k y x=-在每一个象限内y 随x 的增大而_________.13. 在同一坐标系内,正比例函数20182015y x =-与反比例函数2016y x=-图像的交点在第_____象限 .14. 若A (x 1,y 1),B(x 2,y 2),C (x 3,y 3)都是反比例函数y=-x1的图像上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3由小到大的顺序是__________. 15. 点A(2,1)在反比例函数y k x=的图像上,当1﹤x ﹤4时,y 的取值范围是 .16. 设函数2y x=与1y x =-的图像的交点坐标为() , a b ,则11ab-的值为________ 17. 如图,点A 在双曲线1y x=上,点B 在双曲线 3y x=上,且AB ∥x 轴,点C 和点D 在x 轴上,若四边形ABCD 为矩形,则矩形ABCD的面积为 .18.如图,直线y=k 1x+b 与双曲线y=2k x交于A,B 两点,其横坐标分别为1和5,则不等式k 1x <2k x-b 的解集是 .三、解答题(共58分)19.(10分)已知y=y 1-y 2,y 1与x 成反比例,y 2与x-2成正比例,并且当x=3时,y=5;当x=1时,y=-1. (1)y 与x 的函数表达式; (2)当1x =-时,求y 的值.20.(10分)已知一次函数y =3x+m 与反比例函数y =xm 3-的图像有两个交点.(1)当m 为何值时,有一个交点的纵坐标为6? (2)在(1)的条件下,求两个交点的坐标.21.(12分)如图,直线y =k 1x +b 与双曲线y =2k x相交于A (1,2),B (m ,-1)两点.(1)求直线和双曲线的表达式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系; (3)观察图像,请直接写出使不等式k 1x +b >2k x成立的x 的取值范围.xyCBAO22.(12分)某气球内充满了一定质量的气球,当温度不变时,气球内气球的压强p(千帕)是气球的体积V(米3)的反比例函数,其图像如图所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8米3时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少?23.(14分)已知一次函数m x y +=1的图像与反比例函数xy 62=的图像交于A ,B 两点,当1>x 时,21y y >;当10<<x 时,21y y <.⑴求一次函数的表达式;⑵已知一次函数在第一象限上有一点C 到y 轴的距离为3,求△ABC 的面积.参考答案一、1.B 2. D 3. A 4. B 5. D 6. B 7. D 8. C 9. D 10. B二、11.>二12. .减小13. 二、四14. .y2<y3<y1 15.1 2y<<216. 12-17. 2 18.0<x<1或x>5三、19.解:(1)设()()112212,20ky y k x k kx==-≠,则y=xk1-k2(x-2).由题意,得⎪⎩⎪⎨⎧-=+=-.1,532121kkkk解得⎩⎨⎧-==.4,321kk所以y与x的函数表达式为y=x3+4(x-2). (2)当1x=-时,()()3342412151y xx=+-=+--=--.20.解:(1)把y=6分别代入y=3x+m和y=xm3-,得3x+m=6,xm3-=6. 解得m=5.(2)由(1)得一次函数为y=3x+5,反比例函数为y=x2. 解352y xyx=+⎧⎪⎨=⎪⎩得∴两个函数图像的交点为(-2,-1)和(31,6).21.解:(1)∵双曲线y=2kx经过点A(1,2),∴k2=2.∴双曲线的表达式为y=2x.∵点B(m,-1)在双曲线y=2x上,∴m=-2,则B(-2,-1).由点A(1,2),B(-2,-1)在直线y=k1x+b上,得112,2 1.k bk b+=⎧⎨-+=-⎩解得11,1.kb=⎧⎨=⎩∴直线的表达式为y=x+1.(2)y2<y1<y3.(3)x>1或-2<x<0.22. (1)96P v=(2)当 4.8v =米3时,961204.8P ==20千帕(3)∵96144P v=≤,∴23v ≥.为了安全起见,气球的体积应不小于23米3.23.解:(1)根据题意知,点A 的坐标为(1,6),代人y 1=x+m ,得m=5.∴ 一次函数的表达式为y 1=x+5. (2)如图,过点B 作直线BD 平行于x 轴,交AC的延长线于D.∵点C 到y 轴的距离为3,∴C 点的横坐标为3. 又C 在双曲线上,∴y=623=,即C (3,2).解56y x y x =+⎧⎪⎨=⎪⎩得12126116x x y y =-=⎧⎧⎨⎨=-=⎩⎩,∴B (-6,-1). 设AC 的表达式为y=k 1x+b 1,把点A (1,6),点C (3,2)代入,得⎩⎨⎧=+=+.23,61111b k b k 解得k 1=-2,b 1=8.∴直线AC 的表达式为y=-2x+8. 当y=-1时-1=-2x+8, x=4.5,即点D (4.5,-1) ∴ABC ABD BCD S S S =-△△△=1211217-32222⨯⨯⨯⨯=21.。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;②当0<x<3时,;③如图,当x=3时,EF= ;④当x>0时,随x的增大而增大,随x的增大而减小.其中符合题意结论的个数是()A.1B.2C.3D.42、若正比例函数y=2kx与反比例函数y=(k≠0)的图象交于点A(m,1),则k的值是()A.- 或B.- 或C.D.3、若,则在同一直角坐标系中,直线y=x-a与双曲线y=的交点个数为( )A.0B.1C.2D.34、关于反比例函数,下列说法正确的是()A.点在它的图象上B.它的图象经过原点C.当时,y 随x的增大而增大D.它的图象位于第一、三象限5、已知反比例函数y= 的图象如图所示,则实数m的取值范围是()A.m>1B.m>0C.m<1D.m<06、已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是( )A.x<-1或0<x<3B.-1<x<0或x>3C.-1<x<0D.x >37、甲、乙、丙三人直立在相同大小的平板上,平板对水平地面的压强y(帕)与平板面积x(m)的关系分别如图中的y= ,y= ,y= ,则当平板面积增加量相同时,甲、乙、丙三人所站的平板对水平地面的压强变化的关系是()A.甲的压强增加量>乙压强增加量>乙压强增加量B.甲的压强减少量>乙压强减少量>乙压强减少量C.乙的压强减少量>甲压强减少量>丙的压强减少量D.丙的压强减少量>乙压强减少量>甲压强减少量8、已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣9、若点A(-3,y1),B(-2,y2),C(1,y3)都在反比例函数y= 的图象上,则y 1 , y2, y3的大小关系是( )A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y110、反比例函数y= 的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y 2, y3, y4, y5,…,其中最小值和最大值分别为()A.y1, y2B.y43, y44C.y44, y45D.y2014, y201511、已知反比例函数的图象上有两点A(,),B(,),且,则的值是()A.正数B.负数C.非正数D.不能确定12、已知点,,都在反比例函数的图像上.下列结论中正确的是()A. B. C. D.13、下列函数中,y是x的反比例函数的是()A.y=B.y=C.y= ﹣1D.y=3x ﹣114、关于反比例函数,下列说法不正确的是()A.点(-2,-1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大15、下列关于反比例函数的说法不正确的是( )A.其图象经过点(-2,1)B.其图象位于第二、第四象限C.当x<0时,y随x增大而增大D.当x>-1时,y>2二、填空题(共10题,共计30分)16、如图,在反比例函数y=(x>0)的图象上,有点P1、P2、P3、P4,它们的横坐标依次为1、2、3、4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1、S2、S3,则S1+S2+S3=________.17、如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=________.18、直线y=kx(k>0)与双曲线y= 交于A(x1, y1)和B(x2, y2)两点,则3x1y2﹣9x2y1的值为________.19、函数y=(m+1)x 是y关于x的反比例函数,则m=________.20、如图,、两点在双曲线上,分别经过、两点向坐标轴作垂线段,已知,则________.21、如图,直线与双曲线交于两点,轴,轴与交于点,则的面积的最小值是________.22、已知A(﹣1,m)与B(2,m﹣3)是反比例函数图象上的两个点.则m的值________.23、如图,正方形ABCD顶点C、D在反比例函数y=(x>0)图象上,顶点A、B分别在x轴、y轴的正半轴上,则点C的坐标为________.24、物理学这样的事实:当压力F不变时,压强P和受力面积S之间是反比例函数,可以表示成P=.一个圆台形物体的上底面积是下底面积的,如图,如果正放在桌面上,对桌面的压强是200Pa,翻过来放,对桌面的压强是________.25、己知点C为函数y= (x>0)上一点,过点C平行于x轴的直线交y轴于点D,交函数y= 于点A,作AB⊥CO于E,交y轴于B,若∠BCA=45°,△OBC的面积为l4,则m=________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、小明在某一次实验中,测得两个变量之间的关系如下表所示:x 1 2 3 4 12y 12.03 5.98 3.03 1.99 1.00请你根据表格回答下列问题:①这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由;②请你写出这个函数的解析式;③表格中空缺的数值可能是多少?请你给出合理的数值.28、如图,反比例函数(k≠0)图象的一支经过点A(2,6)和点B(n,2),过点A作AC⊥x轴,垂足为点C,连结AB,AC.求△ABC的面积.29、如图所示,在直角坐标系xOy中,一次函数y1=k1x+b(k≠0)的图象与反比例函数(x>0)的图象交于A(1,4),B(3,m)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)在第一象限内,x取何值时,一次函数的函数值大于反比例函数的函数(3)求△AOB的面积.30、已知反比例函数y=的图象与一次函数y=3x+m的图象相交于点(1,5).求这两个函数的解析式.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、A6、B7、D8、B9、B10、C11、D12、A13、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章 反比例函数 含答案

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、已知某函数的图象C与函数y= 的图象关于直线y=2对称下列命题:①图象C与函数y= 的象交于点(,2);②(,-2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1, y1),B(x2, y2)是图象C上任意两点,若x1>x2,则y1-y2,其中真命题是()A.①②B.①③④C.②③④D.①②③④2、下列各坐标表示的点在反比例函数图象上的是()A. B. C. D.3、如图,正比例函数和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>14、如图,过反比例函数y= (x>0)的图像上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.55、若ab<0,则正比例函数y=ax与反比例函数y= 在同一坐标系中的大致图象可能是()。

A. B. C. D.6、如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( )A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>27、已知点P(1,-3)在反比例函数y=(k≠0)的图象上,则k的值是( )A.3B.-3C.D.-8、在同一直角坐标系中,函数()与()的图象大致是()A. B. C. D.9、如图,正比例函数和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>110、反比例函数图象上三个点的坐标为、、,若,则的大小关系是()A. B. C. D.11、若y=(5+m)x2+n是反比例函数,则m、n的取值是()A.m=﹣5,n=﹣3B.m≠﹣5,n=﹣3C.m≠﹣5,n=3 D.m≠﹣5,n=﹣412、下列函数中,当时,y随x的增大而减小的是()A.y=xB.y=2x-1C.D.13、如图所示,已知A( ,y1),B(2,y2)为反比例函数y= 图象上的两点,动点P(x,0)在戈轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P 的坐标是( )A.(0.5,0)B.(1,0)C.(1.5,0)D.(2.5,0)14、如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣(x<0)交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F.下列说法:①b=6;②BC=AD;③五边形CDFOE的面积为35;④当x<﹣1时,y1>y2,其中正确的有()A.1个B.2个C.3个D.4个15、如图,点 P 是反比例函数 y =6/x的图象上的任意一点,过点 P分别作两坐标轴的垂线,与坐标轴构成矩形 OAPB,点 D 是矩形OAPB 内任意一点,连接 DA、DB、DP、DO,则图中阴影部分的面积A.1B.2C.3D.4二、填空题(共10题,共计30分)16、如图,反比例函数(x>0)的图象和矩形ABCD在第一象限,AD∥x 轴,且AB=2,AD=4,点A的坐标为(2,6)。

苏科版八年级下册数学第11章 反比例函数含答案(完美版)

苏科版八年级下册数学第11章 反比例函数含答案(完美版)

苏科版八年级下册数学第11章反比例函数含答案一、单选题(共15题,共计45分)1、如图,P,Q分别是双曲线在第一、三象限上的点,PA⊥轴,QB⊥轴,垂足分别为A,B,点C是PQ与轴的交点.设△PAB的面积为,△QAB的面积为,△QAC的面积为,则有()A. B. C. D.2、在反比例函数y= 图象位于二、四象限,则m的取值范围是()A.m≥B.m≤C.m<D.m>3、设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示.当△ABC为等腰直角三角形时,x+y的值为()A.4B.5C.5或3D.4或34、一个物体对桌面的压力为10 N,受力面积为S cm2,压强为P Pa,则下列关系不正确的是()A.P=B.S=C.PS=10D.P=5、如图,△OAB为等腰直角三角形,斜边OB边在x负半轴上,一次函数y=﹣x+与△OAB交于E、D两点,与x轴交于C点,反比例函数y=(k≠0)的图象的一支过E点,若S△AED =S△DOC,则k的值为()A.-B.-C.-3D.-46、如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点,与x轴交于点C,与y轴交于点D,下列结论:①一次函数解析式为y=﹣2x+8;②AD=BC;③kx+b﹣<0的解集为0<x<1或x>3;④△AOB的面积是8,其中正确结论的个数是()A.4个B.3个C.2个D.1个7、已知一次函数y=2x﹣3与反比例函数y=﹣,那么它们在同一坐标系中的图象可能是()A. B. C. D.8、已知反比函数,下列结论中错误的是()A.图象必经过点B.图象位于第二、四象限C.若则D.在每一个象限内,随值的增大而减小9、下列变量之间关系中,一个变量是另一个变量的正比例函数的是( )A.正方形的面积S随着边长x的变化而变化B.正方形的周长C随着边长x的变化而变化C.水箱有水10升,以0.5升/分的流量往外放水,剩水量(升)随着放水时问t(分)的变化而变化D.面积为20的三角形的一边a 随着这边上的高h的变化而变化10、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.11、已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象B.第一、三象限C.第二、四象限D.第三、四象限12、如图,在平面直角坐标系中,点A(m,2)在第一象限.若点A关于y轴的对称点B在反比例函数y=- 的图象上,则m的值为( )A.-3B.3C.6D.-613、已知点(3,-1)是双曲线上的一点,则下列各点不在该双曲线上的是()A. B.(3,1) C.(-1,3) D.14、函数与在同一坐标系中的图象可能是()A. B.C.D.15、在同一直角坐标系中,函数y=kx+1与y=(k≠0)的图象大致是()A. B. C.D.二、填空题(共10题,共计30分)16、若反比例函数的图象经过点,则的值为________.17、如图,点在双曲线上,过点作轴于点,点在线段上且,双曲线经过点,则________.18、如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为________19、点A,B为反比例函数y=图象上两点,其中点A坐标为(1,2),B 点坐标为(﹣2,m),则m=________.20、如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点B的横坐标为-2,当y1<y2时,x的取值范围是________.21、如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形交于两点,且两点在轴上,点的坐标为,则点F的坐标为________.22、如图,在平面直角坐标系中,矩形的顶点分别在x轴的负半轴,y轴的正半轴上,点B在第二象限.将矩形绕点O顺时针旋转,使点B落在y轴上,得到矩形与相交于点M.若经过点M的反比例函数的图象交于点N,矩形的面积为8,,则的长为________.23、若一次函数的图象经过反比例函数图象上的两点(1,m)和(n,2),则这个一次函数的解析式是________.24、在反比例函数的图象上有两点,当时,与的大小关系是________ .25、若反比例函数y= 的图象经过点(1,﹣6),则k的值为________.三、解答题(共5题,共计25分)26、函数y=(m﹣2)x 是反比例函数,则m的值是多少?27、如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.28、如图,△OA1B1,△B1A2B2是等边三角形,点A1, A2在函数的图象上,点B1, B2在x轴的正半轴上,分别求△OA1B1,△B1A2B2的面积.29、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C 分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.30、如图,点A为函数图象上一点,连结OA,交函数的图象于点B,点C是x轴上一点,且AO=AC,求△ABC的面积.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、C6、A7、D8、D9、B10、B12、B13、B14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(新课标)苏科版八年级下册11.3 用反比例函数解决问题一.选择题(共10小题)1.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=2.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t=C.t=D.t=3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y=C.y=D.y=6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B.C.D.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t= B.t=60Q C.t=12﹣D.t=12+10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为.13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的函数,t可以写成v的函数关系式是.14.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.15.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x 之间的函数关系式是.16.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围.17.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y (单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)18.若矩形的面积为48,它的两边长分别为x,y.则y关于x 的函数解析式为,其中自变量x的取值范围是.19.京沪铁路全程1463km,某次列车的平均速度v(单位km/h)随此次列车的全程运行时间t(t>0,单位:h)的变化而变化,其对应的函数解析式是.20.学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?参考答案与试题解析一.选择题(共10小题)1.(2016•广州)一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.2.(2015•临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=【分析】根据路程=时间×速度可得vt=20,再变形可得t=.【解答】解:由题意得:vt=20,t=,故选:B.【点评】此题主要考查了由实际问题抽象出反比例函数解析式,关键是正确理解题意,找出题目中的等量关系.3.某厂现有300吨煤,这些煤能烧的天数y与平均每天烧的吨数x之间的函数关系是()A.(x>0) B.(x≥0)C.y=300x(x≥0)D.y=300x(x>0)【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为300,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=(x>0),故选:A.【点评】此题主要考查了根据实际问题列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.4.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y= B.y=C.y= D.y=【分析】利用三角形面积公式得出xy=10,进而得出答案.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=B.y= C.y=D.y=【分析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=,由200度近视镜的镜片焦距是0.5米先求得k的值.【解答】解:由题意设y=,由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=.故眼镜度数y与镜片焦距x之间的函数关系式为:y=.故选;A.【点评】本题考查了根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A.B.C.D.【分析】可设I=,由于点(3,2)适合这个函数解析式,则可求得k的值.【解答】解:设I=,那么点(3,2)适合这个函数解析式,则k=3×2=6,∴I=.故选:C.【点评】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.7.某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款4000元,后期每个月分期付一定的数额,则每个月的付款额y(元)与付款月数x之间的函数关系式是()A.y=(x取正整数)B.y=C.y=D.y=8000x【分析】根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,得出xy+4000=12000,即可求出解析式.【解答】解:∵购买的电脑价格为1.2万元,交了首付4000元之后每期付款y元,x个月结清余款,∴xy+4000=12000,∴y=(x取正整数).故选A.【点评】此题主要考查了根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,注意先根据等量关系得出方程,难度一般.8.电路上在电压保持不变的条件下,电流I(A)与电阻R(Ω)成反比例关系,I与R的函数图象如图,I关于R函数解析式是()A.B.C.D.【分析】根据电压=电流×电阻得到稳定电压的值,让I=即可.【解答】解:∵当R=20,I=11时,∴电压=20×11=220,∴.故选A.【点评】考查列反比例函数关系式,关键是根据题中所给的值确定常量电压的值.9.如果以12m3/h的速度向水箱进水,5h可以注满.为了赶时间,现增加进水管,使进水速度达到Q(m3/h),那么此时注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为()A.t= B.t=60Q C.t=12﹣D.t=12+【分析】以12m3/h的速度向水箱进水,5h可以注满,求出水箱的容量,然后根据注满水箱所需要的时间t(h)=可得出关系式.【解答】解:由题意得:水箱的容量=12m3/h×5h=60m3.∴注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为t=.故选A.【点评】本题考查了根据实际问题列反比例函数关系式,属于应用题,难度一般,解答本题的关键是首先得出水箱的容量.10.某闭合电路中,电源电压不变,电流I(A)与电阻R(Ω)成反比例,如图表示的是该电路中电流I与电阻R之间函数关系的图象,图象过M(4,2),则用电阻R表示电流I的函数解析式为()A.B.C.D.【分析】把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:观察图象,函数经过一定点(4,2),将此点坐标代入函数解析式I=(k≠0)即可求得k的值,2=,∴K=8,函数解析式I=.故选A.【点评】用待定系数法确定反比例函数的比例系数k,求出函数解析式.二.填空题(共10小题)11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式t=.【分析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.【解答】解:∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.故答案为:t=.【点评】本题考查了根据实际问题列出反比例函数关系式,解题的关键是根据数量关系列出t关于Q的函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出函数关系式是关键.12.一批零件300个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为y=.【分析】根据等量关系“x个工人所需时间=工作总量÷x个工人工效”即可列出关系式.【解答】解:由题意得:人数x与完成任务所需的时间y之间的函数关系式为y=300÷15x=.故本题答案为:y=.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.13.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的反比例函数,t可以写成v的函数关系式是.【分析】时间=,把相关字母代入即可求得函数解析式,看符合哪类函数的特征即可.【解答】解:t=,符合反比例函数的一般形式.【点评】解决本题的关键是得到所求时间的等量关系,注意反比例函数的一般形式为y=(k≠0,且k为常数).14.(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s (cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.15.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视镜片的焦距为0.2米,则眼镜度数y与镜片焦距x 之间的函数关系式是y=.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,由于点(0.2,400)在此函数解析式上,故可先求得k的值.【解答】解:根据题意近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,由于点(0.2,400)在此函数解析式上,∴k=0.2×400=80,∴y=.故答案为:y=.【点评】考查了根据实际问题列反比例函数关系式的知识,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16.某村利用秋冬季节兴修水利,计划请运输公司用90~150天(含90与150天)完成总量300万米3的土石方运送,设运输公司完成任务所需的时间为y(单位:天),平均每天运输土石方量为x(单位:万米3),请写出y关于x的函数关系式并给出自变量x的取值范围y=(2≤x≤).【分析】利用“每天的工作量×天数=土石方总量”可以得到两个变量之间的函数关系.【解答】解:由题意得,y=,把y=90代入y=,得x=,把y=150代入y=,得x=2,所以自变量的取值范围为:2≤x≤,故答案为y=(2≤x≤).【点评】本题考查了根据实际问题列反比例函数关系式,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.17.某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),这2000度电能够使用的天数为y (单位:天),则y与x的函数关系式为.(不要求写出自变量x的取值范围)【分析】根据某户家庭用购电卡购买了2000度电,此户家庭平均每天的用电量为x(单位:度),利用总用电量除以使用的天数得出y与x的函数关系式.【解答】解:∵某户家庭用购电卡购买了2000度电,若此户家庭平均每天的用电量为x(单位:度),使用的天数为y(单位:天),∴y与x的函数关系式为:y=.故答案为:y=.【点评】此题主要考查了根据实际问题列反比例函数关系式,利用用电量除以使用的天数得出y与x的函数关系式是解题关键.18.若矩形的面积为48,它的两边长分别为x,y.则y关于x 的函数解析式为,其中自变量x的取值范围是x>0 .【分析】根据等量关系“矩形一边长=面积÷另一边长”即可列出关系式.【解答】解:由题意得:y关于x的函数解析式是y=(x>0).故答案为:y=,x>0.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.19.京沪铁路全程1463km,某次列车的平均速度v(单位km/h)随此次列车的全程运行时间t(t>0,单位:h)的变化而变化,其对应的函数解析式是(t>0).【分析】根据平均速度=总路程÷总时间可列出关系式,即可求解.【解答】解:由题意得平均速度v(单位km/h)与全程运行时间t的关系为:v=(t >0).故本题答案为:v=(t>0).【点评】根据题意,找到所求量的等量关系是解决问题的关键.除法一般写成分式的形式,除号可看成分式线.20.学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),则另一边的长y(米)与x的函数关系式为y=.【分析】根据矩形的面积=长×宽,结合题意即可得出另一边的长y(米)与x的函数关系式.【解答】解:由题意得,xy=24,故另一边的长y(米)与x的函数关系式为:.故答案为:y=.【点评】本题考查了根据实际问题列反比例函数关系式的知识,属于基础题,熟练掌握矩形的面积公式是关键.三.解答题(共9小题)21.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)【分析】(1)设出反比例函数解析式,把A坐标代入可得函数解析式;(2)把v=1代入(1)得到的函数解析式,可得p;(3)把P=140代入得到V即可.【解答】解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.【点评】考查反比例函数的应用;应熟练掌握符合反比例函数解析式的数值的意义.22.已知一个长方体的体积是100cm3,它的长是ycm,宽是10cm,高是xcm.(1)写出y与x之间的函数关系式;(2)当x=2cm时,求y的值.【分析】(1)长方体的体积等于=长×宽×高,把相关数值代入即可求解;(2)把x=2代入(1)的函数解析式可得y的值.【解答】解:(1)由题意得,10xy=100,∴y=(x>0);(2)当x=2cm时,y==5(cm).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.23.已知圆锥的体积,(其中s表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10cm时,底面积为30cm2,请写出h关于s的函数解析式.【分析】首先根据已知求出V的值,进而代入,即可得出h与s的函数关系式.【解答】解:∵,当h为10cm时,底面积为30,∴V=×10×30=100(cm3),∴100=sh,∴h关于s的函数解析式为:.【点评】此题主要考查了根据实际问题列反比例函数解析式,根据已知得出V的值是解题关键.24.我们学习过反比例函数,例如,当矩形面积一定时,长a是宽b的反比例函数,其函数关系式可以写为(s为常数,s≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:三角形的面积S一定时,三角形底边长y是高x的反比例函数;函数关系式:(s为常数,s≠0).【分析】联系日常生活,要解答本题关键要找出日常生活中两个数的乘积是一个不为零的常数,写出其函数关系式.【解答】解:本题通过范例,再联系日常生活、生产或学习当中可以举出许许多多与反比例函数有关的例子来,例如:实例1,三角形的面积S一定时,三角形底边长y是高x的反比例函数,其函数关系式可以写出(s为常数,s≠0).实例2,甲、乙两地相距100千米,一辆汽车从甲地开往乙地,这时汽车到达乙地所用时间y(小时)是汽车平均速度x(千米/小时)的反比例函数,其函数关系式可以写出.【点评】本题与日常生活联系在一起,要解答本题,关键是要理解反比例函数的性质.25.有一水池装水12m3,如果从水管中1h流出x m3的水,则经过yh可以把水放完,写出y与x的函数关系式及自变量x的取值范围.【分析】根据等量关系“工作时间=工作总量÷工作效率”即可列出关系式即可,注意x>0.【解答】解:由题意,得:y=(x>0).故本题答案为:y=(x>0).【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.26.已知一个长方体的体积是100m3,它的长是ym,宽是5 m,高为xm,试写出x、y之间的函数关系式,并注明x的取值范围.【分析】根据等量关系“长方体的体积=长×宽×高”,再把已知中的数据代入得出y与x之间的函数关系式即可.【解答】解:因为长方体的长是ym,宽是5m,高为xm,由题意,知100=5xy,即y=.由于长方体的高为非负数,故自变量的取值范围是0<x<4.【点评】本题考查了反比例函数在实际生活中的应用,找出等量关系是解决此题的关键.27.甲、乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间t(h)表示为汽车速度v(km/h)的函数,并说明t是v的什么函数.【分析】时间=路程÷速度,把相关数值代入即可求得相关函数,看符合哪类函数的一般形式即可.【解答】解:∵路程为100,速度为v,∴时间t=,t是v的反比例函数.【点评】考查列反比例函数关系式,得到时间的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般式为(k ≠0).28.已知一个面积为60的平行四边形,设它的其中一边长为x,这边上的高为y,试写出y与x的函数关系式,并判断它是什么函数.【分析】平行四边形一边上的高=面积÷这边长,把相关数值代入即可求得函数解析式,可符合哪类函数的一般形式即可.【解答】解:∵xy=60,∴y=,∴y是x的反比例函数.【点评】考查列反比例函数解析式,得到平行四边形一边上的高的等量关系是解决本题的关键;用到的知识点为:反比例函数的一般形式为y=(k≠0).29.面积一定的梯形,其上底长是下底长的,设上底长为xcm,高为ycm,且当x=5cm,y=6cm,(1)求y与x的函数关系式;(2)求当y=4cm时,下底长多少?【分析】(1)先根据梯形的面积公式得到梯形的面积,进而根据梯形的面积表示出梯形的高即可;(2)把y=4代入(1)得到的式子求出上底,再乘以3即为下底长.【解答】解:(1)∵x=5cm,y=6cm,上底长是下底长的,∴下底长为15cm,∴梯形的面积=×(5+15)×6=60。

相关文档
最新文档