厦门市2019年中考数学试题及答案
2019年厦门市中考数学试题及答案(word版)

2019年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,26小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用2B 铅笔画图.一、选择题(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列计算正确的是A .-1+2=1.B .-1-1=0.C .(-1)2=-1.D .-12=1. 2.已知∠A =60°,则∠A 的补角是 A .160°. B .120°. C .60°. D .30°.3.图1是下列一个立体图形的三视图,则这个立体图形是 A .圆锥. B .球. C .圆柱. D .正方体. 4.掷一个质地均匀的正方体骰子,当骰子停止后,朝上 一面的点数为5的概率是 A .1. B .15. C .16. D .0.5.如图2,在⊙O 中,︵AB =︵AC ,∠A =30°,则∠B = A .150°. B .75°. C .60°. D .15°.6.方程2x -1=3x的解是A .3.B .2.C .1.D .0.7.在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O ,A 的对应点分别为点O 1,A 1.若点O (0,0),A (1,4),则点O 1,A 1的坐标分别是 A .(0,0),(1,4). B .(0,0),(3,4). C .(-2,0),(1,4). D .(-2,0),(-1,4). 二、填空题(本大题有10小题,每小题4分,共40分)8.-6的相反数是 .图3ED CBACO 图2BA俯视图左视图主视图图19.计算:m 2·m 3= .10.式子x -3在实数范围内有意义,则实数x 的取值范围是 .11.如图3,在△ABC 中,DE ∥BC ,AD =1,AB =3,DE =2,则BC = .12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/米 1.50 1.60 1.65 1.70 1.75 1.80 人数233241则这些运动员成绩的中位数是 米. 13.x 2-4x +4= ( )2.14.已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 15.如图4,□ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点.若AC +BD =24厘米, △OAB 的周长是18厘米,则EF = 厘米.16.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保 甲工人的安全,则导火线的长要大于 米. 17.如图5,在平面直角坐标系中,点O 是原点,点B (0,3),点A 在第一象限且AB ⊥BO ,点E 是线段AO 的中点,点M 在线段AB 上.若点B 和点E 关于直线OM 对称,且则点M 的坐标是 ( , ) .三、解答题(本大题有9小题,共89分)18.(本题满分21分)(1)计算:5a +2b +(3a —2b );(2)在平面直角坐标系中,已知点A (-4,1),B (-2,0),C (-3, -1),请在图6上 画出△ABC ,并画出与△ABC 关于原点O 对称的图形;(3)如图7,已知∠ACD =70°,∠ACB =60°,∠ABC =50°. 求证:AB ∥CD .19.(本题满分21分)(1)甲市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:郊县人数/万人均耕地面积/公顷D C BA图7图4F E O DCB AA 20 0.15B 5 0.20 C100.18求甲市郊县所有人口的人均耕地面积(精确到0.01公顷); (2)先化简下式,再求值:2x 2+y 2x +y - x 2+2y 2x +y ,其中x =2+1, y =22—2; (3)如图8,已知A ,B ,C ,D 是⊙O 上的四点, 延长DC ,AB 相交于点E .若BC =BE . 求证:△ADE 是等腰三角形.20.(本题满分6分)有一个质地均匀的正12面体,12个面上分别写有1~12这12个整数(每个面上只有一个整数且每个面上的整数互不相同).投掷这个正12面体一次,记事件A 为“向上一面的数字是2或3的整数倍”,记事件B 为 “向上一面的数字是3的整数倍”,请你判断等式“P(A)=12+P(B)”是否成立,并说明理由.21.(本题满分6分)如图9,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点E ,若AE =4,CE =8,DE =3,梯形ABCD 的高是365,面积是54.求证:AC ⊥BD .22.(本题满分6分)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的 9分内既进水又出水,每分的进水量和出水量都是 常数.容器内的水量y (单位:升)与时间 x (单位:分)之间的关系如图10所示.当容器内的水量大于5升时,求时间x 的取值范围.23.(本题满分6分)如图11,在正方形ABCD 中,点G 是边BC 上的任意一点,DE ⊥AG ,垂足为E ,延长DE 交AB 于 点F .在线段AG 上取点H ,使得AG =DE +HG ,连接BH . 求证:∠ABH =∠CDE .图9E DC BAH G FE DCB图11AEDO图8CBA24.(本题满分6分)已知点O 是坐标系的原点,直线y =-x +m +n 与双曲线y =1x交于两个不同的点A (m ,n )(m ≥2)和B (p ,q ),直线y =-x +m +n 与y 轴交于点C ,求△OBC 的面积S 的取值范围.25.(本题满分6分)如图12,已知四边形OABC 是菱形,∠O =60°,点M 是OA 的中点.以点O 为圆心, r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM .若BM =7, ︵DE 的长是3π3.求证:直线BC 与⊙O 相切.26.(本题满分11分)若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且x 1+x 2=2k (k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0, x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0, x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2019年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 1 2 3 4 5 6 7 选项ABCCBAD图12OA BCD EM二、填空题(本大题共10小题,每题4分,共40分)8. 6 9. m510.x≥3 11. 612. 1.6513. x—214.m>115. 3 16. 1.317.(1,3)三、解答题(本大题共9小题,共89分)18.(本题满分21分)(1)解:5a+2b+(3a—2b)=5a+2b+3a—2b……………………………3分=8a. ……………………………7分(2)解:正确画出△ABC……………………………10分正确画出△DEF ……………………………14分(3)证明1:∵∠ACD=70°,∠ACB=60°,∴∠BCD=130°. …………16分∵∠ABC=50°,∴∠BCD+∠ABC=180°. …………18分∴AB∥CD. …………21分证明2:∵∠ABC=50°,∠ACB=60°,∴∠CAB=180°—50°—60°=70°. ………………16分∵∠ACD=70°,∴∠CAB=∠ACD. ………………18分∴AB∥CD. ………………21分19.(本题满分21分)(1)解:20×0.15+5×0.20+10×0.1820+5+10……………………………5分≈0.17(公顷/人). ……………………………6分∴这个市郊县的人均耕地面积约为0.17公顷. ……………………7分(2)解:2x2+y2x+y—2y2+x2x+y=x2—y2x+y……………………………9分=x-y. ……………………………11分当 x =2+1, y =22—2时,原式= 2+1-(22—2) ……………………………12分=3—2. ……………………………14分(3)证明: ∵BC =BE ,∴∠E =∠BCE . ……………………………15分∵ 四边形ABCD 是圆内接四边形,∴∠A +∠DCB =180°. ……………17分∵∠BCE +∠DCB =180°,∴∠A =∠BCE . ………………18分 ∴∠A =∠E . ………………19分∴ AD =DE . ………………20分 ∴△ADE 是等腰三角形. ………………21分 20.(本题满分6分)解: 不成立 ……………………………1分 ∵ P(A)=812=23, ……………………………3分又∵P(B) =412=13, ……………………………5分而12+13=56≠23.∴ 等式不成立. ……………………………6分 21.(本题满分6分)证明1:∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴ AD BC =AE EC =12. ……………………………2分即:BC =2AD . ………………3分 ∴54=12×365( AD +2AD )∴AD =5. ………………4分 在△EDA 中,∵DE =3,AE =4,∴DE 2+AE 2=AD 2. ……………………………5分 ∴∠AED =90°.∴ AC ⊥BD . ……………………………6分证明2: ∵AD ∥BC ,∴∠ADE =∠EBC ,∠DAE =∠ECB .∴△EDA ∽△EBC . ……………………………1分 ∴DE BE =AEEC . ……………………………2分即3BE =48. ∴BE =6. ……………………………3分过点D 作DF ∥AC 交BC 的延长线于点F .由于AD ∥BC ,∴四边形ACFD 是平行四边形.∴DF =AC =12,AD =CF . ∴BF =BC +AD . ∴54=12×365×BF .∴BF =15. ……………………………4分 在△DBF 中,∵DB =9,DF =12,BF =15,∴DB 2+DF 2=BF 2. ……………………………5分 ∴∠BDF =90°.∴DF ⊥BD .∴AC ⊥BD . ……………………………6分 22.(本题满分6分)解1: 当0≤x ≤3时,y =5x . ……………………………1分 当y >5时,5x >5, ……………………………2分 解得 x >1.∴1<x ≤3. ……………………………3分当3<x ≤12时,设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y >5时,-53x +20>5, ……………………………5分解得 x <9.∴ 3<x <9. ……………………………6分 ∴容器内的水量大于5升时,1<x <9 .FABCD E解2: 当0≤x ≤3时,y =5x . ……………………………1分 当y =5时,有5=5x ,解得 x =1. ∵ y 随x 的增大而增大,∴当y >5时,有x >1. ……………………………2分 ∴ 1<x ≤3. ……………………………3分当3<x ≤12时, 设 y =kx +b .则⎩⎨⎧15=3k +b ,0=12k +b .解得⎩⎪⎨⎪⎧k =-53,b =20.∴ y =-53x +20. ……………………………4分当y =5时,5=-53x +20.解得x =9.∵ y 随x 的增大而减小,∴当y >5时,有x <9. ……………………………5分 ∴3<x <9. ……………………………6分∴容器内的水量大于5升时,1<x <9 .23.(本题满分6分)证明1:∵四边形ABCD 是正方形,∴∠F AD ==90°. ∵DE ⊥AG ,∴∠AED =90°.∴∠F AG +∠EAD =∠ADF +∠EAD ∴∠F AG =∠ADF . …………………1分∵AG =DE +HG ,AG =AH +HG , ∴ DE =AH . ……………………………2分 又AD =AB ,∴ △ADE ≌△ABH . ……………………………3分 ∴ ∠AHB =∠AED =90°.∵∠ADC ==90°, ……………………………4分 ∴ ∠BAH +∠ABH =∠ADF +∠CDE . ……………………………5分 ∴ ∠ABH =∠CDE . ……………………………6分 24.(本题满分6分)解: ∵ 直线y =-x +m +n 与y 轴交于点C , ∴ C (0,m +n ).∵点B (p ,q )在直线y =-x +m +n 上, ……………………………1分 ∴q =-p +m +n . ……………………………2分B G H FED CA又∵点A 、B 在双曲线y =1x上,∴1p =-p +m +1m . 即p -m =p -m pm,∵点A 、B 是不同的点.∴ p -m ≠0.∴ pm =1. ……………………………3分 ∵ nm =1,∴ p =n ,q =m . ……………………………4分 ∵1>0,∴在每一个象限内,反比例函数y =1x的函数值y 随自变量x 的增大而减小.∴当m ≥2时,0<n ≤12. ……………………………5分∵S =12( p +q ) p=12p 2+12pq =12n 2+12又∵12>0,对称轴n =0,∴当0<n ≤12时,S 随自变量n 的增大而增大.12<S ≤58. ……………………………6分25.(本题满分6分)证明一:∵︵DE 的长是3π3,∴2πr 360·60=3π3.∴ r =3. ……………………1分作BN ⊥OA ,垂足为N .∵四边形OABC 是菱形, ∴AB ∥CO .∵∠O =60°,∴∠BAN =60°,∴∠AB N =30°.设NA =x ,则AB =2x ,∴ BN =3x . ……………………………2分 ∵M 是OA 的中点,且AB =OA ,∴ AM =x . ……………………………3分 在Rt △BNM 中,ONE D C MBA(3x )2+(2x )2=(7)2,∴ x =1,∴BN =3. ……………………………4分 ∵ BC ∥AO ,∴ 点O 到直线BC 的距离d =3. ……………………………5分 ∴ d =r .∴ 直线BC 与⊙O 相切. ……………………………6分证明二:∵︵DE 的长是3π3,∴2πr 360·60=3π3. ∴ r =3. ……………………1分延长BC ,作ON ⊥BC ,垂足为N .∵ 四边形OABC 是菱形 ∴ BC ∥AO , ∴ ON ⊥OA .∵∠AOC =60°, ∴∠NOC =30°.设NC =x ,则OC =2x , ∴ON =3x ……………………………2分连接CM , ∵点M 是OA 的中点,OA =OC ,∴ OM =x . ……………………………3分 ∴四边形MONC 是平行四边形. ∵ ON ⊥BC ,∴四边形MONC 是矩形. ……………………………4分∴CM ⊥BC . ∴ CM =ON =3x . 在Rt △BCM 中, (3x )2+(2x )2=(7)2, 解得x =1.∴ON =CM =3. ……………………………5分 ∴ 直线BC 与⊙O 相切. ……………………………6分26.(本题满分11分)(1)解: 不是 ……………………………1分 解方程x 2+x -12=0得,x 1=-4,x 2=3. ……………………………2分x 1+x 2=4+3=2×3.5. ……………………………3分 ∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.…………………………4分(2)解:存在 …………………………6分 ∵方程x 2-6x -27=0,x 2+6x -27=0是“偶系二次方程”,∴ 假设 c =mb 2+n . …………………………8分 当 b =-6,c =-27时,有 -27=36m +n .∵x 2=0是“偶系二次方程”,ABMD E O数学试卷∴n =0,m =- 34. …………………………9分 即有c =- 34b 2. 又∵x 2+3x -274=0也是“偶系二次方程”, 当b =3时,c =- 34×32=-274. ∴可设c =- 34b 2. …………………………10分 对任意一个整数b ,当c =- 34b 2时, ∵△=b 2-4c=4b 2.∴ x =-b ±2b 2. ∴ x 1=-32b ,x 2=12b . ∴ x 1+x 2=32b +12b =2b . ∵b 是整数,∴对任意一个整数b ,当c =- 34b 2时,关于x 的方程 x 2+bx +c =0是“偶系二次方程”. …………………………11分。
2019年福建省中考数学试卷(含答案解析)

效数学试卷第1页(共14 M)数学试卷第2页(共14 M)绝密★启用刖福建省2019年初中毕业会考、高级中等学校招生考试数学本试卷满分150分,考试时间120分钟................. .一名姓、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中 一项是符合题目要求的) 1. 22 (―1 0计算的结果是 A. 5 B.4 D. 2 C.3 2.北京故宫的占地面积约为 720 000m 2 ,将720 000用科学记数法表示为A. 72 104B. 7.2 105C. 7.2 1063. 下列图形中,一定既是轴对称图形又是中心对称图形的是 A.等边三角形B.直角三角形C.平行四边形4. 右图是由一个长方体和一个球组成的几何体,它的主视图是,只有D. 0.72 106D.正方形7. 下列运算正确的是 ( )A. aa 3 = a 3B. (2a )3 = 6a 3亠 632/ 2、3/3、2 CC.a-'a aD. (a ) — (— a )= 08. 《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问 若每日读多少? ”其大意是:有个学生天资聪慧,三天读完一部《孟子》 ,每天阅读 的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有 34 685个字,设他第一天读 X 个字,则下面所列方程正确的是( )A. X 2x 4x= 34 685B. X 2x 3x = 34 6851 1C. X 2x 2x = 34 685D. x+ x+ x = 346852 49. 如图,PA PB 是L O 切线,A B 为切点,点C 在L O 上,且∙ ACB=55 ,则.APB 等于 ()A. 55B. 70C. 110D. 125校学业毕(D(C则该正多边形的边数为A5.已知正多边形的一个外角为 36 , B.1010.若二次函数 y = a X 2 ■ bx ■ c 的图象经过A( m,n)、B(0,yJ 、C(3— m, n)、D(∙.2, y 2) >A. 12C.8D. 6E(2,y 3),贝U y p y 2、y 3的大小关系是()A. y 1<y 2< y 3B. y 1<y 3V y 2C. y 3V y 2<y 1D. y 2< y 3V y 1、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上)6.如图是某班甲、乙、丙三位同学最近 计图,则下列判断错误的是5次数学成绩及其所在班级相应平均分的折线统彳数学成绩/分)100,A.甲的数学成绩高于班级平均分,且成绩比较稳定 90 80B.乙的数学成绩在班级平均分附近波动,且比丙好70C.丙的数学成绩低于班级平均分,但成绩逐次提高 60D.就甲、乙、丙三个人而言,乙的数学成绩最不稳■甲・乙▲ 丙■■■■■班级平均分次数. - 211. 因式分解:X —9= _________ .ACB -4212. 如图,数轴上A 、B 两点所表示的数分别是 一4和2,(第12题)点C 是线段AB 的中点,则点C 所表示的数是 ____________ .13.某校征集校运会会徽,遴选出甲、乙、丙三种图案 .为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有 2 000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.数学试卷第3页(共14页) 数学试卷第4页(共14页)14.中在平面直角坐标系 Xoy 中,L OABC 的三个顶点0(0,0)、(3,0)、(4,2),则其第四个顶点是是 _________ . 15.如图,边长为2的正方形ABCD 中心与半径为2的L O 的圆心重合,E 、F 分别是AD 、BA 的延长与L O 的交点,则图中阴影部分的面积是 ___________ .(结果保留二)(2x _1\ j -先化简,再求值:(x -1 ÷ X- ------------- 丨,其中x = J 2 + 1I X 丿(第15题) 3 16.如图,菱形ABCD 顶点A 在函数y ( x >0)的图象上,函数X k y ( k >3, x >0)的图象关于直线 AC 对称,且经过点B 、D 两 X 点,若AB =2 , DAB=30 ,则k 的值为 _____________ 三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过 程或演算步骤) 17.(本小题满分8分) k _y =5 解方程组:丿 2x + y = 4 CAX(第16题)20.(本小题满分8分)如图,已知 △ ABC 为和点A'.(1) 以点 A'为顶点求作 A A'B'C',使△ A'B'C'S ^ABC , S “矶=4S“BC ; (尺规作图,保留作图痕迹,不写作法)(2) 设D 、E 、F 分别是△ ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的 A A'B'C'三边 A'B'、B'C'、A'C'的中点,求证:A DEF — △ D'E'F'.A'18.(本小题满分8分) 如图,点E 、F 分别是矩形 ABCD 的边AB 、CD 上的一点,且 DF = BE . 求证:AF =CE .CEA21.(本小题满分8分)在Rt △ABC 中,∙ ABC = 90 , BAC = 30 ,将厶ABC 绕点A 顺时针旋转一定的角 度:•得到△ AED ,点B 、C 的对应点分别是 E 、D. (1) 如图1 ,当点E 恰好在AC 上时,求.CDE 的度数;(2) 如图2,若-=60时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形(图I )(图2)19.(本小题满分8分)数学试卷第5页(共14 M )数学试卷第6页(共14 M )22. (本小题满分10分)某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m 吨的废水处理车间, 对该厂工业废水进行无害化处理•但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理 量的废水交给第三方企业处理 •已知该车间处理废水,每天需固定成本 30元,并且-----每处理一吨废水还需其他费用8元;将废水交给第三方企业处理, 每吨需支付12元.根据记录,5月21日,该厂产生工业废水 35吨,共花费废水处理费 370元• (1) 求该车间的日废水处理量 m ;(2) 为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过 10元/吨,试计算该厂一天产生的工业废水量的范围 .23. (本小题满分10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外 购买若干次维修服务,每次维修服务费为2 000元.每台机器在使用期间,如果维修_____次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5 000元,但无需支付工时费某公司计划购买 1台该种机器,为决策 在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器1 以这100台机器为样本,估计“ 1台机器在三年使用期内维修次数不大于 10” 的概率;2 试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时 应一次性额外购 10次还是11次维修服务?_____在三年使用期内的维修次数,整理得下表; 24. (本小题满分12分)如图,四边形 ABCD 内接于L O ,AB = AC , BD_ AC ,垂足为E ,点F 在BD 的延长线上,且 DF =DC ,连接AF 、CF. (1) 求证:.BAC = 2 DAC ;(2) 若 AF =10 , BC = 4 5 ,求 tan BAD 的值.25. 已知抛物y = a χ1 2 ■ bx ■ c (b v 0)与轴只有一个公共点.(1) 若公共点坐标为(2,0),求A 、C 满足的关系式;(2) 设A 为抛物线上的一定点,直线 丨:y = kx • 1— k 与抛物线交于点 B 、C 两点, 直线BD 垂直于直线y = —1 ,垂足为点D .当k =0时,直线I 与抛物线的一个交点在在一 一此 一卷 一上 一答一题-- -维修次数8 9 10 11 12 频率(台数) 1020303010y 轴上,且 A ABC 为等腰直角三角形.① 求点A 的坐标和抛物线的解析式; ② 证明:对于每个给定的实数 k ,都有A 、F .CDA数学试卷第7页(共14页) 数学试卷第8页(共14页)福建省2019年初中毕业会考、高级中等学校招生考试数学答案解析1.【答案】 A 2.【答案】 B 3. 【答案】 D4. 【答案】C 5. 【答案】 B 6. 【答案】D 7. 【答案】 D 8. 【答案】 A 9. 【答案】 B 10. .【答案】 D11. ■【答案】 (x +3)(x-3)12 ■【答案】 —113.【答案】 1 20014. .【答案】 (1,2)15 .【答案】 二一 116 .【答案】 6 2.317. .【答案】 X _y =5,①解:解: .2χ∙y=4,②①+②,得 (X - y)+(2x + y)=5+4即 3x = 9, 解得x =3 , 把X = 3代入②,得2 3+ y = 4 ,解得y = — 2 .x = 3所以原方程组的解为.y = -2 【考点】二元一次方程组的解法【考查能力】运算能力18.[答案】证明:•••四边形 ABCD 是矩形,••• ./ D=N B=90 , AD= CB ,在厶ADF 和△ CBE 中,AD =CB , D= B , DF =BE ,• △ ADF 空 CBE , • AF = CE .【考点】矩形的性质,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质 【考查能力】推理能力2X 2 —(2x — 1) 19.【答案】解:原式=√x -1) -X2X 2x1二(X —1) - X(x - 1》=(X T)-X X=(X -1) 2(Xi)2 2aEAFDA即-DE【考点】分式的混合运算,因式分解,二次根式的运算【考查能力】运算能力∙∙∙ . BAC=60 •由旋转性质得, DC = AC , . DCE =. ACB=30 •1.DAC=. ADC = (180 -. DCE)=752 ,20.【答案】解:(1)又 E EDC = E BAC= 60 ,∙ × ADE = E ADC EEDC =15 •△ A BC •即为所求作的三角形.∙∙∙ F 是AC 的中点,BF = FCj AC2 ,∙ . FBC=. ACB=30 .由旋转性质得,AB=DE N DEC=ZABC=90 ,【考点】图形的旋转,直角三角形,等腰三角形,等边三角形,三角形的内角和,平行四边形的判定【考查能力】运算能力,推理能力22.【答案】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元, 依题意得,30÷8m ^12(35 - m =370 ,当^ 21时,原式(2)在厶ABC 中,.ABC =90 , . ACB=30 , 1 AB^- AC2 ,F'D'= 1B'C'2D'E'= 1A'C , E'F =丄A'B ;同理,2 21 ••• △ ABCsAABC ; D'E'EF E'F' F'D'AC = AB _ BC AC ' A'B' B'C'1 1 1 AC AB BC _2 _ = ____ = ____ 1 = 1 _ 1 AC- A'B' B'C' 2 2 2∙ A DEF SA D EF.BCE=. ACD=60 ;∙∙四边形BEDF 是平行四边形.又,所以m v 35【考点】尺规作图; 相似三角形的性质与判定,三角形中位线定理 【考查能力】推理能力21.【答案】解:(1)在厶ABC 中;.ABC=90 ; ■ ACB=30 ;数学试卷第9页(共14 M)故该车间的日废水处理量为 20吨. (2)设该厂一天产生的工业废水量为X 吨.数学试卷第10页(共14 M)B ~~(2)证明∙∙∙ D ; E ; F 分别是 △ ABC 三边AB ; BC ; CA 的中点; 1 1 1 DE =- AC EF = — AB FD =— BC2 2 2延长 BF 交 EC 于点 G ;则.BGE = GBC +. GCB=90 ; ∙ BGE = DEC ;∙ DELBF ;解得n =20卫口羊8357①当0v x≤20时,依题意得,8x+30≤10x ,解得x≥15,所以15≤x≤20.②当x>20 时,依题意得,12(x-20)+20 8+30≤10x ,解得x≤25 ,所以20v x≤25 .综上所述,15≤x≤25,故该厂一天产生的工业废水量的范围在15吨到25吨之间.【考点】一元一次方程,一元一次不等式,反比例函数的性质,平均数的概念【考查能力】运算能力,推理能力23. 【答案】解:(1)因为100台机器在三年使用期内维修的次数不大于100的台数为10+ 20 + 30= 60,所以“ 100台机器在三年使用期内维修的次数不大于10”的频率为60=0.6 ,100故可估计“ 1台机器在三年使用期内维修的次数不大于10”的概率为0.6.(2)若每台都购买10次维修服务,则有下表:此时这100台机器维修费用的平均数24000 10+ 24500 20+ 25000 30+30000 30+35000 10100=27300 ,26000 10+26500 20+ 27000 30+27500 30+32500 10y ==27500 ,因为y1< y2,所以购买1台该机器的同时应一次性额外购买10次维修服务.【考点】概率,加权平均数,统计表【考查能力】运算能力,推理能力24. 【答案】证明:(1)∙∙∙AC _ BD ,••• £AED=90 ,在Rt∆AED 中,/ ADE = 90 -Z CAD .∙∙∙ AB=AC ,.∙. AB= AC•. ACB=. ABC=. ADE = 90 -. CAD .在厶ABC 中,.BAC+. ABC+. ACB=180 ,•. BAC=180 — C ABC + . ACB)= 180 -2(90 -. CAD),即.BAC = 2 CAD .(2) V DF = DC ,•/FCD=/CF ,•BDC= FCD+ CFD ,•BDC=2 CFDV N BDC=NBAC ,且由(1)知N BAC=^CAD ,•CFD= CAD ,V CAD= CBD ,•匕CFD= /CBD ,•CF = CB ,V AC _ BF ,•BE= EF ,故CA垂直平分BF ,•AC= AB= AF = 10 ,设AE= X ,贝^CE= IO-X,在Rt△A BE和Rt∆BCE 中,AB2- AE2= BE2= BC2-CE2,又V BC = 4 一5 ,•102-χ2=(4√引2 _(10 —X)2,解得χ = 6 ,•AE = 6, CE = 4,数学试卷第11页(共14 M)数学试卷第12页(共14 M)•BE= AB2- AE2=8 ,数学试卷第11页(共14 M)数学试卷第12页(共14 M)数学试卷第13页(共14页)数学试卷第14页(共14 M)因为a=0,所以C = 4a ,即a ,C 满足的关系式为C = 4a . (2)①当k =0时,直线I 为y =1,它与y 轴的交点为(0,1).•••直线y =1与X 轴平行, ∙等腰直角 △ ABC 的直角顶点只能是 A ,且A 是抛物线的顶点.过 A 作AM _ BC ,垂足为M ,则AM =1 ,∙ BM = MC = AM =1 ,故点 A 坐标为(1,0), ∙抛物线的解析式可改写为【考点】一次函数和二次函数的图形与性质,等腰直角三角形的性质与判定,图形的对称 【考查能力】运算能力,推理能力 ∙抛物线的解析式可改写为 y =a(x -1)2,•••抛物线过点 0,1 ,所以1 =a(0 -1)2 ,解得a =1.∙∙∙ DAE = CBE , ADE = BCE , 所以抛物线的解析式为 y = a( X -1)2 ,即 y = X 2 一 2x 1. ∙∙∙ A ADE sABCE ∙ .AE DE AD BE ^CE ^ BC ∙ DE =3, AD =3j 5 ②设 B X 1,y 1 , C X 2,y 2 ,则 D X 1,_1 • 石 y =kx 1 -k /曰 2由 2 得 X 2 — (k 2)x k = 0 ,y = x 2_2x 1因为△工(k 2)2 — 4k = k 24>0过点D 作DH _AB ,垂足为H . 1 1 T S A ABD AB DH BD AE,BD =BE DE =11 , 2 2 ∙ 10DH =11 6,故 DH =335 由抛物线的对称性,不妨设 X I V X 2 ,则X 1 = k •2一k 4k 2 k 2 4X2 ≡所以 x 1v 1V x 2 ,在 Rt AADH 中,AH = AD2-DH 2=- 5 f 0 = m …n设直线AD 的解析式为y = mx ∙ n ,则有一1 = mx 1 十 n,解得∙ tan BAD=D HAH 112 1m = _X 1-1 1 n =- x 1 —1【考点】圆的有关性质,等腰三角形的判定与性质,线段垂直平分线的判定与性质,解直角三 角形,相似三角形的判定与性质,三角形面积等基础知识 【考查能力】运算能力,推理能力 2 b 25.【答案】解:(1)依题意,△= b 2-4ac =0, 2, 2a所以(―4a)2—4ac =0, 1 1所以直线 AD 的解析式为 y =-—— X •—— .x ∣ — 1 X 1 — 12X ? — 1W 1J1丄1——X 2 +------- I x L 1x1_1」卷一1 箍 X I- 1 X 2—1 1 因为y 2 -X 2 X j _ 1A i k- Jk 2 + 4 k 十 J k 2十 4 ’X 2 -112 2=01 1 即y 2x 2 ,所以点C x 2,y 2在直线AD 上. X 1 —1 X 1 _1故对于每个给定的实数 k ,都有AC, D 三点共线.H。
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)1.旋转中心可能是点B。
2.有一组邻边相等的平行四边形是矩形。
3.y=3(x-2)^2+3.4.方差为2.5.选项B。
6.∠2的度数为65°。
7.对角线互相垂直平分的四边形是正方形。
8.∠AED度数为110°。
9.x=1或x=-2.10.竹竿AB与AD的长度之比为sinα/sinβ。
11.选项B。
12.线段DE的长为15/4.连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,因此三条线段的垂直平分线正好都过B,即旋转中心是B。
因此选B。
本题考查了旋转中心的确认,解题的关键是熟知旋转的性质特点。
根据矩形的判定定理,可以快速确定答案。
有一个角为直角的平行四边形是矩形满足判定条件,因此选A。
B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误。
根据“上加下减,左加右减”的原则,将抛物线y=3x向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为y=3(x+2)+3,故答案选A。
先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案。
根据题意,得:(6+7+x+9+5)/5 = x/2,解得:x=3,因此这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为[(6-6)²+(7-6)²+(3-6)²+(9-6)²+(5-6)²]/5=4,因此选A。
根据对顶角相等,得∠1与∠2一定相等,因此A选项中的答案可能成立。
B、C项中无法确定∠1与∠2是否相等,因此也可能成立。
D选项中因为∠1=∠ACD,∠2>∠ACD,所以∠2>∠1,因此也成立。
因此需要进一步分析,可以发现只有D选项中的角度关系是符合题意的,因此选D。
2019年5月福建省厦门市中考二检数学试卷及答案

A 作 AC x 轴于点 C ,过该双曲线另一点 B 作 BD x 轴于点 D ,作 BE AC 于点 E ,
连接 AB .若 OD 3OC ,则 tan ABE
.
16.如图 4,在矩形 ABCD 中, AB BC ,以点 B 为圆心, AB 的长为半
径的圆分别交 CD 边于点 M ,交 BC 边的延长线于点 E .若 DM CE
式.(自变量 m 的取值范围只需直接写出)
24.(本题满分 12 分)
某村启动“脱贫攻坚”项目,根据当地的地理条件,要在一座高为 1000m 的山上种植
一种经济作物.农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:
①这座山的山脚下温度约为 22℃,山高 h(单位:m)每增加 100m,温度 T (单位:℃)
A. a 1
B. a 3
C. a b c
D. a 1 (b c) 2
9.已知菱形 ABCD 与线段 AE ,且 AE 与 AB 重合.现将线段 AE 绕点 A 逆时针旋转180 ,
在旋转过程中,若不考虑点 E 与点 B 重合的情形,点 E 还有三次落在菱形 ABCD 的边上,
19.(本题满分 8 分)
化简并求值:
(
2a2 a
2
4
1)
a2 2a a2
,其中 a
2.
20.(本题满分 8 分) 在正方形 ABCD 中, E 是 CD 边上的点,过点 E 作 EF BD 于 F . (1)尺规作图:在图 6 中求作点 E ,使得 EF EC ; (保留作图痕迹,不写作法) (2)在(1)的条件下,连接 FC ,求 BCF 的度数.
A. sin A
2019年福建省中考数学试卷(带解析)

一、选择题(每小题 4 分,共 40 分)
1.(4 分)计算 22+(﹣1)0 的结果是( )
A.5
B.4
C.3
D.2
2.(4 分)北京故宫的占地面积约为 720000m2,将 720000 用科学记数法表示为( )
A.72×104
B.7.2×105
C.7.2×106
D.0.72×106
23.(10 分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外 购买若干次维修服务,每次维修服务费为 2000 元.每台机器在使用期间,如果维修次数 未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费 500 元; 如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费 5000 元,但无需支付工时费.某公司计划购买 1 台该种机器,为决策在购买机器时应同 时一次性额外购买几次维修服务,搜集并整理了 100 台这种机器在三年使用期内的维修 次数,整理得下表; 维修次数 8 9 10 11 12 频率(台数) 10 20 30 30 10 (1)以这 100 台机器为样本,估计“1 台机器在三年使用期内维修次数不大于 10”的概
A.72×104
B.7.2×105
C.7.2×106
D.0.72×106
【分析】用科学记数法表示较大的数时,一般形式为 a×10n,其中 1≤|a|<10,n 为整数,
据此判断即可.
【解答】解:将 720000 用科学记数法表示为 7.2×105.
故选:B.
3.(4 分)下列图形中,一定既是轴对称图形又是中心对称图形的是( )
A.等边三角形
B.直角三角形
2019年福建省中考数学试卷-答案(可编辑修改word版)

福建省2019年初中毕业会考、高级中等学校招生考试数学答案解析1.【答案】A2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】()(33)x x ①①12.【答案】1①13.【答案】1 20014.【答案】(1)2①15.【答案】1π①16.【答案】6+17.【答案】解:5,24,x y x y -=⎧⎨+=⎩①①①+②,得,()24)5(x y x y ①①①①①即,39x ①解得,3x ①把代入②,得,3x ①234y ⨯①①解得.2y ①①所以原方程组的解为32x y =⎧⎨=-⎩【考点】二元一次方程组的解法【考查能力】运算能力18.【答案】证明:∵四边形ABCD 是矩形,∴,90D B ∠∠︒==,AD CB =在和中,ADF △CBE △AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩①①①∴,ADF CBE △≌△∴.AF CE=【考点】矩形的性质,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质【考查能力】推理能力19.【答案】解:原式2(21)(1)x x x x--=-- 221(1)x x x x-+=-- 2(1)(1)x x x-=-- 2(1)(1)xx x =-⋅- (1)xx =-当时,原式.1x =1===+【考点】分式的混合运算,因式分解,二次根式的运算【考查能力】运算能力20.【答案】解:(1)即为所求作的三角形.A B C '''△(2)证明∵D ,E ,F 分别是三边AB ,BC ,CA 的中点,ABC △∴,111222DE AC EF AB FD BC =,=,=同理,.111''''''''''''222D E A C E F A B F D B C =,=,=∵,ABC A B C '''△∽△=''''AC AB BC A C A B B C =‘’,即111222=111''''222AC AB BC A C A B B C =‘’''''''DE EF FD D E E F F D ==∴DEF D E F '''△∽△【考点】尺规作图,相似三角形的性质与判定,三角形中位线定理【考查能力】推理能力21.【答案】解:(1)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴.60BAC ∠︒=由旋转性质得,,.DC AC =30DCE ACB ∠∠︒==∴,1180752()DAC ADC DCE ∠∠︒-∠︒===又,60EDC BAC ∠∠︒==∴.15ADE ADC EDC ∠∠-∠︒==(2)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴,12AB AC =∵F 是AC 的中点,∴,12BF FC AC ==∴.由旋转性质得,30FBC ACB ∠∠︒==,90AB DE DEC ABC ∠∠︒=,==,60BCE ACD ∠∠︒==∴,DE BF =延长BF 交EC 于点G ,则,90BGE GBC GCB ∠∠∠︒=+=∴,BGE DEC ∠∠=∴,DE BF A ∴四边形 BEDF 是平行四边形.【考点】图形的旋转,直角三角形,等腰三角形,等边三角形,三角形的内角和,平行四边形的判定【考查能力】运算能力,推理能力22.【答案】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又,所以37030688357-=>35m <依题意得,,308123)3(570m m -++=解得20m =故该车间的日废水处理量为20吨.(2)设该厂一天产生的工业废水量为吨.x ①当时,依题意得,,解得,所以.020x <≤83010x x +≤15x ≥1520x ≤≤②当时,依题意得,,解得,所以.20x >12202083010()x x ⨯-++≤25x ≤2025x <≤综上所述,,1525x ≤≤故该厂一天产生的工业废水量的范围在15吨到25吨之间.【考点】一元一次方程,一元一次不等式,反比例函数的性质,平均数的概念【考查能力】运算能力,推理能力23.【答案】解:(1)因为100台机器在三年使用期内维修的次数不大于100的台数为10+20+30=60,所以“100台机器在三年使用期内维修的次数不大于10”的频率为,60=0.6100故可估计“1台机器在三年使用期内维修的次数不大于10”的概率为0.6.(2)若每台都购买10次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2400024500250003000035000此时这100台机器维修费用的平均数124000102450020250003030000303500010100100y ⨯⨯⨯⨯⨯++++=,=27300若每台都购买 11 次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2600026500270002750032500此时这100台机器维修费用的平均数226000102650020270003027500303250010=100y ⨯⨯⨯⨯⨯++++,=27500因为,所以购买1台该机器的同时应一次性额外购买10次维修服务.12y y <【考点】概率,加权平均数,统计表【考查能力】运算能力,推理能力24.【答案】证明:(1)∵,AC BD ⊥∴,90AED ∠︒=在中,.Rt AED △90ADE CAD ∠︒∠=-∵,AB AC =∴A A AB AC=∴.90ACB ABC ADE CAD ∠∠∠︒∠===-在中,,ABC △180BAC ABC ACB ∠∠∠︒++=∴,即.()(180180290)BAC ABC ACB CAD ∠︒∠∠︒︒∠=-+=--2BAC CAD ∠=∠(2)∵,DF DC =∴,FCD CF ∠∠=∴,BDC FCD CFD ∠∠∠=+∴2BDC CFD∠∠=∵,且由(1)知,BDC BAC ∠∠=2BAC CAD ∠∠=∴,CFD CAD ∠∠=∵,CAD CBD ∠∠=∴,CFD CBD ∠∠=∴,CF CB =∵,AC BF ⊥∴,故垂直平分,BE EF =CA BF ∴,10AC AB AF ===设,则,在和中,,AE x =10CE x =-Rt ABE △Rt BCE △²²²²²AB AE BE BC CE -==-又∵,BC =∴,解得,(()22221010x x -=--6x =∴64AE CE =,=,∴,8BE ∵,,DAE CBE ∠∠=ADE BCE ∠∠=∴.ADE BCE △∽△∴AE DE AD BE CE BC==∴3,DE AD ==过点D 作,垂足为H .DH AB ⊥∵,11,1122ABD S AB DH BD AE BD BE DE =⋅=⋅=+=△∴故10116,DH =⨯335DH =在中,Rt ADH △6²²5AH AD DH -==∴112DH tan BAD AH ∠==【考点】圆的有关性质,等腰三角形的判定与性质,线段垂直平分线的判定与性质,解直角三角形,相似三角形的判定与性质,三角形面积等基础知识【考查能力】运算能力,推理能力25.【答案】解:(1)依题意,,,240b ac △=-=22b a-=所以,2440()a ac --=因为,所以,即满足的关系式为.0a ≠4c a =a c ,4c a =(2)①当时,直线为,它与轴的交点为.0k =l 1y =y (0)1,∵直线与轴平行,1y =x ∴等腰直角的直角顶点只能是,且是抛物线的顶点.过作,垂足为,则ABC △A A A AM BC ⊥M ,1AM =∴,故点坐标为,1BM MC AM ===A (1)0,∴抛物线的解析式可改写为【考点】一次函数和二次函数的图形与性质,等腰直角三角形的性质与判定,图形的对称【考查能力】运算能力,推理能力∴抛物线的解析式可改写为,2(1)y a x =-∵抛物线过点,所以,解得.()0,121(01)a =-1a =所以抛物线的解析式为,即.2(1)y a x =-221y x x =-+②设,则.()()1122,,,B x y C x y ()1,1D x -由得,2121y kx k y x x =+-⎧⎨=-+⎩2(2)0x k x k -++=因为22(2)440k k k =+-=+△>由抛物线的对称性,不妨设,则,12x x <1x =2x =所以,121x x <<设直线的解析式为,则有,解得AD y mx n =+101m n mx n =+⎧⎨-=+⎩111111m x n x ⎧=-⎪-⎪⎨⎪=⎪-⎩所以直线的解析式为.AD 111111y x x x =-+--因为()222221111111111x y x x x x x ⎛⎫---+=-+ ⎪---⎝⎭()()()212111111x x x x -⎡--+⎤⎣⎦=-()21111x x ⎫-+⎪⎪⎝⎭=-0=即,所以点在直线上.22111111y x x x =-+--()22,C x y AD 故对于每个给定的实数,都有三点共线.k ,,A C D。
2019-2020厦门市中考数学试题(带答案)

2019-2020厦门市中考数学试题(带答案)一、选择题1.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D2.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .15.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A .B .C .D .6.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°7.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形8.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°9.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠A BC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα11.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )A .B .C .D .12.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.15.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .17.若a ,b 互为相反数,则22a b ab +=________.18.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量 100 200 500 1000 2000 A出芽种子数961654919841965发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).x 在实数范围内有意义,则x的取值范围是_____.20.若式子3三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.24.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.A解析:A 【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.5.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D6.C解析:C 【解析】 【分析】依据∠1=25°,∠BAC =90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°. 【详解】如图,∵∠1=25°,∠BAC =90°, ∴∠3=180°-90°-25°=65°,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.7.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.B解析:B【解析】【分析】由AB∥CD,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB∥CD,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE平分∠BAC,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.9.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13 【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.15.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C ∴△A′AC 是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上,∴AC=A′C ,∴△A′AC 是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°. 16.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△ACB ∽△AGH ∴∴∴G解析:cm .【解析】试题解析:如图,折痕为GH ,由勾股定理得:AB==10cm , 由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,∴△ACB ∽△AGH , ∴, ∴, ∴GH=cm .考点:翻折变换17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab (a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm 根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
【水印已去除】2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷

2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)|﹣2019|等于()A.2019B.﹣2019C.D.﹣2.(4分)数据2060000000科学记数法表示为()A.206×107B.20.6×108C.2.06×108D.2.06×1093.(4分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(4分)将一副三角板按如图所示方式摆放,点D在AB上,AB∥EF,∠A=30°,∠F =45°,那么∠1等于()A.75°B.90°C.105°D.115°5.(4分)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣16.(4分)若一个多边形每一个内角都是150°,则这个多边形的边数是()A.6B.8C.10D.127.(4分)如图,在△ABC中,∠A是钝角,若AB=1,AC=3,则BC的长度可能是()A.π﹣1B.3C.D.8.(4分)在去年的体育中考中,某校6名学生的体育成绩统计如下表:则下列关于这组数据的说法错误的是()A.众数是18B.中位数是18C.平均数是18D.方差是29.(4分)如图,在矩形ABCD中,点E在CD上,且DE:CE=1:3,以点A为圆心,AE 为半径画弧,交BC于点F,若F是BC中点,则AD:AB的值是()A.6:5B.5:4C.6:D.:210.(4分)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转使∠DPG=∠DAC,且过D作DG⊥PG,连接CG,则CG 最小值为()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)计算:|﹣3|+=.12.(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB中点,若AB=5,BC=3,则sin∠ACD=.13.(4分)甲、乙袋中各装有2个相同的小球,分别标有数字1、2和2、3.现从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是.14.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,以AB为直径作⊙O,在上取一点D,使=2,则∠CBD=.15.(4分)如图,正方形ABCD的边长为4,G是BC边上一点.若矩形DEFG的边EF经过点A,GD=5,则FG长为.16.(4分)如图,已知点A(2,4)、P(1,0),B为y轴正半轴上的一个动点,以AB为边构造△ABC,使点C在x轴的正半轴上,且∠BAC=90°.若M为BC的中点,则PM 的最小值为.三、解答题(本大题共9小题,共86分)17.(8分)解不等式组并把解集在数轴上表示出来.18.(8分)化简:19.(8分)如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=,求AB的长.20.(8分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.21.(8分)如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)22.(10分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.23.(10分)某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=﹣2x+200.设小王第x天销售利润为W元.(1)直接写出W与x之间的函数关系式,井注明自变量x的取值范围;(2)求小生第几天的销售量最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?24.(12分)如图,AB是⊙O的直径,D,E为⊙O上位于AB异侧的两点,连结BD并延长至点C,使得CD=BD,连结AC交⊙O于点F,连接BE,DE,DF.(1)若∠E=35°,求∠BDF的度数.(2)若DF=4,cos∠CFD=,E是的中点,求DE的长.25.(14分)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y=2ax+b的“母函数”.(1)若一次函数y=2x﹣4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标.(2)若“子函数”y=x﹣6的“母函数”的最小值为1,求“母函数”的函数表达式.(3)已知二次函数y=﹣x2﹣4x+8的“子函数”图象直线l与x轴、y轴交于C、D两点,动点P为二次函数y=﹣x2﹣4x+8对称轴右侧上的动点,求△PCD的面积的最大值.2019年福建省厦门市、南平市、福州市、漳州市中考数学最后一卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【解答】解:|﹣2019|=2019.故选:A.2.【解答】解:数据2060000000科学记数法表示为2.06×109,故选:D.3.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项正确;C、是轴对称图形,也是中心对称图形,故本选项错误;D、不是轴对称图形,也不是中心对称图形,故本选项错误.故选:B.4.【解答】解:∵EF∥AB,∴∠E=∠EDB=45°,∴∠1=∠EDB+∠B=45°+60°=105°,故选:C.5.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.6.【解答】解:∵多边形的各个内角都等于150°,∴每个外角为30°,设这个多边形的边数为n,则30°n=360°,解得n=12.故选:D.7.【解答】解:根据三角形三边关系,第三边小于AB+AC=4,当∠A为直角时,AB,AC分别是两直角边,则第三边即斜边的长度为BC==,故<BC<4,只有C选项符合题意,故选:C.8.【解答】解:A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;D、这组数据的方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故本选项说法错误.故选:D.9.【解答】解:∵DE:CE=1:3,∴设DE=a,CE=3a,∴CD=4a=AB,∵F是BC中点,∴BF=BC=AD,∵以点A为圆心,AE为半径画弧,交BC于点F∴AE=AF∵AF2=BF2+AB2,AE2=DE2+AD2,∴+16a2=a2+AD2,∴AD=2a,∴AD:AB=:2故选:D.10.【解答】解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于H.∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴=,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HE时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=3,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC==5,DH==,∴CH==,∴EH==,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选:D.二、填空题(本大题共6小题,每小题4分,共24分)11.【解答】解:|﹣3|+=3+2=5.故答案为:5.12.【解答】解:∵在Rt△ABC中,∠ACB=90°,D是AB中点,∴CD=AD,∴∠A=∠ACD.∵AB=5,BC=3,∠ACB=90°,∴sin∠A==,∴sin∠ACD=.故答案为.13.【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故答案为:.14.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=BC,∴∠CBA=45°,∵在Rt△ABC中,∠ACB=90°,=2,∴∠ABD=30°,∴∠CBD=75°,故答案为:75°15.【解答】解:∵四边形ABCD是正方形,四边形DEFG是矩形,∴∠E=∠C=90°,∠EDA与∠CDG均为∠ADG的余角,∴△DEA∽△DCG,∴=,∵ED=FG,∴=,由已知GD=5,AD=CD=4,∴=,即FG=.故答案为:.16.【解答】解:当B在原点时,OA=2,BC=10,点M2(5,0);当C在原点是,B(0,5),M1(0,),点M在经过(5,0)和(0,)的直线上,设直线解析式为y=kx+b,∴∴,∴y=﹣x+;∵当PM⊥M1M2时,PM最小,∴△PMM2∽△M1OM2,∴=,∵M1M2=,∴PM=;故答案为;三、解答题(本大题共9小题,共86分)17.【解答】解:∵解不等式①,得x<3,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<3,在数轴上表示为:.18.【解答】解:原式=÷=•=.19.【解答】解:(1)∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE ∴△ABC≌△DBE∴∠BAC=∠CDF∵∠BAC+∠ACB=90°∴∠CDF+∠ACB=90°∴DF⊥AC,且点F是AC中点∴DF垂直平分AC∴AE=CE(2)∵△ABC≌△DBE∴BE=CE=∴CE=AE=2∴AB=AE+BE=2+20.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.21.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90°,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.答:二楼的层高BC约为5.8米.22.【解答】解:(1)扇形图中跳绳部分的扇形圆心角为360°×(1﹣50%﹣20%﹣10%﹣10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:36,40,5.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)==.23.【解答】解:(1)依题意:整理得(2)①当1≤x<50时,W=﹣2x2+180x+2000=﹣2(x﹣45)2+6050∵﹣2<0∴开口向下∴当x=45时,W有最大值为6050②当50≤x≤90时,W=﹣100x+10000∵﹣100<0∴W随x的增大而减小∴当x=50时,W有最大值为5000∵6050>5000∴当x=45时,W的值最大,最大值为6050即小王第45天的销售利润最大,最大利润为6050元(3))①当1≤x<50时,令W=4800,得W=﹣2(x﹣45)2+6050=4800解得x1=20,x2=70∴当W>4800时,20<x<70∵1≤x<50∴20<x<50②当50≤x≤90时,令W>4800,W=﹣100x+10000>4800解得x<52∵50≤x≤90∴50≤x<52综上所述:当20<x<50时,W>4800,即共有51﹣21+1=31天的销售利润超过4800元∴可获得奖金200×31=6200元即小王一共可获得6200元奖金24.【解答】解:(1)如图1,连接EF,BF,∵AB是⊙O的直径,∴∠AFB=∠BFC=90°,∵CD=BD,∴DF=BD=CD,∴=,∴∠DEF=∠BED=35°,∴∠BEF=70°,∴∠BDF=180°﹣∠BEF=110°;(2)如图2,连接AD,OE,过B作BG⊥DE于G,∵∠CFD=∠ABD,∴cos∠ABD=cos∠CFD=,在Rt△ABD中,BD=DF=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵BO=OE=3,∴BE=3,∴∠BDE=∠ADE=45°,∴DG=BG=BD=2,∴GE==,∴DE=DG+GE=2+.25.【解答】解:(1)由题意得:a=1,b=﹣4,故抛物线的表达式为:y=x2﹣4x+c,将点C的坐标代入得:c=3,故抛物线的表达式为:y=x2﹣4x+3=(x﹣2)2﹣1,故抛物线的顶点坐标为(2,﹣1);(2)“子函数”y=x﹣6的“母函数”为:y=x2﹣6x+c,∵y=(x2﹣12x)+x=(x﹣6)2﹣18+c,故﹣18+c=1,解得:c=19,故“母函数”的表达式为:y=x2﹣6x+19;(3)如图所示,连接OP,设点P(m,﹣m2﹣4m+8),由题意得:直线l的表达式为:y=﹣2x﹣4,故点C、D的坐标分别为(﹣2,0)、(0,﹣4),∴S△PCD=S△POC+S△OCD+S△POD=﹣m2﹣4m+8+4+2m=﹣(m+1)2+13,∵﹣1<0,∴S△PCD=有最大值,当m=﹣1时,其最大值为13.。
2019年福建中考数学试题(解析版)

{分值}4 {章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:二次函数y=ax2+bx+c的性质} {考点:二次函数的系数与图象的关系} {难度:3-中等难度} {类别:易错题}
{答案} B
{解析}本题考查了多边形的内角和,解题的关键是多边形的外角和公式的记忆.先由正多边形
的一个外角是36゜,然后再套入 n 边形外角和公式列方程计算即可.由多边形的外角公式,得
36°n=360°, n =10,故选择 B.
{分值}4
{章节:[1-11-3]多边形及其内角和}
{考点:多边形}
{考点:多边形的内角和}
A. x+2x+4x=34 685
B. x+2x+3x=34 685
C. x+2x+2x=34 685
11 D. x+ x+ x=34 685
24
{答案}A
{解析}本题考查了一元一次方程的应用,关键是审清题意,抓住等量关系列方程即可
{分值}4
{章节:[1-3-3]实际问题与一元一次方程}
{考点:一元一次方程的应用(其他问题)}
{题目}14. (2019年福建)在平面直角坐标系xOy中,□OABC的三个顶点O(0,0)、A(3,0) 、
B(4,2),则其第四个顶点是是_______. {答案} (1,2) {解析}本题考查了用样本估计总体,解题的关键根据喜欢甲图案的学生60名和所占的百分比 60 ×100%=60%,进而用样本估计总体2000×60%=1200。 100 {分值}4 {章节:[1-10-1]统计调查} {考点:样本的代表性} {考点:用样本估计总体} {类别:常考题} {难度:2-简单}
2019年福建省中考数学试卷与解析

2019年福建省中考试卷及解析、选择题1•计算2斗(一 1尸的姑果是(、 A .5B.4C 3D.22•北京故宫的占地面駅约为720 0曲,将了20 00囲科芋记款进表示为(:>. A.72xl04B.7.2xl (pC.7.2«10eD, 0.72^0®3.下列團形申,一定既是抽对蘇團形又逻申心对称困形的是(). A.等过三角形 B 直角三用形C •平行西边形 D.正君形至已知正寥边彫的亠金外角为3护,剧该止多边形鬧边数为().A.12B.10C.ED.66一如图是某班甲、乙、丙三位同学査近弐次数学成绩及其曲在班级相应平均分的折践统计團,則下列 割斷措误的是().I1CXA 甲的敖学成绩為于淮级平均分,且成纷比较穂定 旷B 一乙的戲学咸绩在班圾平均分附近淡动’且比丙好 MC 芮的戟学戒绩低于班綴年均分,但嚴綺連次撮嘉 “D 一就甲r J 丙三个人而言,匸的歡芋成绩戴不穩(7.下列运牡正蹦的爰(>,^.(1<1~ aE_(2出戶亦C. a~^a= d口一(口子一(一J )M )8.《增删算法统宗》记载:“有金学生资性好,一部孟子三日了,琴日墙诟一倍多,问若毎B 读多少?9 其大意是:青金学生天赍廳三天读宪一部《孟子》,每天闻读的字数是前一天的两倨,问他莓 天各读多少个字?已鈕《孟子》-书共有34阴玲字十设他第一天读x 个字,则下西所列方程正璋的 是()-A.A +2X +4尸弭 685B.X +2J +3J X =34 685C. rl-2.r+2v=34 685D. -d —JT + — x=34 6852 49如團,尸八 出是0O 切嬪.,土 B 为切点,点(?在G )O 上, 且ZACB=55^ 则N/V 出等于(). A.55c B.70d CU0& D125c壬视万向(第他10.若二次函敕的圏象经述AQn』)、巩。
莎卜C(3—injt). 0(^2 :刃、E(2:yQ『则y“兀、旳的大小芙系是().A. >i<护卫 E.厘弋邸卫U y3<护月 D. y2<护月二、填空题(每小题4分,共24分)11.____________________ 因式分解:A2-9-■*4 - ~亠亠、、/t C liL2.如图,数轴上仏呂两点所表示的数分别走一4和2, ---- ---------------x——L*_4 u 2点JT是线段川?的中点,則点「所羞示的数是___________ . (第12□ ■某校挺集校运会合徽,遲遶出甲、乙、丙三种图案-为了解轲4+圏案更登欢迎,随机调蚩了该校100名学生,其中60名同学專说甲因案,芝该校共有2000人,權据所学妁统计知识可以倍计该校喜欢1F图案的学生有人.14.中在平面直甬生昏系疋v中.n()ABC的三个顶点0(00)、川30)、0(4,2),则其弟四个顶点是是—・15.如图,边长为2的丘方形ABCD申心与半径为2的0O的国心董合,E、F分别是E1的延悅与0O的交点剧图中阴影部分的面积是 ________ .(结杲保蛰;T)316,如图,菱形ABCD顶点J在例函數尸-(.v>0)的图象上,函数x尸±0tA3, Q0)的图象关于直茨片匚对称#且经过点以D x悶点.若八B=2, ZDAB=30°,则£的值为_______________________ ・三、解答题(共X6分)17-悔小题满分&分)解方旌组;$一2 '|2.r+v = 4(M15 (第1618.准小题满分8分)如因*点&厂分别是拒形ABCD的边皿、CD上的一点+且Dr=BE.求证:AF=CE-19.体小题满分呂分)先化简,再求值:a—i)F&—主二2),其中x-vT+i20*爲小题满分8分)如图,已知△ABC为和点(1)以点/T为顶点求作色AEC气使△片迟Cs^ ABC.(尺规作图,保留作團痕迹,不写作法)(2)设D. E. F分别是卫ABC三边人風BC. AC的中点,D\ E\F分剂是你所作的仏A7TC'三边ATT、B'C\ A r Cr的中点,求证:氐DEFS& D£F・21.界』卜题港分$分)A RtAABC中,ZABC-90Q f Z/?AC-30,J将厶ABC点/!顺时豺旗L轻一定的南更u得到△片E0 点B、C的对应点分别是氐D (I)如图1,書点Q恰好在片厂上甘<求zrnr的度数;Q)如因2,若戊之小时*点尸是边申点,求证:V9z4^ BFDE是平行四边形.22■(本小懸満分10分)某工厂为费彻落实“绿水痛山就是金山锻山叫勺夏最遲念,投资组蹇了日茂贰处理蚩沟加吨的厦爪处邂车间,討该厂工业隕术谨行无害化处理.伸雀盍工厂¥产炖棧的扩丸」该牟间捋常无法完氏当天匚业废氷的处湮倍务,需姜将超出日暖水处理蚤的废水立给第三方企业处理.已知该车间处理厦於,毎天需固定成本⑷元,并且年处理一吨废水还需其他费用&元:将废水交给第三方企业处理,每吨需支付12无.根据记氧5^21 S,该厂产生工业废水笳吨+共花费废水处遽费370乙(1)求该牟间的日废水处理量期;(2)为实现可持渎发展*走綾色发曳之璐,工厂合理控鬣了生产规橫’使殍辛天废水赴理的平均赞用不超过JO元伽打试计算该厂一天产生的工业废水量的范亂2王(本小題满分10分)某种机器使用期为三年*买方在购进机器甘・可臥给各台机券分别一次性额外购买若干次錐修服务* 每次维修服务费为2000元.毎台机器在使用期间,如果维傷次数未超过购机时购买的维修腹务次数,毎次实陥绒修时还需向維修人员支甘工时费500元;如果维修次歎趨辻机时购买的线修服务次數,超出部分每矢雉修时需支付维修服务费MOO元,但无需支ft工时费某小司计划购窝1台该种机送,为决箕在购买机器时应同时一炭性额外购买几次维修服务,喪集并整理了100台这种机需在三年使用期內的维修次数,整理得下表;⑴以这100台机器为样直,佶计"台机器在二车使用取内维修次戟不尢于RT'的慨率;(2)试以这100杠器维修費用的平均數作为决策依据,说明购买1台该机器的同时应一次性额外购10次迁是11次维修狼务?24.宙小题满分12分)如图,四边形ABCD内接于0。
2019年福建厦门中考数学试卷及答案

【导语】⽆忧考中考频道⼩编提醒参加2019中考的所有考⽣,福建厦门2019年中考将于6⽉中旬陆续开始举⾏,福建厦门中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,⽆忧考中考频道将在本次中考结束后陆续公布2019年福建厦门中考数学试卷及答案信息。
考⽣可点击进⼊福建厦门中考频道《、》栏⽬查看福建厦门中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学⽆忧考为了能让⼴⼤考⽣及时⽅便获取福建厦门中考数学试卷答案信息,特别整理了《2019福建厦门中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年福建厦门中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
厦门市2019年中考数学试题含答案(word版)

2019年厦门市初中毕业及高中阶段各类学校招生考试数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分.3.可直接用2B 铅笔画图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 反比例函数y =1x的图象是A . 线段B .直线C .抛物线D .双曲线2. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有A .1种B . 2种C . 3种D .6种3. 已知一个单项式的系数是2,次数是3,则这个单项式可以是 A . -2xy 2 B . 3x 2 C . 2xy 3 D . 2x 34. 如图1,△ABC 是锐角三角形,过点C 作CD ⊥AB ,垂足为D ,则点C 到直线AB 的距离是 A . 线段CA 的长 B .线段CD 的长 C . 线段AD 的长 D .线段AB 的长 5. 2—3可以表示为A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)6.如图2,在△ABC 中,∠C =90°,点D ,E 分别在边AC ,AB 上, 若∠B =∠ADE ,则下列结论正确的是A .∠A 和∠B 互为补角 B . ∠B 和∠ADE 互为补角C .∠A 和∠ADE 互为余角D .∠AED 和∠DEB 互为余角图27. 某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该商店促销方法的是A . 原价减去10元后再打8折B . 原价打8折后再减去10元C . 原价减去10元后再打2折D . 原价打2折后再减去10元8. 已知sin6°=a ,sin36°=b ,则sin 2 6°=A . a 2B . 2aC . b 2D . b9.如图3,某个函数的图象由线段AB 和BC 组成,其中点 A (0,43),B (1,12),C (2,53),则此函数的最小值是A .0B .12C .1D .53图310.如图4,在△ABC 中,AB =AC ,D 是边BC 的中点,一个圆过点A ,交边AB 于点E ,且与BC 相切于点D ,则该圆的圆心是 A .线段AE 的中垂线与线段AC 的中垂线的交点 B .线段AB 的中垂线与线段AC 的中垂线的交点 C .线段AE 的中垂线与线段BC 的中垂线的交点 D .线段AB 的中垂线与线段BC 的中垂线的交点图4二、填空题(本大题有6小题,每小题4分,共24分)11.不透明的袋子里装有1个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出一个球,则摸出红球的概率是 . 12.方程x 2+x =0的解是 .13.已知A ,B ,C 三地位置如图5所示,∠C =90°,A ,C 两地的距离是B ,C 两地的距离是3 km ,则A ,B 两地的距离是 km ;若A 地在C 地的正东方向,则B地在C 地的 方向.14.如图6,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点, 图5若AC =10,DC =25,则BO = ,∠EBD 的大小约为 度 分.(参考数据:tan26°34′≈12)15.已知(39+813)×(40+913)=a +b ,若a 是整数,1<b <2,则a = . 图616.已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = (用只含有k 的代数式表示). 三、解答题(本大题有11小题,共86分)17.(本题满分7分)计算:1-2+2×(-3)2 . 18.(本题满分7分)在平面直角坐标系中,已知点A (-3,1),B (-2,0)C (0,1),请在图7中画出△ABC ,并画出与△ABC关于原点O 对称的图形. 图7 19.(本题满分7分)计算:xx +1+x +2x +1.20.(本题满分7分)如图8,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC , AD =3 ,AB =5,求DEBC的值.21.(本题满分7分)解不等式组⎩⎨⎧2x >2,x +2≤6+3x .22.(本题满分7分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?23.(本题满分7分)如图9,在△ABC 中,AB =AC ,点E ,F 分别是边AB ,AC 的中点,点D 在边BC 上. 若DE =DF ,AD =2,BC =6,求四边形AEDF 的周长.图924.(本题满分7分)已知实数a ,b 满足a -b =1,a 2-ab +2>0,当1≤x ≤2时,函数y =ax (a ≠0)的最大值与最小值之差是1,求a 的值.25.(本题满分7分)如图10,在平面直角坐标系中,点A (2,n ),B (m ,n )(m >2),D (p ,q )(q <n ),点B ,D 在直线y =12x +1上.四边形ABCD 的对角线AC ,BD 相交于点E ,且AB ∥CD ,CD =4,BE =DE ,△AEB 的面积是2.求证:四边形ABCD 是矩形.图1026.(本题满分11分)已知点A (-2,n )在抛物线y =x 2+bx +c 上. (1)若b =1,c =3,求n 的值; (2)若此抛物线经过点B (4,n ),且二次函数y =x 2+bx +c 的最小值是-4,请画出点P (x -1,x 2+bx +c )的纵坐标随横坐标变化的图象,并说明理由.27.(本题满分12分)已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB,延长DA,CB相交于点E.(1)如图11,EB=AD,求证:△ABE是等腰直角三角形;(2)如图12,连接OE,过点E作直线EF,使得∠OEF=30°.当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.图112019年厦门市初中毕业及高中阶段各类学校招生考试数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 12 12. 0,-1 13. 5;正北14. 5,18,26 15. 1611 16. 2k 2-k三、解答题(本大题共9小题,共86分) 17.(本题满分7分)解: 1-2+2×(-3)2=-1+2×9=17. ……………………………7分 18.(本题满分7解:……………………………7分19.(本题满分7分) 解:xx +1+x +2x +1=2x +2x +1……………………………5分 =2 ……………………………7分 20.(本题满分7分)解:∵ DE ∥BC ,∴ △ADE ∽△ABC . ……………………………4 ∴ DE BC =ADAB . ……………………………6分 ∵ AD AB =35,∴ DE BC =35. ……………………………7分21.(本题满分7分)解:解不等式2x >2,得x >1. ……………………………3分解不等式x +2≤6+3x ,得x ≥-2. ……………………………6分不等式组⎩⎨⎧2x >2,x +2≤6+3x的解集是x >1. ……………………………7分22.(本题满分7分)解:由题意得,甲应聘者的加权平均数是6×87+4×906+4=88.2. ……………………………3分乙应聘者的加权平均数是6×91+4×826+4=87.4. ……………………………6分∵88.2>87.4,∴甲应聘者被录取. ……………………………7分 23.(本题满分7分)解:∵AB =AC ,E ,F 分别是边AB ,AC 的中点,∴AE =AF =12AB . ……………………………1分又∵DE =DF ,AD =AD ,∴△AED ≌△AFD . ……………………………2分 ∴∠EAD =∠F AD .∴AD ⊥BC , ……………………………3分 且D 是BC 的中点.在R t △ABD 中,∵E 是斜边AB 的中点,∴DE =AE . ……………………………6分 同理,DF =AF .∴四边形AEDF 的周长是2AB . ∵BC =6,∴BD =3.又AD =2,∴AB =13.∴四边形AEDF 的周长是213. ……………………………7分 24.(本题满分7分)解1:由a -b =1,a 2-ab +2>0得,a >-2. ……………………………2分∵a ≠0,(1)当-2<a <0时, ……………………………3分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2 ……………………………4分 不合题意,舍去.(2)当a >0时, ……………………………5分 在1≤x ≤2范围内y 随x 的增大而减小,∴ a -a2=1.∴ a =2. ……………………………6分 综上所述a =2. ……………………………7分解2:(1)当a <0时, ……………………………1分 在1≤x ≤2范围内y 随x 的增大而增大, ∴ a2-a =1. ∴ a =-2. ……………………………2分 ∴ b =-3.而a 2-ab +2=0,不合题意,∴a ≠-2. ……………………………3分 (2)当a >0时, ……………………………4分 在1≤x ≤2范围内y 随x 的增大而减小, ∴ a -a2=1.∴ a =2. ……………………………5分 ∴ b =1. 而a 2-ab +2=4>0,符合题意,∴ a =2. ……………………………6分 综上所述, a =2. ……………………………7分25.(本题满分7分)解1:∵ AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分 ∴ AB =CD =4.∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4). ∵△AEB 的面积是2,∴△AEB 的高是1. ……………………………4分 ∴平行四边形ABCD 的高是2. ∵ q <n , ∴q =2.∴p =2, ……………………………5分 即D (2,2). ∵点A (2,n ),∴DA ∥y 轴. ……………………………6分∴AD ⊥CD ,即∠ADC =90°.∴四边形ABCD 是矩形. ……………………………7分解2:∵AB ∥CD ,∴∠EAB =∠ECD ,∠EBA =∠EDC . ∵ BE =DE ,∴ △AEB ≌△CED . ……………………………1分∴ AB =CD =4. ∵AB ∥CD ,∴四边形ABCD 是平行四边形. ……………………………2分 ∵A (2,n ),B (m ,n )(m >2), ∴ AB ∥x 轴,且CD ∥x 轴.∵ m >2,∴m =6. ……………………………3分 ∴n =12×6+1=4.∴ B (6,4).过点E 作EF ⊥AB ,垂足为F , ∵△AEB 的面积是2,∴EF =1. ……………………………4分 ∵ q <n ,∴点E 的纵坐标是3. ∴点E 的横坐标是4.∴点F 的横坐标是4. ……………………………5分 ∴点F 是线段AB 的中点.∴直线EF 是线段AB 的中垂线.∴EA =EB . ……………………………6分 ∵四边形ABCD 是平行四边形, ∴AE =EC ,BE =ED .∴AC =BD .∴四边形ABCD 是矩形. ……………………………7分 26.(本题满分11分)(1)解:∵ b =1,c =3,∴ y =x 2+x +3. ……………………………2分 ∵点A (-2,n )在抛物线y =x 2+x +3上,∴n =4-2+3 ……………………………3分 =5. ……………………………4分 (2)解:∵点A (-2,n ),B (4,n )在抛物线y =x 2+bx +c 上,∴⎩⎨⎧4-2b +c =n ,16+4b +c =n .∴b =-2.∴顶点的横坐标是-b2=1.即顶点为(1,-4). ∴-4=1-2+c .∴c =-3. ……………………………7分∴P (x -1,x 2-2x -3).∵将点(x ,x 2-2x -3)向左平移一个单位得点P (x -1,x 2-2x -3), ∴将点(x ,x 2-2x -3)的纵坐标随横坐标变化的函数的图象向左平移 一个单位后可得点P (x -1,x 2-2x -3)的纵坐标随横坐标变化的函 数的图象. ……………………………8分 设p =x -1,q =x 2-2x -3,则q =p 2-4.画出抛物线q =p 2-4的图象. ……………………………11分 27.(本题满分12分)(1)证明:∵四边形ABCD 内接于⊙O ,∠ADC =90°,∴∠ABC =90°.∴∠ABE =90°. ……………………………1分 ∵AC 平分∠DCB ,∴∠ACB =∠ACD . ……………………………2分 ∴AB =AD . ……………………………3分 ∵EB =AD ,∴EB =AB . ……………………………4分∴△ABE 是等腰直角三角形. ……………………………5分(2)直线EF 与⊙O 相离.证明:过O 作OG ⊥EF ,垂足为G . 在Rt △OEG 中, ∵∠OEG =30°,∴OE =2OG . ……………………………6分∵∠ADC =90°,∴AC 是直径. 设∠ACE =α,AC =2r . 由(1)得∠DCE =2α,又∠ADC =90°, ∴∠AEC =90°-2α. ∵α≥30°,∴(90°-2α)-α≤0. ……………………………8分 ∴∠AEC ≤∠ACE .∴AC ≤AE . ……………………………9分 在△AEO 中,∠EAO =90°+α, ∴∠EAO >∠AOE .∴EO >AE . ……………………………10分 ∴EO -AE >0.由AC ≤AE 得AE -AC ≥0. ∴EO -AC =EO +AE -AE -AC=(EO -AE )+(AE -AC )>0. ∴EO >AC . 即2OG ≥2r .∴OG >r . ……………………………11分 ∴直线EF 与⊙O 相离. ……………………………12分。
福建省2019年中考数学真题试题(A卷,含解析)

福建省2019年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC 有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(4.00分)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱C.长方体D.四棱锥【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.(4.00分)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.6【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.(4.00分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.(4.00分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.(4.00分)已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.(4.00分)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.(4.00分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.(4.00分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.△ABC=AC•BC=m【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.∵S△ABC=AC•BC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC 有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴PA平分∠MPN.。
2019年福建省中考数学试题及参考答案(word解析版)

2019年福建省中考数学试题(满分150分,考试时间120分钟)第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.计算22+(﹣1)0的结果是()A.5 B.4 C.3 D.22.北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.已知正多边形的一个外角为36°,则该正多边形的边数为()A.12 B.10 C.8 D.66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685 C.x+2x+2x=34685 D.x+x+x=34685 9.如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E (2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分。
2019年福建省中考数学试题(含解析)

2019年福建省初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.(2019福建省,1,4分)计算22+(-1)0的结果是( ) . A .5 B .4 C .3 D .2 【答案】A【解析】原式=4+1=5故选择A .【知识点】有理数的运算;乘方;零指数次幂;2.(2019福建省,2,4分)北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ). A .72×104 B .7.2×105 C .7.2×106 D .0.72×106 【答案】B【解析】因为720 000=7.2×100000=7.2×105,故选项B 正确. 【知识点】科学记数法; 3.(2019福建省,3,4分)下列图形中,一定既是轴对称图形又是中心对称图形的是( )A .等边三角形B .直角三角形C .平行四边形D .正方形 【答案】D【解析】等边三角形是轴对称不是中心对称选,故A 选项错误;直角三角形既不是轴对称也不是中心对称图形,故B 选项错误;平行四边形是中心对称图形而不是轴对称图形,故C 选项错误;正方形既是轴对称图形又是中心对称图形,D 选项正确.故选D【知识点】轴对称图形;中心对称图形; 4.(2019福建省,4,4分)右图是由一个长方体和一个球组成的几何体,它的主视图是( )【答案】C【解析】因为球体的主视图是圆形,长方体的主视图是一个长方形,再根据摆放的位置和大小可以判断出C 选项正确.【知识点】三视图;主视图; 5.(2019福建省,5,4分)已知正多边形的一个外角为36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .6 【答案】B【解析】根据正多边形的外角和360°,且正多边形的每个外角都相等,则边数n =36036︒︒=10,故选项B 正确. 【知识点】正多边形的性质;多边形的外角和; 6.(2019福建省,6,4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( )A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳主视方向 D . C . A . B .■▲■▲▲■▲■■▲■▲54321060708090100数学成绩/分次数班级平均分丙乙甲【答案】D【解析】根据折线统计图可以看出A 、B 、C 选项均是正确的.D 选项就甲、乙、丙三个人的数学成绩而言,丙的波动幅度较大,所以应该是丙的数学成绩最不稳,所以D 错误,故选择D . 【知识点】折线统计图 7.(2019福建省,7,4分)下列运算正确的是( )A .a ·a 3= a 3B .(2a )3=6a 3C .a 6÷a 3= a 2D .(a 2)3-(-a 3)2=0 【答案】D【解析】A .a ·a 3=a 4,故A 错误;B .(2a )3=8a 3,故B 错误;C .a 6÷a 3= a 3,故C 错误;D .(a 2)3-(-a 3)2=a 6-a 6=0,D 正确,故选D .【知识点】同底数幂的乘除法;积的乘方;幂的乘方; 8.(2019福建省,8,4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A . x +2x +4x =34 685 B .x +2x +3x =34 685 C . x +2x +2x =34 685 D .x +21x +41x =34 685 【答案】A【解析】设他第一天读x 个字,则第二天读2x 个字,第三天读4x 个字,由题意可列方程x +2x +4x =34 685. 【知识点】一元一次方程; 9.(2019福建省,9,4分)如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上, 且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°【答案】B【思路分析】连接OA 、OB ,利用同弧所对的圆心角等于圆周角的2倍求出∠AOB 的度数,再根据切线的性质可以得到∠OAP =∠OBP =90°,由四边形的内角和360°可以求出∠APB 的度数.【解题过程】解:连接OA 、OB ,∵PA 、PB 是⊙O 切线,A 、B 为切点,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∵∠ACB =55°,∴∠AOB =2∠ACB =110°,∴∠APB =360° -110°-90°-90°=70°.O PCB A (第9题)O PCBA【知识点】圆周角定理;切线的性质;四边形内角和;10.(2019福建省,10,4分)若二次函数y =|a |x 2+bx +c 的图象经过A (m ,n )、B (0,y 1)、C (3-m ,n )、D (2, y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是( )A .y 1< y 2< y 3B . y 1 < y 3< y 2C .y 3< y 2< y 1D . y 2< y 3< y 1 【答案】D【思路分析】利用A (m ,n )、C (3-m ,n )两点代入二数函数可以得到b =-3|a |,所以对称轴为x =32,因为|a |>0,对称轴左侧y 随x 的增大而减小,对称轴右侧y 随x 的增大而增大,再根据0、2、2三个数的大小以及对称性,就可以比较出y 1、y 2、y 3的大小关系.【解题过程】解:把A (m ,n )、C (3-m ,n )两点分别代入y =|a |x 2+bx +c ,得|a |m 2+bm =|a |()23m -+b (3-m ),整理得b =-3|a |,对称轴x =-2b a =32,∵|a |>0,开口向上,∴在对称轴左侧y 随x 的增大而减小,对称轴右侧y 随x 的增大而增大,∵0<2<32<3-2<2,∴y 2< y 3< y 1. 【知识点】二次函数的图象;二次函数的性质;对称轴二、填空题:本大题共6小题,每小题4分,共24分. 11.(2019福建省,11,4分)因式分解:x 2-9= . 【答案】( x +3)( x -3)【解析】利用平方差公式进行因式分解,则原式=x 2-32=( x +3)( x -3). 【知识点】平方差公式;因式分解;12.(2019福建省,12,4分)如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .【答案】-1【解析】∵点C 是线段AB 的中点,∴AC =BC ,设C 所表示的数为x ,则有x -(-4)=2-x ,整理得2x =-2,解得x =-1.【知识点】数轴;数轴上表示两点间的距离; 13.(2019福建省,13,4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎, 随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该 校喜欢甲图案的学生有 .【答案】1200人【解析】60100×2000=1200人. 【知识点】样本;统计 2-4CB A (第12题)14.(2019福建省,14,4分)在平面直角坐标系xOy 中,□OABC 的三个顶点O (0,0)、A (3,0) 、 B (4,2),则其第四个顶点是 . 【答案】(1,2)【解析】如图,过C 、B 分别作x 轴的垂线,垂足分别为D 、E ,可证△OCD ≌△ABE ,∴CD =BE =2,OD =AE =1,∴C (1,2) .E D yxC OB (4,2)A (3,0)【知识点】平行四边形的性质;全等三角形的判定和性质;15.(2019福建省,15,4分)如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是 . (结果保留π)【答案】π-1【思路分析】可以利用图形的中心对称性质,阴影部分的面积是圆与正方形的面积差的14,即可求解. 【解题过程】解:分别延长DC 、CB 交圆于G 、H 两点,∵正方形和圆都是中心对称图形,两者的中心重合, 所以该图为中心对称图形,∴阴影部分的面积=14(O ABCD S S -e 正方形)=14(4π-4)=π-1. HG【知识点】中心对称图形;圆的面积;正方形的面积16.(2019福建省,16,4分)如图,菱形ABCD 顶点A 在例函数y =x 3(x >0)的图象上,函数y =xk(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .(第15题)DCE FAB O【答案】6+23【思路分析】根据题意可知直线AC 的解析式为y =x ,因为点A 在例函数y =x3(x >0)的图象上,联立可以求出点A 的坐标,由∠AOG =∠CAE =45°,∠CAB =12∠DAB =15°,得∠BAE =30°,在Rt △ABE 中利用三角形函数可以分别求出BE 和AE 的长,从而求得点B 的坐标,代入即可求得k 值.【解题过程】解:作出直线AC ,过A 、B 分别作出x 轴的垂线,垂足为G 、H ,过A 作AE ⊥BH 于E ,∵函数y =k x (k >3,x >0)的图象关于直线AC 对称,∴直线AC 的解析式为y =x ,∵点A 在 y =3x (x >0)的图象上,∴2x =3,解得x =3(负舍去)∴A (3,3),∵AE ∥x 轴,∴∠AOG =∠CAE =45°,∵菱形ABCD ,∠CAB =12∠DAB =15°,∴∠BAE =30°,在Rt △ABE ,∵AB =2,∴BE =12AB =1,AE =32AB =3,∴B (23,3+1),把B (23,3+1)代入y =kx得k =6+23. EHG【知识点】反比例函数的解析式;轴对称;菱形的性质;锐角三角函数;三、解答题(本大题共9小题,满分86分,解答应写出文字说明、证明过程或演算步骤) 17.(2019福建省市,17,8分)解方程组:⎩⎨⎧=+=-425y x y x【思路分析】利用加法消元消去y ,求得x 的值,再代入原方程组中的任意一个方程中求得y 值即可.【解题过程】解:524x y x y -=⎧⎨+=⎩①②,①+②得,3x =9,解得x =3,将x =3代入①,得3-y =5,解得y =-2. 所以原方程组的解为32x y =⎧⎨=-⎩.【知识点】解二元一次方程组18.(2019福建省市,18,8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上,且DF =BE .(第16题)yxDCBA O求证:AF=CE .FEDCBA【思路分析】根据矩形对边平行且相等,得出DC 平行且等于AB ,结合DF =BE 可证明四边形AFCE 为平行四边形,即可得出结论. 也可利用证明△ADF ≌△△CBE ,证明AF=CE .【解题过程】证明:∵四边形ABCD 为矩形,∴DC ∥AB ,DC =AB ,∵DF =BE ,∴DC -DF =AB -BE ,即CF =AE ,∵FC ∥AE ,∴四边形AFCE 为平行四边形,∴AF=CE .【知识点】矩形的性质;平行四边形的判定及性质;全等三角形的判定与性质19.(2019福建省市,19,8分)先化简,再求值:(x -1)÷(x -xx 12-),其中x =2+1. 【思路分析】先通分,然后利用因式分解及约分,进行化简,最后代入x 的值,再利用分母有理化知识化简求值.【解题过程】解:原式=(x -1)÷2(21)x x x --=(x -1)÷221x x x -+=(x -1)÷2(1)x x-=(x -1)·2(1)x x -=1x x -. 当x =2+1时,原式=21(21)1++-=212+=1+22. 【知识点】分式混合运算;二次根式运算;因式分解20.(2019福建省市,20,8分)已知△ABC 为和点A',如图. (1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC ,△A'B'C'的面积等于△ABC 面积的4倍; (尺规作图,不写作法,保留作图痕迹)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF ∽△D'E'F'.A'C BA【思路分析】(1)利用相似三角形面积比等于相似比平方,作△A'B'C'使△A'B'C'的各边是△ABC 中各边的2倍;(2)利用三角形中位线定理,结合相似三角形对应边成比例,可得△DEF 的各边与△D'E'F'的各边对应成比例,即可得出结论.【解题过程】(1)如图:C'A'B'CBA则△A'B'C'为所求作图形.(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=12AC,EF=12AB,FD=12BC,同理,D'E'=12A'C',E'F'=12A'B',F'D'=12B'C',∵△ABC∽△A'B'C',∴ACA C''=ABA B''=BCB C'',∴1212ACA C''=1212ABA B''=1212BCB C'',即DED E''=EFE F''=FDF D'',∴△DEF∽△D'E'F'.【知识点】尺规作图;相似三角形性质与判定;三角形中位线21.(2019福建省市,21,8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2) 若α=60°,点F是边AC中点,如图2,求证:四边形BFDE是平行四边形.【思路分析】(1)根据旋转后图形的形状大小不变,得△ADC为等腰三角形,利用等腰三角形性质求底角度数,再利用直角三角形两个锐角互余,即可求出∠ADE的大小;(2)根据F是AC中点,利用直角三角形斜边中线等于斜边一半,可得DE=AB=BF,再利用等腰三角形三线合一证明BF⊥CE,从而得出BF∥DE,即可得出四边形BFDE 是平行四边形.【解题过程】解:(1)根据旋转性质得:∠DCE=∠ACB=30°,∠DEC=∠ABC=90°,CA=CD,∴∠ADC=∠DAC=1802DCE︒-∠=75°,∵∠EDC=90°-∠ACD=60°,∴∠ADE=∠ADC-∠EDC=15°;(2)延长BF交CE于点G.在Rt△ABC中,∠ACB=30°,∵点F是边AC中点,∴BF=FC=12AC,∴∠FBC=∠ACB=30°,由旋转性质AB=DE,∠DEC=∠ABC=90°,∠BCE=∠ACD=60°,∴DE=BF,∵∠BGE=∠GBC+∠ECB=90°,∴∠DEC=∠BGE=90°,∴BF∥DE,∴四边形BFDE是平行四边形.【知识点】图形的旋转;直角三角形性质;等边三角形性质与判定;平行四边形判定22.(2019福建省市,22,10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元. (1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.【思路分析】(1)根据每天花费废水处理费370元,判断每天处理废水量是否8元,若超过则需要交给第三方企业处理,然后列式求出m 的值;(2)分为该车间每天自己处理废水,和将废水交给第三方企业处理,两种情况列不等式分别讨论,然后取其公共部分,即可求得该厂一天产生的工业废水量的范围. 【解题过程】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又3530370 =768>8,所以m <35,依题意得,30+8m +12(35-m )=370,解得m =20,故该车间的日废水处理量为20吨.(2)设一天生产废水x 吨.①当0<x ≤20时,依题意得,8x +30≤10x ,解得x ≥15,所以15≤x ≤20.②当x >20时,依题意得,12(x -20)+20×8+30≤10x ,解得x ≤25,所以20<x ≤25. 综上所述,15≤x ≤25.故该厂一天产生的工业废水量的范围在15吨到25吨之间. 【知识点】一元一次方程;一元一次不等式;反比例函数 23.(2019福建省市,23,10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修需支付维修服务费5000元,但无需支付工时费.某公司计划购实1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;维修次数 8 9 10 11 12 频率(台数)1020303010(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?【思路分析】(1)根据表格用维修次数小于等于10的机器总数除以总台数即可;(2)分别求出购买10次维修费用,与11次维修费用的总费用,通过比较,选择维修费用较少的即可. 【解题过程】解:(1)因为“100台机器在三年使用期内维修次数不大于10”的台数为10+20+30=60,所以“100台机器在三年使用期内维修次数不大于10”的概率为60100=0.6.故“1台机器在三年使用期内维修次数不大于10”的概率为0.6;(2)若每台都购买10次维修服务,某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用2400024500250003000035000此时这100台机器维修费用的平均数为:y 1=1100(24000×10+24500×20+25000×30+30000×30+35000×10)=27300, 若每台都购买11次维修服务:某台机器使用期内维修次数8 9 10 11 12 该台机器维修费用26000 26500 27000 27500 32500此时这100台机器维修费用的平均数为:y 2=1100(26000×10+26500×20+27000×30+27500×30+32500×10)=27500, 因为y 1<y 2,所以,购买1台该机器的同时应一次性额外购10次维修服务. 【知识点】概率;加权平均数 24.(2019福建省市,24,12分) 如图,四边形ABCD 内接于⊙O ,AB=AC ,AC ⊥BD ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF . (1)求证:∠BAC =2∠DAC ;(2)若AF =10,BC =45,求tan ∠BAD 的值.FEDCB A【思路分析】(1)由AC ⊥BD ,在Rt △AED 中根据两个锐角互余,得∠CAD 与∠ADE 的关系;AB =AC ,在等腰△ABC 中得∠BAC 与底角∠ACB 关系;再结合同弧所对圆周角相等,得∠ADE =∠ACB ,整理即可得出结论;(2)由DF =DC ,得外角∠BDC 与∠CFD 关系,再结合∠BAC =2∠DAC 与同弧所对圆周角相等得CF =BC ,知CA 垂直平分BF ,求出AB 与AC 的长度,根据勾股定理列方程分别求出AE 、CE 、BE ,再利用△ADE ∽△BCE ,求出AD 、DE ,作△ABD 中AB 边上的高DH ,利用面积法求出DH ,及AH 的值,即可利用正切定义求值. 【解题过程】证明:(1)∵AC ⊥BD ,∴∠AED =90°,在Rt △AED 中,∠ADE =90°-∠CAD ,∵AB =AC ,∴»AB =»AC ,∴∠BAC =180°-(∠ABC -∠ACB )=180°-2(90°-∠CAD ),即∠BAC =2∠CAD ;解: (2)∵DF =DC ,∴∠FCD =∠CFD ,∴∠BDC =∠FCD +∠CFD =2∠CFD ,∵∠BDC =∠BAC ,由(1)得∠BAC =2∠CAD ,∴∠CFD =∠CAD ,∵∠CAD =∠CBD ,∴∠CFD =∠CBD ,∴CF =CB ,∵AC ⊥BD ,∴BE =EF ,故CA 垂直平分BF ,∴AC =AB =AF =10,设AE =x ,则CE =10-x ,在Rt △ABE 和Rt △BCE 中,AB 2-AE 2=BE 2=BC 2-CE 2,又∵BC =45,∴102-x 2=(45)-(10-x ) 2,解得x =6,∴AE =6,CE =4,∴BE =22AB AE -=8,∵∠DAE =∠CBE ,∠ADE =∠BCE ,∴△ADE ∽△BCE ,∴AE BE =DE CE =ADBC,∴DE =3,AD =35,过点D 作DH ⊥AB 于H . ∵S △ABD =12AB ·DH =12BD ·AE ,BD =BE +DE =11,10 DH =11×6,∴DH =335,在Rt △ADH 中,AH =22AD DH -=65,∴tan ∠BAD =112.HFEDCBA【知识点】等腰三角形的性质与判定;圆的有关性质;相似三角形的性质与判定;直角三角形的性质 25.(2019福建省市,25,14分)已知抛物y =ax 2+bx+c (b <0)与x 轴只有一个公共点. (1)若抛物线与x 轴的公共点坐标为(2,0),求a 、c 满足的关系式;(2)设A 为抛物线上的一定点,直线l :y =kx+1-k 与抛物线交于点B 、C 两点,直线BD 垂直于直线y=-1,垂足为点D .当k =0时,直线l 与抛物线的一个交点在 y 轴上,且△ABC 为等腰直角三角形. ①求点A 的坐标和抛物线的解析式;②证明:对于每个给定的实数 k ,都有A 、D 、C 三点共线. 【思路分析】(1)根据抛物线与x 轴只有一个公共点可知△=0,再利用抛物线与x 轴的公共点坐标为(2,0),得到对称轴为x =2,二者联立即可得出结论;(2)将k =0代入直线y =kx+1-k 解析式可知抛物线与直线的两个交点B 、C 的坐标,由△ABC 为等腰直角三角形,求得A 点坐标,及抛物线的解析式;(3)联立y =kx+1-k 与抛物线解析式,求出B 、C 的坐标,求得直线AC 的解析式,根据B 、D 垂直于直线y=-1,求得D 坐标,将点D 坐标代入直线AC 解析式,即可求得对于每个给定的实数 k ,都有A 、D 、C 三点共线.【解题过程】解:(1)△=b 2-4ac =0,且-2ba=2,∴(-4a )2-4ac =0,∵a ≠0,∴c =4a ; (2)①当k =0时,直线l 解析式为y =1,它与y 轴的交点为(0,1) .因为直线y =1与x 轴平行,所以等腰直角△ABC 的直角顶点只能是A ,且A 是抛物线的顶点,过点A 作AM ⊥BC 于M ,则AM =1,所以BM =CM = AM =1,故点A 坐标为(1,0),所以抛物线的解析式可以改写为y =a (x -1)2,因为抛物线过(0,1),所以1=a (0-1) 2,解得a =1,所以抛物线的解析式为y = x 2-2x +1.②设B (x 1,y 1),C (x 2,y 2),则D (x 1,-1).由2121y kx k y x x =+-⎧⎨=-+⎩,得x 2-(k +2)x +k =0,因为△=( k +2)2-4k = k 2+4>0,由抛物线的对称性,不妨设x 1<x 2,则x 1= 2242k k +-+,x 2= 2242k k +++,所以x 1<1<x 2.设直线AD 的解析式为y =mx +n ,则有101m n mx n =+⎧⎨-=+⎩,解得111111m x n x ⎧=-⎪-⎪⎨⎪=⎪-⎩,所以直线AD 的解析式为y =-111x -x+11 1x-.因为y2-(-11 1x-x2+111x-)=( x2-1)2+2111xx--=[]2121(1)(1)(1)11x x xx---+-=222144(1)(1)221k k k kxx-+++-⋅+-=0,即y2=-111x-x2+111x-,所以点C(x2,y2)在直线AD上.【知识点】二次函数解析式;二次函数的图象与性质;等腰三角形性质与判定;一次函数解析式;数形结合思想。
2019年福建省中考数学试题(原卷+解析)含答案

2019年福建省中考数学试卷一、选择题(每小题4分,共40分)1.(4分)计算22+(﹣1)0的结果是()A.5B.4C.3D.22.(4分)北京故宫的占地面积约为720000m2,将720000用科学记数法表示为()A.72×104B.7.2×105C.7.2×106D.0.72×106 3.(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A.等边三角形B.直角三角形C.平行四边形D.正方形4.(4分)如图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.5.(4分)已知正多边形的一个外角为36°,则该正多边形的边数为()A.12B.10C.8D.66.(4分)如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是()A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳7.(4分)下列运算正确的是()A.a•a3=a3B.(2a)3=6a3C.a6÷a3=a2D.(a2)3﹣(﹣a3)2=08.(4分)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685B.x+2x+3x=34685C.x+2x+2x=34685D.x+x+x=346859.(4分)如图,P A、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于()A.55°B.70°C.110°D.125°10.(4分)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3﹣m,n)、D(,y2)、E(2,y3),则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y3<y1二、填空题(每小题4分,共24分)11.(4分)因式分解:x2﹣9=.12.(4分)如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是.13.(4分)某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有人.14.(4分)在平面直角坐标系xOy中,▱OABC的三个顶点O(0,0)、A(3,0)、B(4,2),则其第四个顶点是.15.(4分)如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长与⊙O的交点,则图中阴影部分的面积是.(结果保留π)16.(4分)如图,菱形ABCD顶点A在函数y=(x>0)的图象上,函数y=(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠BAD=30°,则k =.三、解答题(共86分)17.(8分)解方程组.18.(8分)如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.19.(8分)先化简,再求值:(x﹣1)÷(x﹣),其中x=+1.20.(8分)已知△ABC和点A',如图.(1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC 面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.21.(8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.22.(10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.23.(10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?24.(12分)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD 的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=4,求tan∠BAD的值.25.(14分)已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.2019年福建省中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.【分析】分别计算平方、零指数幂,然后再进行实数的运算即可.【解答】解:原式=4+1=5故选:A.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:将720000用科学记数法表示为7.2×105.故选:B.3.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D.4.【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为:故选:C.5.【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.6.【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.7.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a4,不符合题意;B、原式=8a3,不符合题意;C、原式=a3,不符合题意;D、原式=0,符合题意,故选:D.8.【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.9.【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.【解答】解:连接OA,OB,∵P A,PB是⊙O的切线,∴P A⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°﹣90°﹣90°﹣110°=70°.故选:B.10.【分析】由点A(m,n)、C(3﹣m,n)的对称性,可求函数的对称轴为x=,再由B (0,y1)、D(,y2)、E(2,y3)与对称轴的距离,即可判断y1>y3>y2;【解答】解:∵经过A(m,n)、C(3﹣m,n),∴二次函数的对称轴x=,∵B(0,y1)、D(,y2)、E(2,y3)与对称轴的距离B最远,D最近,∵|a|>0,∴y1>y3>y2;故选:D.二、填空题(每小题4分,共24分)11.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣113.【分析】用总人数乘以样本中喜欢甲图案的频率即可求得总体中喜欢甲图案的人数.【解答】解:由题意得:2000×=1200人,故答案为:1200.14.【分析】由题意得出OA=3,由平行四边形的性质得出BC∥OA,BC=OA=3,即可得出结果.【解答】解:∵O(0,0)、A(3,0),∴OA=3,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=3,∵B(4,2),∴点C的坐标为(4﹣3,2),即C(1,2);故答案为:(1,2).15.【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.16.【分析】连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D作DG⊥x轴于点G,得O、A、C在第一象限的角平分线上,求得A点坐标,进而求得D 点坐标,便可求得结果.【解答】解:连接OC,AC过A作AE⊥x轴于点E,延长DA与x轴交于点F,过点D 作DG⊥x轴于点G,∵函数y=(k>3,x>0)的图象关于直线AC对称,∴O、A、C三点在同直线上,且∠COE=45°,∴OE=AE,不妨设OE=AE=a,则A(a,a),∵点A在在反比例函数y=(x>0)的图象上,∴a2=3,∴a=,∴AE=OE=,∵∠BAD=30°,∴∠OAF=∠CAD=∠BAD=15°,∵∠OAE=∠AOE=45°,∴∠EAF=30°,∴AF=,EF=AE tan30°=1,∵AB=AD=2,AE∥DG,∴EF=EG=1,DG=2AE=2,∴OG=OE+EG=+1,∴D(+1,2),故答案为:6+2.三、解答题(共86分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.【分析】由SAS证明△ADF≌△BCE,即可得出AF=CE.【解答】证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS),∴AF=CE.19.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=(x﹣1)÷=(x﹣1)•=,当x=+1,原式==1+.20.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可所求.(2)根据中位线定理易得∴△DEF∽△ABC,△D'E'F'∽△A'B'C',故△DEF∽△D'E'F'【解答】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=,,,∴△DEF∽△ABC同理:△D'E'F'∽△A'B'C',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.21.【分析】(1)如图1,利用旋转的性质得CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,再根据等腰三角形的性质和三角形内角和计算出∠CAD,从而利用互余和计算出∠ADE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到AB=AC,则BF=AB,再根据旋转的性质得到∠BCE=∠ACD=60°,CB=CE,DE=AB,从而得到DE=BF,△ACD和△BCE为等边三角形,接着证明△CFD≌△ABC得到DF=BC,然后根据平行四边形的判定方法得到结论.【解答】(1)解:如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC 上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=(180°﹣30°)=75°,∴∠ADE=90°﹣75°=25°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠ACB=30°,∴AB=AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.22.【分析】(1)求出该车间处理35吨废水所需费用,将其与350比较后可得出m<35,根据废水处理费用=该车间处理m吨废水的费用+第三方处理超出部分废水的费用,即可得出关于m的一元一次方程,解之即可得出结论;(2)设一天产生工业废水x吨,分0<x≤20及x>20两种情况考虑,利用每天废水处理的平均费用不超过10元/吨,可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:(1)∵35×8+30=310(元),310<350,∴m<35.依题意,得:30+8m+12(35﹣m)=370,解得:m=20.答:该车间的日废水处理量为20吨.(2)设一天产生工业废水x吨,当0<x≤20时,8x+30≤10x,解得:15≤x≤20;当x>20时,12(x﹣20)+8×20+30≤10x,解得:20<x≤25.综上所述,该厂一天产生的工业废水量的范围为15≤x≤20.23.【分析】(1)利用概率公式计算即可.(2)分别求出购买10次,11次的费用即可判断.【解答】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.(2)购买10次时,此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300购买11次时,此时这100台机器维修费用的平均数y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,∵27300<27500,所以,选择购买10次维修服务.24.【分析】(1)根据等腰三角形的性质得出∠ABC=∠ACB,根据圆心角、弧、弦的关系得到=,即可得到∠ABC=∠ADB,根据三角形内角和定理得到∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∠ADB=90°﹣∠CAD,从而得到∠BAC=∠CAD,即可证得结论;(2)易证得BC=CF=4,即可证得AC垂直平分BF,证得AB=AF=10,根据勾股定理求得AE、CE、BE,根据相交弦定理求得DE,即可求得BD,然后根据三角形面积公式求得DH,进而求得AH,解直角三角函数求得tan∠BAD的值.【解答】解:(1)∵AB=AC,∴=,∠ABC=∠ACB,∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,∵BD⊥AC,∴∠ADB=90°﹣∠CAD,∴∠BAC=∠CAD,∴∠BAC=2∠CAD;(2)解:∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=∠BDC=∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=4,设AE=x,CE=10﹣x,由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE===3,∴BD=BE+DE=3+8=11,作DH⊥AB,垂足为H,∵AB•DH=BD•AE,∴DH===,∴BH==,∴AH=AB﹣BH=10﹣=,∴tan∠BAD===.25.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k,C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.。
厦门市2019年中考数学模拟试卷及答案

(试卷满分为150分,考试时间为120分钟) 10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
3.下列运算正确的是-10123厦门市 2019年中考数学模拟试卷及答案投篮次数10 20 30 40 50 60 70 80 90 100 A 投中次数7 15 23 30 38 45 53 60 68 75 投中频率0.700 0.7500.767 0.750 0.760 0.750 0.757 0.750 0.756 0.750 B 投中次数8 1423 32 35 43 52 61 70 80 投中频率 0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800将A , B 两位篮球运动员在一段时间内的投篮情况记录如下: 8.卜面有三个推断:、选择题(本大题共 1. 一个数的绝对值是 5,这个数是A.5 B 、-5 C . 5 和-5 D . 02. 2017年我省粮食总产量 695.2亿斤,居历史第二高位, 695.2亿用科学记数法表示为A 4_-4 8A.695.2 X 10B.6.952 X 10 9C.6.9524 I OX 10 11D.6.952 X 10A . 2a 2?a 3=2a 6B. (3ab) 2=6a 2b 2C. 2abc +ab =2D3a 2b +ba 2=4a 2b4.已知不等式组3x-3>0,其解集在数轴X 1 -0上表示正确的是5.设 -1-10 1 1 3A二次方程( x+1 ) ( x-3 ) =m (m> 0)的两实数分别为-1DA.-1 < a < 3 <3B. “V -1 且 3>3C. a 〈-1v3<3D.-1 V a V 3V6. 如图,M M P 、Q 是数轴上的四个点,这四个点中最适合表示1的点是7. A.点MB.点NC.点PD.点Q如图,在。
2019年厦门市中考数学试题与答案

厦门市中考数学试题与答案(试卷满分150分,考试时间120分钟)第Ⅰ卷(共40分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3的相反数是( ) A .-3 B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 4.化简2(2)x 的结果是( )A .4x B .22x C . 24x D .4x 5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形 C .线段是轴对称图形,但不是中心对称图形 D .菱形是中心对称图形,但不是轴对称图形 6.不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分. 11.计算023--= .12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 21.如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD ∠=.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O 的切线.22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=, 2222sin 22sin 680.370.93 1.0018+≈+=, 2222sin 29sin 610.480.870.9873+≈+=, 2222sin 37sin 530.600.80 1.0000+≈+=, 222222sin 45sin 45()()1+≈+=. 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=.(Ⅰ)当30α=时,验证22sin sin (90)1αα+-=是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 23.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数 0 1 2 3 4 5(含5次以上) 累计车费0.50.9ab1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A 品牌共享单车的意愿,得到如下数据:使用次数 0 1 2 3 4 5 人数51510302515(Ⅰ)写出,a b 的值;(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =CF 的长.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <.(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示); (Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.参考答案:一、选择题1.A2.B3.B4.C5.A6.A7.D8.D9.C 10.D二、填空题11. 1 12. 6 13. 红球(或红色的) 14. 7 15. 108 16. 7.5三、解答题17. 原式=,当a=2 -1时,原式=211-+ =22.19. 作图如下,BQ就是所求作的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD,∴∠BPD=∠AQP,∵∠BPD=∠APQ,∴∠APQ=∠ AQP,∴AP=AQ.21.(Ⅰ)连接OC ,OD ,∵∠COD=2∠CAD ,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2, ∴CD 的长=902180π⨯⨯ =π;22.(Ⅰ)当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=22132⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=1344+ =1, 所以22sin sin (90)1αα+-=成立;(Ⅱ)小明的猜想成立.证明如下:如图,△ABC 中,∠C=90°,设∠A=α, 则∠B=90°-α,sin 2α+sin 2(90°-α)=2222222BC AC BC AC AB AB AB AB AB +⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=1(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, AC=22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ; (2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°, ∴∠PAD=∠PDA ,∴PD=PA , ∴PA=PC ,∴AP=2AC, 即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12 AC ·DQ , ∴DQ=245AD DC AC = ,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145; (Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,25.(Ⅰ)因为抛物线过点M(1,0),所以a+a+b=0,即b=-2a,所以y=ax2+ax+b=ax2+ax-2a=a(x+12)2-94a,所以抛物线顶点Q的坐标为(-12,-94a).(Ⅱ)因为直线y=2x+m经过点M(1,0),所以0=2×1+m,解得m=-2.把y=2x-2代入y=ax2+ax-2a,得ax2+(a-2)x-2a+2=0所以△=(a-2)2-4a(-2a+2)=9a2-12a+4由(Ⅰ)知b=-2a,又a<b,所以a<0,b>0,所以△>0,所以方程有两个不相等的实数根,故直线与抛物线有两个交点.(ii)作直线x=-12交直线y=2x-2于点E,把x=-12代入y=2x-2得,y=-3,即E(-12,-3),又因为M (1,0),N (2a -2,4a-6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0, 即(8S-54)2≥(362 )2,又因为a<0,所以S=2732748a a -->274,所以8S-54>0,所以8S-54>0, 所以8S-54≥362,即S ≥279242+ , 当S=279242+时,由方程(*)可得a=-223 满足题意. 故当a=-223,b =423时,△QMN 面积的最小值为279242+.。