第四章 第2讲 动能 动能定理

合集下载

必修2 动能定理

必修2 动能定理

平抛运动
第二步:抓好关键点,找出突破口
小物块能通过“8”字轨道最高点 D 点的临界速度为 vD=0,A 到 D,由动能定理求初速度的最小值;A
至 J 由动能定理求出小物块通过 J 点的速度,再由平抛运动的规律求落地点到 J 点正下方的水平距离; 分析两种情况:①小物块恰过“0”字最高点 G,由重力提供向心力。小物块 A 至 G 由动能定理列式, 求出“0”字轨道半径 R′。 ②小物块恰到达“0”字轨道半径高度时速度为零,运用动能定理求出“0”字轨道半径 R′,再得到“0”字 轨道半径 R′的范围。
A.W1>W2,F=2Ff C.P1<P2,F>2Ff
B.W1=W2,F>2Ff D.P1=P2,F=2Ff
2.如图 9 甲所示,一质量为 4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力 F 作用下开始运动,推力 F 随位移 x 变化的关系如图乙所示,已知物体与地面间的动摩擦因数μ=0.5, (取 g=10 m/s2),则下列说法正确的是( )
应用动能定理解题的基本思路
1.如图 5 所示,质量为 m 的小球,从离地面 H 高处从静止开始释放,落到地面后继续陷入泥中 h 深 度而停止,设小球受到空气阻力为 f,重力加速度为 g,则下列说法正确的是( ) A.小球落地时动能等于 mgH B.小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能 C.整个过程中小球克服阻力做的功等于 mg(H+h) D.小球在泥土中受到的平均阻力为 mg(1+H)
科学思维——动能定理的综合应用 物理计算题历来是高考拉分题,试题综合性强,涉及物理过程较多,所给物理情境较复杂,物理模型 较模糊甚至很隐蔽,运用的物理规律也较多,对考生的各项能力要求很高,为了在物理计算题上得到 理想的分值,应做到细心审题、用心析题、规范答题。 【例】 (2018·3 月浙江温州选考适应性考试)如图 11 所示,某玩具厂设计出一个“2018”字型的竖直 模型玩具,固定在足够长的水平地面上,四个数字等高,“2”字和“8”字用内壁光滑的薄壁细圆管弯成, 过“2”字出口 H 点的竖直虚线与“2”字上半圆相切,“0”字是半径为 R 的单层光滑圆轨道,“1”字是高度 为 2R 的具有左右两条通道的光滑竖直细管道,所有轨道转角及连接处均平滑,H、F、B、C 间的距 离分别为 3R、3R、2R。一小物块(可视为质点)分别从“1”字轨道 A 端的左、右两侧通道进入模型开始 运动,小物块与 FB、BC 段轨道的动摩擦因数μ1=0.4,与 HF 段轨道的动摩擦因数μ2=0.15,已知 R =1 m。

动能和动能定理PPT课件

动能和动能定理PPT课件

mN
v0=0
v
牵引力F
f
跑道上滑行的位移 s
G 1 确定研究对象:
2 对飞机受力分析:
3 分析各力的做功情况:
重力、支持力不做功;牵引力F 做正功;阻力 f 做负功
4 考查初、末状态的动能:
一开始飞机静止,初动能为0 ;加速到能起飞时,末动能为 1 mv2
5 应用动能定理建立方程: Fs fs 1 mv2 0
对动能定理的理解:
a.合力对物体做的功的理解
q ①. W合= F合·S cos
②. W合=W1+W2 +…=F1·s1cosq +F2·s2cosq +… b. 标量性
式子左边的功与右边的动能都是标量
c.适用范围
(1)恒力做功或变做功 (2)曲线运动或直线运动 (3)单个物体或几个物体 (4)一个过程或全过程
即:适用于在惯性参考系中运动的所有物体
d.应用动能定理解题的一般步骤:
(1)确定研究对象,画出草图; (2)对物体进行受力分析; (3)分析各力的做功情况; (4)确定物体的初、末状态,明确初、末状 态的动能; (5)应用动能定理建立方程;
例题1.一架喷气式飞机, 质量 m , 起飞过程中从静止开始在跑道 上滑跑的路程为 s 时,达到起飞速度 v . 在此过程中飞机受到的 平均阻力是 f , 求飞机受到的牵引力 F 。
Ek
1m 2
v2
1 2
172 (7200)2
J
4.5 109 J
二、动能定理
内容:外力对物体所做的总功等于物体动能的变化。
1、合外力做功。 2、外力做功之和。
动能变化
和某一过程(始末状态)相对应。

二讲动能动能定理【共51张PPT】

二讲动能动能定理【共51张PPT】

力做功WG=mgh 摩擦力做功Wf=-μmgcosθ·
h s in
物体在水平面上运动时,只有滑动摩擦力做功
Wf′=-μmg(s-
h). ta n
解法一:“隔离”过程,分段研究,设最低点物体速度为v,物体由
A到最低点根据动能定理得:
mgh-μmgcosθ·
h m1v2-0 ① sin 2
物体在水平面上运动,同理有:
(3)因动能定理中的功和动能均与参考系的选取有关,所以动能定理也
与参考系的选取有关,一般以地面为参考系.
三、运用动能定理须注意的问题
应用动能定理解题时,在分析过程时无需深究物体运动过程中状 态变化的细节,只需考虑整体的功及过程始末的动能.若过程包含 了几个运动性质不同的分过程,既可分段考虑,也可整体考虑.但求功 时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总 功,计算时要把各力的功连同符号(正负)一同代入公式.
答案:ACD
解析:合外力对物体做功W=mv2/2=1×22/2 J=2 J,手对物体做功 W1=mgh+mv2/2=1×10×1 J+2 J=12 J,物体克服重力做功 mgh=10 J.
4.( ·广东高考)一个25 kg的小孩从高度为3.0 m的滑梯顶端由 静止开始滑下,滑到底端时的速度为2.0 m/s.取g=10 m/s2,关 于力对小孩做的功,以下结果正确的是( )
2.子弹以某速度击中静止在光滑水平面上的木块,当子弹进入 木块深度为x时,木块相对水平面移动距离为x ,求木块获得的 动能ΔEk1和子弹损失的动能ΔEk2之比_____2 ___.
答 案 :1 3
解析:本题容易出错在使用动能定理时,乱用参考系,没有统一
确所定以以地E k面1 为F参f 2x考系1,木子块弹的损位失移的为动2x 能,子大弹于的木位块移获为得x的 动2x 能,

第2课时 动能定理

第2课时 动能定理

【审题突破】
①Ek-h 图象中斜率表示什么? ②如何计算瞬时功率?
③当力随位移均匀变化时如何计算功?
图5
【例 2】若物体质量 m=1 kg,上升了 1 m 高度时 撤去拉力,撤去拉力前物体的动能 Ek 与上升高 度 h 的关系图象如图乙所示.(g 取 10 m/s2,不 计空气阻力)
(1)求物体上升到 0.4 m 高度处 F 的瞬时功率. (2)若物体撞击钉子后瞬间弹起,且使其不再落 下,钉子获得 20 J 的动能向下运动.钉子总长为 10 cm.撞击前插入部分可以忽略,不计钉子重 力.已知钉子在插入过程中所受阻力 Ff 与深度 x 的关系图象如图丙所示,求钉子能够插入的最大 深度.
图5
解析 (1)撤去 F 前,根据动能定理,有 (F-mg)h=Ek-0 由题图乙得,斜率为 k=F-mg=20 N 得 F=30 N 又由题图乙得,h=0.4 m 时,Ek=8 J, 则 v=4 m/s P=Fv=120 W
(2)碰撞后,对钉子, 有- Ff x′=0-Ek′ 已知 Ek′=20 J Ff =k′2x′ 又由题图丙得 k′=105 N/m 解得:x′=0.02 m
(1)2 J (2)35 N (3)2.77 m
(1)小球到达 B 点时的速率; (2)若不计空气阻力,则初速度 v0 为多少; (3)若初速度 v0=3 gL,则小球在从 A 到 B 的过程中克服空气阻力做了多少功.
图3
解析 (1)小球恰能到达最高点 B,

mg=mvLB
2
,得
vB=
g2L.
2
(2)若不计空气阻力,从 A→B 由动能 定理得
-mg(L+L2)=12mvB2-12mv0 2
3.明确研究对象在过程的初末状态的动能 Ek1 和 Ek2; 4.列动能定理的方程 W 合=Ek2-Ek1 及其他必要的解题方

动能和动能定理ppt

动能和动能定理ppt

试比较下列每种情况下,甲、乙两物体旳动能:(除 题意中提到旳物理量外,其他物理情况相同) ①物体甲旳速度是乙旳两倍; ②物体甲向北运动,乙向南运动; ③物体甲做直线运动,乙做曲线运动; ④物体甲旳质量是乙旳二分之一。
总结:动能是标量,与速度方向无关;动能与 速度旳平方成正比,所以速度对动能旳 影响更大。
F kmg m v 2 2s
F kmg m v 2 1.8 104 N 2s
应用1:恒力+直线运动
例1、一架喷气式飞机,质量m 5.0 103 kg ,起飞过程中从
静止开始滑跑旳旅程为 s 5.3 102 m 时,到达起飞速
度 v 60m / s。在此过程中飞机受到旳平均阻力是飞机重量旳 0.02倍(k=0.02)。求飞机受到旳牵引力F。
❖ 一架飞机在牵引力和阻力旳共同作用下,在跑道上 加速运动.速度越来越大,动能越来越大.这个过 程中是牵引力和阻力都做功,牵引力做正功,阻力 做负功,牵引力和阻力旳合力做了多少功,飞机旳 动能就变化了多少.
思索与讨论(二)
❖ 动能定理是否能够应用于变力做功或物体做曲线 运动旳情况,该怎样了解?
❖ 把过程分解为诸多小段,以为物体在每小段运动 中受到旳力是恒力,运动旳轨迹是直线,这么也 能得到动能定理.
弹力做功WF
w 外力做功
重力势能mgh 弹性势能kx2/2 动能体现式?



设质量为m旳某物体,在与运动方
体 动
向总相同旳恒力F旳作用下发生一段位
能 移l,速度由v1增长到v2,如图所示。试
体 现 式
谋求这个过程中力F做旳功与v1、v2旳关 系?
F v1
v2
推导F做功体现式旳过程
W=FL

第2讲动能动能定理

第2讲动能动能定理

2mg的两球速度大小为v2,由动量守恒定
律知mv1=2mv2

飞出轨道后两球做平抛运动,水平方向分运动为匀速直线
运动,有2R=v2t

综合②③④⑤式得v=的判断及计算 【例题】 一质量为 m 的小球用长为 l 的轻绳悬挂于 O 点, 小球在水平力 F 作用下,从平衡位置 P 点缓慢地移动,当悬线 偏离竖直方向θ角到达 Q点时,如图5-2-7 所示,则水平力F 所做h,A 选项正确;由动能 定理知小车受到的合力做的功等于小车动能的增加,W 合=ΔEk =12mv2,B 选项正确;由动能定理,W 合=W 推+W 重+W 阻=12mv2, 所以推力做的功 W 推=12mv2-W 阻-W 重=12mv2+mgh-W 阻,C 选项错误;阻力对小车做的功 W 阻=12mv2-W 推-W 重=12mv2+ mgh-Fs,D 选项错误.
答案:A智浪教育--普惠英才热点1 运用动能定理解决多过程问题 【例1】(2010 年全国卷Ⅱ)如图 5-2-3,MNP 为竖直面 内一固定轨道,其圆弧段 MN 与水平段 NP 相切于 N,P 端固定 一竖直挡板.M 相对于 N 的高度为 h,NP 长度为 s.一物块自 M 端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞后停 止在水平轨道上某处.若在 MN 段的摩擦可忽略不计,物块与 NP 段轨道间的滑动摩擦因数为μ,求物块停止的地方与 N 点距 离的可能值.
如果某个力对物体做负功,则加负值.
②位移和速度,必须是相对于同一个参考系,一般以地面
为参考系.智浪教育--普惠英才2.动能定理的运用 (1)动能定理中涉及的物理量有 F、s、m、v、W、Ek 等,在 涉及含有上述物理量的问题时,可以考虑使用动能定理.由于 动能定理只需考虑过程中力做功的情况和初、末状态的动能, 而无需考虑运动状态的细节,所以运用动能定理解题,往往比 用牛顿运动定律要简便.用动能定理还能解决一些牛顿运动定 律难以求解的问题,如变力做功,曲线运动等,所以解题时, 应优先考虑用动能定理.

2025年高考物理总复习课件专题五机械能第2讲动能、动能定理

2025年高考物理总复习课件专题五机械能第2讲动能、动能定理

高考总复习·物理
【解析】物体沿斜面向下做匀加速直线运动,加速度a1=g(sin θ-μcos θ), 在水平面上又做匀减速直线运动,加速度a2=μg,因动摩擦因数μ和斜面 倾角θ未知,故不能确定a1、a2的大小关系,但可确定v=a1t1=a2t2,v2= 2a1s1=2a2s2,所以速度大小随时间均匀增大,而后又均匀减小,时间短 的加速度大,位移长的加速度小,故A、B正确;由Ek=12mv2=12ma2t2, 可知Ek-t的图像应是两段抛物线的拼合,C错误;由Ek=12mv2=mas,可 知,Ek-s的图像应是线性关系,D正确.
高考总复习·物理
【解析】重力做的功为WG=mgh=800 J,A错误;下滑过程根据动能定 理可得WG-Wf=12 mvQ2,代入数据解得,克服阻力做的功为Wf=440 J, B正确;经过Q点时向心加速度大小为a=vQh2=9 m/s2,C正确;经过Q 点时,据牛顿第二定律可得F-mg=ma,解得货物受到的支持力大小为F =380 N,据牛顿第三定律可知,货物对轨道的压力大小为380 N,D正 确.
高考总复习·物理
【解析】根据动能定理Ek=Ek0-μmgx,由图像可知μmg=12000=5 N,解 得μ=0.25,A、B正确;物体滑行过程中的动能的变化量为-100 J,C错 误;物体的初速v0= 2Emk0=10 m/s,加速度a=μg=2.5 m/s2,D正确.
高考总复习·物理
考点3 动能定理在多过程运动中的应用 [能力考点]
高考总复习·物理
解:(1)重物处于平衡状态,由2Fcos 37°=mg 解得F=250 N. (2)设停止施力时重物的速度为v,发力使重物上升的高度为h1,停止发 力后重物继续上升的高度为h2,从两人停止施力到重物恰好接触地面的 时间为t.由v2=2gh2,vt-12gt2=-h1, 联立得t=0.4 s. (3)设地面对重物的平均阻力为f,重物把地面砸的深度为h3,重物从最高 点到最低点的过程中,有-fh3+mg(h1+h2+h3)=0 解得f=4 000 N.

第2讲动能定理及其应用

第2讲动能定理及其应用

第2讲动能定理及其应用思维诊断(1)动能是机械能的一种表现形式,凡是运动的物体都具有动能.()(2)一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化.()(3)动能不变的物体所受合外力一定为零.()(4)做自由落体运动的物体,动能与下落距离的平方成正比.()(5)物体做变速运动时动能一定变化.()考点突破2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力.3.合外力对物体做正功,物体的动能增加;合外力对物体做负功,物体的动能减少;合外力对物体不做功,物体的动能不变.4.高中阶段动能定理中的位移和速度应以地面或相对地面静止的物体为参考系.5.适用范围:直线运动、曲线运动、恒力做功、变力做功、各个力同时做功、分段做功均可用动能定理.mv2变式训练1如图所示,木盒中固定一质量为m的砝码,木盒和砝码在桌面上以一定的初速度一起滑行一段距离后停止.现拿走砝码,而持续加一个竖直向下的恒力F(F=mg),若其他条件不变,则木盒滑行的距离()A.不变B.变小C.变大D.变大变小均可能=Mv+.显然考点二动能定理的应用1.应用动能定理解题的步骤:2.注意事项:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学研究方法要简便.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理没有任何依据.(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解.(4)应用动能定理时,必须明确各力做功的正、负.当一个力做负功时,可设物体克服该力做功为W,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号.[例2]如图所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P,小船的质量为m,小船受到的阻力大小恒为f,经过A点时的速度大小为v0,小船从A点沿直线加速运动到B点经历时间为t1,A、B两点间距离为d,缆绳质量忽略不计.求:(1)小船从A点运动到B点的全过程克服阻力做的功W f;(2)小船经过B点时的速度大小v1;(3)小船经过B点时的加速度大小a.2m1-④点时绳的拉力大小为F,绳与水平方向夹角为+1--2m1-+1--f m考点三用动能定理处理多过程问题优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.(4)含有F、l、m、v、W、E k等物理量的力学问题.[例3]如图是翻滚过山车的模型,光滑的竖直圆轨道半径R=2 m,入口的平直轨道AC和出口的平直轨道CD均是粗糙的,质量m=2 kg的小车与水平轨道之间的动摩擦因数为μ=0.5,加速阶段AB的长度l=3 m,小车从A点由静止开始受到水平拉力F=60 N的作用,在B点撤去拉力,取g=10 m/s2.试问:(1)要使小车恰好通过圆轨道的最高点,小车在C点的速度为多少?(2)满足第(1)的条件下,小车能沿着出口平直轨道CD滑行多远的距离?(3)要使小车不脱离轨道,求平直轨道BC段的长度范围.[解析](1)设小车恰好通过最高点的速度为mg=mv20R①变式训练3如图所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h=0.8 m,质量为m=2 kg的小物块M从斜面顶端A处由静止滑下,从O点进入光滑水平滑道时无机械能损失,为使M制动,将轻弹簧的一端固定在水平滑道延长线B处的墙上,另一端恰位于水平轨道的中点C.已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g=10 m/s2,下滑时逆着毛的生长方向.求:(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零).(2)若物块M能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M在斜面上下滑过程中的总路程.示的物理意义.(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.(3)将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.A.2 m/sB.8 m/s类题拓展质量均为m的两物块A、B以一定的初速度在水平面上只受摩擦力而滑动,如图所示是它们滑动的最大位移x与初速度的平方v20的关系图象,已知v202=2v201,下列描述中正确的是()A.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是对B做功的2倍B.若A、B滑行的初速度相等,则到它们都停下来时滑动摩擦力对A做的功是v2H H⎛⎫11质点在轨道最低点时受重力和支持力,根据牛顿第三定律可知,支持力2R,得v=gR.对质点的下滑过程应用动能定理,,C正确..甲车的刹车距离随刹车前的车速v变化快,甲车的刹车性能好乙车与地面间的动摩擦因数较大,乙车的刹车性能好.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好。

动能和动能定理资料ppt课件

动能和动能定理资料ppt课件

T 变力
h mg
求变力做功问题
瞬间力动做能功和动问能定题理
运动员踢球的平均作用力为200N,把一个静止 的质量为1kg的球以10m/s的速度踢出,水平面 上运动60m后停下,则运动员对球做的功?如果 运动员踢球时球以10m/s迎面飞来,踢出速度仍 为10m/s,则运动员对球做的功为多少?
vo
v=0
A、 1:2
B、 2:3
C、 2:1
D、 3:2
AmA gLA
0
1 2
mAv02
BmB gLB
0
1 2
mBv02
LA B 3 LB A 2
例与练
动能和动能定理
5、质量为2Kg的物体沿半径为1m的1/4圆 弧从最高点A由静止滑下,滑至最低点B时 速率为4m/s,求物体在滑下过程中克服阻 力所做的功。
(4)根据动能定理列方程求解;
例与练
动能和动能定理
1、同一物体分别从高度相同,倾角不同的 光滑斜面的顶端滑到底端时,相同的物理量 是( )
A.动能
B.速度
C.速率
D.重力所做的功 WG mgh
mgh 1 mv2 0 2
v 2gh
例与练
动能和动能定理
2、质量为m=3kg的物体与水平地面之间的
动能和动能定理
二、动能的表达式
v22 v12 2al
a v22 v12 2l
又F ma m v22 v12
2l
WF
Fl
m v22 v12 2l
l
1 2
mv22
1 2
mv12
二、动能的表达式
动能和动能定理
WF
1 2
mv22
1 2

第2讲 动能定理及其应用

第2讲  动能定理及其应用

用,在 0~6 s 内其速度与时间的关系图像和该拉力的功率与时间的关系图像分
别如图所示。下列说法中正确的是(g 取 10 m/s2)
()
A.0~6 s 内拉力做的功为 140 J B.物体在 0~2 s 内所受的拉力为 4 N C.物体与粗糙水平地面间的动摩擦因数为 0.5 D.合外力在 0~6 s 内做的功与 0~2 s 内做的功相等
()
A.FL=12Mv2
B.Fs=12mv2
C.Fs=12mv20-12(M+m)v2
D.F(L+s)=12mv20-12mv2
解析:根据动能定理,对子弹,有-F(L+s)=12mv2-12mv20,选项 D 正确; 对木块,有 FL=12Mv2,选项 A 正确;由以上二式可得 Fs=12mv20-12(M +m)v2,选项 C 正确,只有选项 B 错误。 答案:ACD
联立解得:t=
2L gsin θ-μ1cos θ
可见, t 与 m 无关,小华与小明下滑的时间相同。
[答案] (1)2.4 m (2)2 2 m/s (3)见解析
[规律方法] (1)在恒力作用下的直线运动问题可以应用牛顿运动定律与运动学公式结合求
解,也可以应用动能定理求解。 (2)在不涉及时间的问题中,可优先考虑应用动能定理。 (3)动能定理中的位移和速度均是相对于同一参考系的,一般以地面为参考系。
(2)冲上斜面的过程,由动能定理得 -mgLsin 30°=0-12mv2A 解得冲上斜面 AB 的长度 L=5 m。 [答案] (1)5 2 m/s (2)5 m
考法(四) 动能定理与 v-t、P-t 图像的合
[例 4] (多选)放在粗糙水平地面上质量为 0.8 kg 的物体受到水平拉力的作
(1)求滑梯的高度 h; (2)若小明裤料与滑板间的动摩擦因数 μ1=13,求他从滑梯上由静止滑到底 端的瞬时速度大小; (3)若体重比小明重、穿相同裤料的小华,从滑梯上由静止滑到底端,有 人认为小华滑行的时间比小明长。这种说法是否正确?简要说明理由。

第2讲 动能定理及应用

第2讲 动能定理及应用

第2讲 动能定理及应用一、动能1.定义:物体由于运动而具有的能。

2.公式:E k =12m v 2。

3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2。

4.动能是标量,是状态量。

5.动能的变化:ΔE k =12m v 22-12m v 21。

二、动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。

2.表达式:W =E k2-E k1=12m v 22-12m v 21。

3.物理意义:合力做的功是物体动能变化的量度。

4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动。

(2)动能定理既适用于恒力做功,也适用于变力做功。

(3)力可以是各种性质的力,既可以同时作用,也可以分阶段作用。

【自测 关于运动物体所受的合力、合力做的功及动能变化的关系,下列说法正确的是( )A .合力为零,则合力做功一定为零B .合力做功为零,则合力一定为零C .合力做功越多,则动能一定越大D .动能不变,则物体所受合力一定为零答案 A命题点一 动能定理的理解1.两个关系(1)数量关系:合力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合力做的功。

(2)因果关系:合力做功是引起物体动能变化的原因。

2.标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。

当然动能定理也就不存在分量的表达式。

【例1 随着高铁时代的到来,人们出行也越来越方便,高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。

在启动阶段,列车的动能( )图1A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的加速度成正比答案 B解析 列车在启动阶段做v 0=0的匀加速直线运动,列车的动能E k =12m v 2=12m (at )2=12m ·(2ax ),可见B 正确,A 、C 、D 错误。

【针对训练1】 (多选)用力F 拉着一个物体从空中的a 点运动到b 点的过程中,重力做功-3 J ,拉力F 做功8 J ,空气阻力做功-0.5 J ,则下列判断正确的是( )A .物体的重力势能增加了3 JB .物体的重力势能减少了3 JC .物体的动能增加了4.5 JD .物体的动能增加了8 J答案 AC解析 因为重力做负功时重力势能增加,所以重力势能增加了3 J ,A 正确,B 错误;根据动能定理W 合=ΔE k ,得ΔE k =-3 J +8 J -0.5 J =4.5 J ,C 正确,D 错误。

高考物理 动能 动能定理

高考物理 动能 动能定理

2(mgR W ) A.a= mR 3mgR 2W C.N= R
2mgR W B.a=
mR mgR W ) D.N=2( R
考点一
栏目索引
答案 AC 由动能定理知,在P从最高点下滑到最低点的过程中,mgRv2 2(mgR W ) 1 2 W= mv ,在最低点的向心加速度a= ,联立得a= ,选项A正确; R mR 2 3mgR 2W P在最低点时有N-mg=ma,所以N= ,选项C正确。 R
(4)标矢性:标量。 2.动能定理 (1)内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的 ④ 变化 。
1 1 2 2 v2 -2 mv (2)表达式:W=Ek2-Ek1=⑤ 2 m 1 。
考点一
栏目索引
(3)适用范围 a.动能定理既适用于直线运动,也适用于⑥ 曲线 运动。 b.动能定理既适用于恒力做功,也适用于⑦ 变力 做功。
考点一
栏目索引
答案 D 由动能定理有
H 1 sin θ 2 2 h 1 v -mgh-μmg cos θ· =0- m sin θ 2 2
-mgH-μmg cos θ· =0- mv2
v2 H 1 tan θ,h= ,故D正确。 解得μ= 4 2 gH
场力、磁场力或其他力。
Байду номын сангаас
考点一
栏目索引
3.应用动能定理的“四个注意点” (1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地 面或相对地面静止的物体为参考系。 (2)动能定理的表达式是一个标量式,不能在某方向上应用动能定理。
(3)动能定理往往用于单个物体的运动过程,由于不涉及加速度和时间,
方法技巧
应用动能定理解题应注意的问题

高考物理总复习动能和动能定理

高考物理总复习动能和动能定理
标量
动能是[2]
,只有正值
状态量
动能是状态量,因为v是瞬时速度

返回目录
第2讲
动能和动能定理
2. 动能定理
内容
表达式
物理意义
适用条件
力在一个过程中对物体做的功,等于物体在这个过程中[3] 动能的
变化


W=[4]
1
m22
2
1
2
− m12
或W=Ek2-Ek1
合力
做的功是物体动能变化的量度
曲线运动
数为μ、重力加速度为g,此过程发光物体所受的摩擦力(
A. 方向始终指向A点
C.
1
做的功为 mωr
2
D )
B. 大小始终为μmg
D.
1
做的功为 mω2r2
2
返回目录
第2讲
动能和动能定理
[解析]
角速度从0增大至ω的过程中,发光物体的线速度逐渐增大,可知发光物体
有切向加速度,摩擦力等于发光物体所受的合力,提供发光物体切向加速度和向心
五年考情
核心素养对接
2023:新课标T20;
3.科学探究:通过对动能定理的
动能定理
2022:江苏T8;
学习,探索功与动能的关系.
与图像的
2021:湖北T4;
4.科学态度与责任:能用动能定
综合应用
2020:江苏T4;
理解决实际问题,激发学习兴
2019:全国ⅢT17
趣,提高应用能力.
动能和动能定理是历年高考的热点,题型为选择题或计算题,命题背
加速度,可知摩擦力方向不是始终指向A点,故A错误;角速度从0增大至ω的过程
中,发光物体未发生滑移,所受摩擦力小于等于最大静摩擦力,发光物体做圆周运

2024版高考物理一轮复习教材:动能和动能定理教学课件

2024版高考物理一轮复习教材:动能和动能定理教学课件

第2讲 动能和动能定理教材知识萃取1. 如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h ,其左边缘a 点比右边缘b 点高0.5h 。

若摩托车经过a 点时的动能为E 1,它会落到坑内c 点,c 与a 的水平距离和高度差均为h ;若经过a 点时的动能为E 2,该摩托车恰能越过坑到达b 点。

�2�1等于A.20 B.18C.9.0D.3.01.B 摩托车落到c 点时,根据平抛运动规律有h =v 01t 1,h =12g �12,解得�012=�ℎ2;同理摩托车落到b 点时有�022=9gh 。

又动能E 1=12m �012、E 2=12m �022,所以�2�1=18,故A 、C 、D 项错误,B 项正确。

答案2. 某音乐喷泉一个喷水管的流量为Q =0.04 m 3/s,喷出的水最高可达20 m 的高度,已知水的密度ρ=1.0×103 kg/m 3,不计空气阻力和水滴之间的相互作用,用于该喷水管的电动机功率约为A.8.0×103 WB.8.0×104 WC.2.0×103 WD.2.0×104 W2.A 根据题意,水离开管口的速度大小v =2� =2×10×20 m/s=20 m/s,设给喷管喷水的电动机输出功率为P ,很短一段时间Δt 内喷出的水柱的质量m =ρ·V =ρQ Δt ,根据动能定理可得P Δt =12mv 2,代入数据解得P =8.0×103 W,故A 正确,BCD 错误。

答案3. [多选]游乐场有一种儿童滑轨,其竖直剖面示意图如图所示,AB部分是半径为R的四分之一圆弧轨道,BC部分轨道水平。

一质量为m的小孩(可视为质点)从A点由静止滑下,滑到圆弧轨道末端B点时,对轨道的正压力为2.5mg,重力加速度大小为g。

下列说法正确的是A.小孩到达B点时的速度大小为2�B.小孩到达B点时的速度大小为6�2mgRC.小孩从A到B克服摩擦力做的功为14mgRD.小孩从A到B克服摩擦力做的功为12教材素材变式3.BC 根据牛顿第三定律可知,小孩在B点处受到轨道的支持力N=2.5mg,根据牛顿第二定律有N-mg=��2,解得v=6�2,故选项A错误,B正确;根据动能定理有mgR-W f=12mv2,将v=6�2代入可求出小孩从A到B克服摩擦力做的功W f=14mgR,故选项C正确,D错误。

第2讲 动能动能定理

第2讲  动能动能定理

在一般情况下,用牛顿第二定律和运动学知识可以解决的问题,都可以用动能定
理解决,并且方法更简捷.反之则不一定,因此应该有主动应用动能定理分析问
题的意识.
二、运用动能定理须注意的问题 1.应用动能定理解题时,在分析过程的基础上无需深究物体运动过程中状态变 化的细节,只需考虑整个过程的功及过程始末的动能. 2.若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考 虑.但求功时,有些力不是全过程都起作用的,必须根据不同的情况分别对
1.内容:所有外力对物体做的 总功 (也叫合外力的功)等于物体 动能 的变化. 2.表达式:W总=Ek2-Ek1= .
一、对动能定理的理解 1.动能定理中所说的“外力”,是指物体受到的所有力,包括重力. 2.位移和速度:必须是相对于同一个参考系的,一般以地面为参考系.
3.动能定理适用范围:直线运动、曲线运动、恒力做功、变力做功、同时做功、
答案:AB
【例2】如图5-2-4所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于 同一水平线上的P点处有一个光滑的细钉,已知OP=L/2,在A点给小球一个水 平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:
图5-2-4
(1)小球到达B点时的速率?
(2)若不计空气阻力,则初速度v0为多少? (3)若初速度v0=3 ,则在小球从A到B的过程中克服空气阻力做了多少功? ,得vB= .
答案:(1)2tan θ
(2)停在B端
(3)3L
(15分)有一个竖直放置的圆形轨道,半径为R,由左右两部分组成.如图5-2-8所 示,右半部分AEB是光滑的,左半部分BFA是粗糙的.现在轨道最低点A放 一个质量为m的小球,并给小球一个水平向右的初速度vA,使小球沿轨道恰 好运动到最高点B,小球在B点又能沿BFA轨道回到A点,到达A点时对轨道

第四节 动能 动能定理

第四节    动能   动能定理

2 2 v v 2 1 2 2 x ( ) v2 v1 2ax 2a 2 2 1 2 1 2 v2 v1 m a ( ) mv 2 mv1 2 2 2a
外力对物体所做的功
末状态
初状态
1 2 ①外力对物体所做的功W等于物理量 mv 的变化 2
②而功是能量变化的量度; ③
1 2 mv 由m、v决定; 2
所以
1 2 mv 表示了动能的大小 2
2.表达式
1 2 Ek mv 2
3.单位:J(焦耳)1J=1N· m=1kg· (m/s)2
你的速度小 所以我的动能大!
一质量为10g,飞行 速度为300m/s的子弹
谁的动能大呢?
你的质量小 所以我的动能大!
一质量为4kg,飞行速 度为10m/s的铅球
类型三: 多过程运动
例1.一沙堆正上方2m处有一小金属球由静止释放,最终没 入沙堆2cm深,求沙堆对小金属球的平均阻力是重力的几 倍。
mg H=2m
f
解题注意:
mg
h=2cm
多过程问题,往往可忽略中间状态,直 接选择全过程的初末状态进行研究.
例2. 质量为2kg的滑块,以4m/s的速度在光滑的水平面上向 左滑行.从某时刻起,对滑块施加一水平向右的力,经过一段 时间,滑块的速度变为向右,大小为5m/s, 试求水平力对滑 块所做的功.
例4.人在A点拉着绳通过一定滑轮吊起质量m=50Kg的物 体,如图所示,开始绳与水平方向夹角为,当人匀速提 起重物由A点沿水平方向运动而到达B点,此时绳与水平 方向成角,求人对绳的拉力做了多少功?
G
60
A
30
B
例 5.用汽车从井下提重物,重物质量为 m,定滑轮高为 H, 如图所示, 已知汽车由 A 点静止开始运动至 B 点时的速度为 v, 此时轻绳与竖直方向夹角为 θ.这一过程中轻绳的拉力做功多 大?

动能和动能定理-PPT

动能和动能定理-PPT

解得 s=0.25 m,说明工件未到达B点时,速度已达到v, 所以工件动能的增量为 △EK = 1/2 mv2 = 0.5×1×1= 0.5 J
8
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
练习2.两辆汽车在同一平直路面上行驶,它们的质 量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1,两 车急刹车后甲车滑行的最大距离为s1,乙车滑行的 最大距离为s2,设两车与路面间的动摩擦因数相等, 不计空气阻力,则(D ) A.s1∶s2=1∶2 B.s1∶s2=1∶1 C.s1∶s2=2∶1 D.s1∶s2=4∶1
24
解: 设从脱钩开始,前面的部分列车和末节车厢分别行驶了s1、s2
才停止,则两者距离s=s1-s2.对前面部分的列车应用动能定理,

FL
-
k(M
-
m)gs1
=
-
1(M 2
-
m)v02
对末节车厢应用动能定理,有
- kmgs2
=
1 -
2
mv
2 0
又整列车匀速运动时,有F = kMg,则可解得△s =
15
练习5.某人在高h处抛出一个质量为m的物
体.不计空气阻力,物体落地时的速度为v,这人对
物体所做的功为:D( )
A.Mgh
B.mv2/2
C.mgh+mv2/2
D.mv2/2- mgh
16
例6. 斜面倾角为α,长为L,AB段光滑,BC段粗糙,AB =L/3, 质量为m的木块从斜面顶端无初速下滑,到达C端 时速度刚好为零。求物体和BC段间的动摩擦因数μ。
分析:以木块为对象,下滑全过程用动能定理:
重力做的功为 WG mgLsinα

第2讲动能和动能定理

第2讲动能和动能定理

第2讲 动能和动能定理1.动能(1)定义:物体由于运动而具有的能.(2)公式:E k =12m v 2.(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. (4)矢标性:动能是标量,只有正值. (5)动能是状态量,因为v 是瞬时速度.1.(2012·苏州模拟)一个小球从高处自由落下,则球在下落过程中的动能( ). ①与它下落的距离成正比 ②与它下落距离的平方成正比 ③与它运动的时间成正比 ④与它运动时间的平方成正比A .①②B .③④C .①④D .②③ 答案 C2.(2012·中山模拟)质量为m 的物体在水平力F 的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v ,再前进一段距离使物体的速度增大为2v ,则( ).A .第二过程的速度增量大于第一过程的速度增量B .第二过程的动能增量是第一过程动能增量的3倍C .第二过程合外力做的功等于第一过程合外力做的功D .第二过程合外力做的功等于第一过程合外力做功的2倍解析 由题意知,两个过程中速度增量均为v ,A 错误;由动能定理知:W 1=12m v 2,W 2=12m (2v )2-12m v 2=32m v 2,故B 正确,C 、D 错误.答案 B3.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( ).A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J解析 合外力做的功W 合=E k -0,即W 合=12m v 2=12×25×22 J =50 J ,A 项正确;W G -W 阻=E k -0,故W 阻=mgh -12m v 2=750 J -50 J =700 J ,B 项错误;重力做功W G =mgh =25×10×3 J =750 J ,C错;小孩所受支持力方向上的位移为零,故支持力做的功为零,D 错.答案 A4.如图4-2-1所示,一半径为R 的半圆形轨道BC 与一水平面相连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求:图4-2-1(1)小球平抛后落回水平面D 点的位置距B 点的距离.(2)小球由B 点沿着半圆轨道到达C 点的过程中,克服轨道摩擦阻力做的功.解析 (1)小球刚好通过C 点,由牛顿第二定律mg =m v C 2R小球做平抛运动,有2R =12gt 2 s =v C t解得小球平抛后落回水平面D 点的位置距B 点的距离 s =2R(2)小球由B 点沿着半圆轨道到达C 点,由动能定理 -mg ·2R -W f =12m v C 2-12m v 02解得小球克服摩擦阻力做功 W f =12m v 02-52mgR . 答案 (1)2R (2)12m v 02-52mgR考点一 对动能定理的理解 1.动能定理公式中等号的意义等号表明合力做功与物体动能的变化间的三个关系: (1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因. 2.准确理解动能定理动能定理⎝⎛⎭⎫W =ΔE k =12m v t 2-12m v 02适用于任何力作用下,以任何形式运动的物体(或系统),是一标量式,不存在方向问题,它把过程量(做功)与状态量(动能)联系在一起,常用于求变力做功、分析复杂运动过程、判断能量间的转化关系等.【典例1】如图4-2-2所示,图4-2-2电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H 时,电梯的速度达到v ,则在这个过程中,以下说法中正确的是( ).A .电梯地板对物体的支持力所做的功等于m v 22B .电梯地板对物体的支持力所做的功小于m v 22C .钢索的拉力所做的功等于m v 22+MgHD .钢索的拉力所做的功大于m v 22+MgH解析 以物体为研究对象,由动能定理W N -mgH =12m v 2,即W N =mgH +12m v 2,选项A 、B 错误.以系统为研究对象,由动能定理得:W T -(m +M )gH =12(M +m )v 2,即W T =12(M +m )v 2+(M +m )gH >m v 22+MgH ,选项D 正确,选项C 错误. 案 D【变式1】 (2012·山东东营)图4-2-3人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图4-2-3所示,则在此过程中( ).A .物体所受的合外力做功为mgh +12m v 2B .物体所受的合外力做功为12m v 2C .人对物体做的功为mghD .以上说法都不对解析 物体沿斜面做匀加速运动,根据动能定理:W 合=W F -W f -mgh =12m v 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12m v 2,A 、C 错误,B 正确. 答案 B考点二 动能定理在多过程中的应用 优先考虑应用动能定理的问题 (1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题. (3)变力做功的问题.(4)含有F 、s 、m 、v 、W 、E k 等物理量的力学问题. 【典例2】如图4-2-4所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R 、2R 、3R 和4R ,R =0.5 m ,水平部分长度L =2 m ,轨道最低点离水平地面高h =1 m .中心有孔的钢球(孔径略大于细钢轨直径),套在钢轨端点P 处,质量为m =0.5 kg ,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v 0=13 m/s.取g =10 m/s 2.求:图4-2-4(1)钢球运动至第一个半圆形轨道最低点A 时对轨道的压力. (2)钢球落地点到抛出点的水平距离.解析 (1)球从P 运动到A 点过程 由动能定理得: mg ·2R -μmg ·L =12m v 12-12m v 02由牛顿第二定律:N -mg =m v 12R 由牛顿第三定律:N =-N ′解得:N ′=-178 N .故对轨道压力为178 N 方向竖直向下(2)设球到达轨道末端点速度为v 2,对全程由动能定理得:-μmg ·5L -4mgR =12m v 22-12m v 02解得v 2=7 m/s 由平抛运动h +8R =12gt 2 s =v 2t 解得:s =7 m. 答案 (1)178 N 竖直向下(2)7 m——应用动能定理的解题步骤【变式2】如图4-2-5所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h =0.8 m ,质量为m =2 kg 的小物块M 从斜面顶端A 由静止滑下,从O 点进入光滑水平滑道时无机械能损失,为使M 制动,将轻弹簧的一端固定在水平滑道延长线B 处的墙上,另一端恰位于水平轨道的中点C .已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g =10 m/s 2,下滑时逆着毛的生长方向.求:图4-2-5(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零). (2)若物块M 能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M 在斜面上下滑过程中的总路程.解析 (1)物块M 从斜面顶端A 运动到弹簧压缩到最短,由动能定理得mgh -μmg cos θh sin θ-E p =0 则弹性势能E p =mgh -μmg cos θhsin θ=10 J.(2)设物块M 第一次被弹回,上升的最大高度为H ,由动能定理得mg (h -H )-μmg cos θh sin θ=0 则H =h -μcos θhsin θ=0.5 m.(3)物块M 最终停止在水平面上,对于运动的全过程,由动能定理有mgh -μmg cos θ·s =0物块M 在斜面上下滑过程中的总路程s =hμcos θ=2.67 m.答案 (1)10 J (2)0.5 m (3)2.67 m考点三 用动能定理求变力的功(小专题) 一、状态分析法动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可. 【典例3】如图4-2-6所示,图4-2-6质量为m 的物体被线牵引着在光滑的水平面上做匀速圆周运动,拉力为F 时,转动半径为r .当拉力增至8F 时,物体仍做匀速圆周运动,其转动半径为r2,求拉力对物体做的功.解析 对物体运用牛顿第二定律得拉力为F 时,F =m v 12r ,①拉力为8F 时,8F =m v 22r 2.②联立①②及动能定理得:拉力做功W =12m v 22-12m v 12=2Fr -12Fr =32Fr .答案 32Fr二、过程分割法有些问题中,作用在物体上的某个力在整个过程中是变力,但若把整个过程分为许多小段,在每一小段上此力就可看做是恒力.分别算出此力在各小段上的功,然后求功的代数和.即可求得整个过程变力所做的功.【典例4】如图4-2-7所示,质量为m 的物体静图4-2-7止于光滑圆弧轨道的最低点A ,现以始终沿切线方向、大小不变的外力F 作用于物体上使其沿圆周转过π2到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为多大? 解析 物体从A 点到B 点的运动过程中,由动能定理可得 W F -mgR =12m v B 2①如何求变力F 做的功呢?过程分割,将AB 划分成许多小段,则当各小段弧长Δs 足够小时,在每一小段上,力F 可看做恒力,且其方向与该小段上物体位移方向一致,有W F =F Δs 1+F Δs 2+…+F Δs 1+…=F (Δs 1+Δs 2+…+Δs 1+…)=F ·π2R ②从B 点起撤去外力F ,物体的运动遵循机械能守恒定律,由于在最高点维持圆周运动的条件是mg ≤m v 2R ,即在圆轨道最高点处速度至少为Rg .故由此机械能守恒定律得: 12m v B 2=mgR +m (Rg )22③联立①②③式得:F =5mg π. 答案 5mgπ三、对象转换法在有些求功的问题中,作用在物体上的力可能为变力,但转换对象后,就可变为求恒力功. 【典例5】如图4-2-8所示,质量为2 kg 的木块套在光滑的竖直杆上,图4-2-8用60 N 的恒力F 通过轻绳拉木块,木块在A 点的速度v A =3 m/s 则木块运动到B 点的速度v B 是多少?(木块可视为质点,g 取10 m/s 2)解析 先取木块作为研究对象,则由动能定理得: W G +W T =12m v B 2-12m v A 2①其中W G =-mg ·AB ,W T 是轻绳上张力对木块做的功, 由于力的方向不断变化,这显然是一个变力做的功,对象转换: 研究恒力F 的作用点,在木块由A 运动到B 的过程中,恒力F 的功W F =F (AC -BC ),它在数值上等于W T .故①式可变形为:-mgAB +F (AC -BC )=12m v B 2-12m v A 2,代入数据解得v B =7 m/s.答案 7 m/s【典例】 (2011·浙江卷,24)(20分)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L ′. 解 (1)轿车牵引力与输出功率的关系P =F 牵v将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=Pv 1=2×103 N .(4分)当轿车匀速行驶时,牵引力与阻力大小相等,有F 阻=2×103 N .(2分)(2)在减速过程中,注意到发动机只有15P 用于汽车的牵引.根据动能定理有15Pt -F 阻L =12m v 22-12m v 12(5分) 代入数据得Pt =1.575×105 J(3分)电源获得的电能为E 电=50%×45Pt =6.3×104 J .(2分)(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103 N .在此过程中,由能量守恒定律可知,仅有电能用于克服阻力做功,则E 电=F 阻L ′(2分)代入数据得L ′=31.5 m .(2分)答案 (1)2×103N (2)6.3×104J (3)1.5 m 一、动能及动能定理的单独考查(低频考查) 1.(2009·上海单科,5)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,到达最高点后再下落至离地高度h 处,小球的势能是动能的2倍,则h 等于( ).A.H 9B.2H 9C.3H 9D.4H 9 解析 设小球的初动能为E k0,阻力为F ,根据动能定理,上升到最高点有,E k0=(mg +F )H ,上升到离地面h 处有,E k0-2mgh =(mg +F )h ,从最高点到离地面h 处,有(mg -F )(H -h )=12mgh ,解以上三式得h =49H . 答案 D2.(2011·课标全国卷,15改编)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能不可能( ).A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大解析 若力F 的方向与初速度v 0的方向一致,则质点一直加速,动能一直增大,选项A 正确.若力F 的方向与v 0的方向相反,则质点先减速至速度为零后反向加速,动能先减小至零后增大,选项B 正确.若力F 的方向与v 0的方向成一钝角,如斜上抛运动,物体先减速,减到某一值,再加速,则其动能先减小至某一非零的最小值,再增大,选项D 正确. 答案 C二、动能定理的应用且综合其他考点出现(高频考查) 3.(2009·上海单科,20)质量为5×103 kg 的汽车在t =0时刻速度v 0=10 m/s ,随后以P =6×104 W 的额定功率沿平直公路继续前进,经72 s 达到最大速度,该汽车受恒定阻力,其大小为2.5×103 N .求:(1)汽车的最大速度v m ;(2)汽车在72 s 内经过的路程s .解析 (1)达到最大速度时,牵引力等于阻力P =f v m v m =P f =6×1042.5×103m/s =24 m/s(2)由动能定理可得Pt -fs =12m v m 2-12m v 02所以s =2Pt -m (v m 2-v 02)2f =2×6×104×72-5×103×(242-102)2×2.5×103m =1 252 m 答案 (1)24 m/s(2)1 252 m图4-2-94.(2011·江苏卷,14)如图4-2-9所示,长为L 、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M =km 的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g ).(1)求小物块下落过程中的加速度大小; (2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于22L .解析 (1)设细线中的张力为T ,根据牛顿第二定律得Mg -T =Ma T -mg sin 30°=ma 且M =km 解得a =2k -12(k +1)g .(2)设M 落地时速度大小为v ,m 射出管口时速度大小为v 0.M 落地前由动能定理得Mg ·L sin 30°-mg ·L sin 30°·sin 30°=12(M +m )v 2,对m ,M 落地后由动能定理得-mg (L -L sin 30°)sin 30°=12m v 02-12m v 2 联立解得v 0=k -22(k +1)gL (k >2).(3)小球做平抛运动,则s =v 0t L sin 30°=12gt 2 解得s =Lk -22(k +1)由k -22(k +1)<12得s =Lk -22(k +1)<22L .答案 (1)2k -12(k +1)g (2)k -22(k +1)gL (k >2) (3)见解析。

《动能动能定理》课件

《动能动能定理》课件
《动能动能定理》PPT课 件
学习《动能动能定理》是了解运动的关键概念之一。本课件将介绍动能的定 义和公式,动能与功率、速度公式介绍
动能是物体由于运动而具有的能量。它的计算公式为1/2mv²,其中m为物体的质量,v为物体的速 度。
动能和功率的关系
功率是单位时间内做功的大小,与动能有着密切关系。动能的变化率即为功率,表示为P=dW/dt。
动能守恒定律的证明
动能守恒定律的证明建立在对物体的受力分析和能量变化的推导基础上。通 过计算物体在不同位置和速度下的动能,可以证明动能守恒定律的成立。
动能定理与弹性碰撞的关系
动能定理描述了物体动能的变化与所受力的关系。在弹性碰撞中,动能守恒 定律可以帮助我们分析物体碰撞前后的动能变化。
动量守恒定律与动能守恒定律 的区别
动量守恒定律和动能守恒定律都是运动定律的核心概念。动量守恒定律描述 了物体动量的变化与所受力的关系,而动能守恒定律描述了物体动能的变化 与所受力的关系。
动能和速度的关系
动能和速度之间存在着正比关系,即动能随着速度的增加而增加。这意味着 具有更高速度的物体具有更多的动能。
动能守恒定律的介绍
动能守恒定律是指在没有外力做功的情况下,系统中物体的总动能保持不变。 这个定律对于解释各种物理现象和问题都具有重要意义。
动能守恒定律的应用
动能守恒定律在许多领域都有着广泛的应用,包括机械能守恒、物体运动、机械振动、工程设计、 交通运输、生态保护、医疗器械设计等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.应用动能定理的技巧 (1)动能定理虽然是在恒力作用、直线运动中推导出来 的,但也适用于变力作用、曲线运动的情况. (2)动能定理是标量式,不涉及方向问题.在不涉及加 速度和时间的问题时,可优先考虑动能定理. (3)对于求解多个过程的问题可全过程考虑,从而避开 考虑每个运动过程的具体细节,具有过程简明、运算
1 2 解析 由动能定理,对两车分别列式-F1l1=0- m1v1,- 2 1 2 F2l2=0- m2v2 ,F1=μm1g,F2=μm2g.由以上四式联立得 2 l1∶l2=4∶1,故选项 D 是正确的.
答案
D
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
【知识存盘】
1.内容:在一个过程中合外力对物体所做的功,等于物 动能的变化 体在这个过程中___________. 1 2 1 2 mv - mv 2 2 2 1 2.表达式:W=___________.
解析
答案
AC
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
【知识存盘】
动能
运动 (1)定义:物体由于_____而具有的能叫动能. 1 2 mv (2)公式:Ek=______. 2
焦耳 (3)单位:_____,1 J=1 N· m=1 kg· 2/s2. m 标量 (4)矢标性:动能是_____,只有正值. 状态量 (5)状态量:动能是_______,因为v是瞬时速度.
答案
(1)8 m
(2)102 N
70 N
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
【变式跟踪2】 如图4-2-4所示,粗糙水平
地面AB与半径R=0.4 m的光滑半圆轨道
BCD相连接,且在同一竖直平面内,O是
BCD的圆心,BOD在同一竖直线上.质
量m=2 kg的小物块在9 N的水平恒力F的 作用下,从A点由静止开始做匀加速直线 运动. 图4-2-4
1 2 在这一过程中对物块由动能定理,有 Wf= mv 2 1 由①②③知,转台对物块所做的功 W1= kmgR. 2 ③
答案
D
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
借题发挥
应用动能定理求变力做功时应注意的问题 1.所求的变力的功不一定为总功,故所求的变力的功不 一定等于ΔEk. 2.合外力对物体所做的功对应物体动能的变化,而不是 对应物体的动能. 3.若有多个力做功时,必须明确各力做功的正负,待求 的变力的功若为负功,可以设克服该力做功为W,则
mv2 A.电梯地板对物体的支持力所做的功等于 2 mv2 B.电梯地板对物体的支持力所做的功大于 2
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
图4-2-1 ( ).
mv2 C.钢索的拉力所做的功等于 +MgH 2 mv2 D.钢索的拉力所做的功大于 +MgH 2
1 2 解析 以物体为研究对象,由动能定理 WN-mgH= mv , 2 1 2 即 WN=mgH+ mv ,选项 B 正确、选项 A 错误.以系统为 2 1 研究对象,由动能定理得:WT-(m+M)gH= (M+m)v2, 2 mv2 1 即 WT= (M+m)v2+(M+m)gH> +MgH,选项 D 正确、 2 2 选项 C 错误.
动前的这一过程中,转台的摩擦力对物块做的功最接近 (
A.0 B.2π kmgR C.2kmgR 1 D. kmgR 2
).
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
解析
在转速增加的过程中,转台对物块的摩擦力是不断变
化的,当转速增加到一定值时,物块在转台上即将滑动,
说明此时静摩擦力 Ff 达到最大,其指向圆心的 v2 分量 F1 提供向心力,即 F1=m ① R 由于转台缓慢加速, 使物块加速的分力 F2 很小, 因此可近似认为 F1=Ff=kmg ②
2.对动能定理的理解 (1)动能定理叙述中所说的“外力”,既可以是重力、弹力、摩 擦力,也可以是电场力、磁场力或其他力. (2)利用动能定理可以讨论合力做功或某一个力做功的情况.
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
考点二
动能定理在多过程中的应用
【典例2】 如图4-2-3所示,竖直面内有 一粗糙斜面AB,BCD部分是一个光滑
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
4×0.4 4R 得 t= = s=0.4 s g 10 水平地面上落点与 B 点之间的距离为 x=vDt=3×0.4 m=1.2 m.
答案
(1)5 m/s
(2)25 N
(3)1.2 m
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
借题发挥
答案
BD
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
【变式跟踪1】 (多选)(2013· 启东模拟)人通过
滑轮将质量为m的物体,沿粗糙的斜面由 静止开始匀加速地由底端拉上斜面,物体 上升的高度为h,到达斜面顶端的速度为 v,如图4-2-2所示,则在此过程中
1 A.物体所受的合外力做功为 mgh+ mv2 2 1 2 B.物体所受的合外力做功为 mv 2 C.人对物体做的功为 mgh D.人对物体做的功大于 mgh
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
动能定理
Ⅱ(考纲要求)
【思维驱动】 (单选)两辆汽车在同一平直路面上行驶,它们的质量之比 m1∶m2=1∶2,速度之比v1∶v2=2∶1.当两车急刹车后, 甲车滑行的最大距离为l1,乙车滑行的最大距离为l2,设两 车与路面间的动摩擦因数相等,不计空气阻力,则( A.l1∶l2=1∶2 C.l1∶l2=2∶1 B.l1∶l2=1∶1 D.l1∶l2=4∶1 ).
表达式中应用-W;也可以设变力的功为W,则字母W
的圆弧面,C为圆弧的最低点,AB正好
是圆弧在B点的切线,圆心O与A、D点 图4-2-3 在同一高度,∠OAB=37°,圆弧面的半径R=3.6 m,一 滑块质量m=5 kg,与AB斜面间的动摩擦因数μ=0.45,将 滑块由A点静止释放.求在以后的运动中:(sin 37°=0.6, cos 37°=0.8,g取10 m/s2)
合外力 3.物理意义:_______的功是物体动能变化的量度. 4.适用条件 曲线运动 (1)动能定理既适用于直线运动,也适用于_________. 变力做功 (2)既适用于恒力做功,也适用于_________. (3)力可以是各种性质的力,既可以同时作用,也可以 不同时作用 ___________.
图4-2-5
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
(1)A与B间的距离.
(2)水平力F在前5 s内对物块做的功.
解析 (1)A、B 间的距离与物块在后 2 s 内的位移大小相 等,在后 2 s 内物块在水平恒力作用下由 B 点匀加速运动 到 A 点,由牛顿第二定律知 F-μmg=ma,代入数值得 a 1 2 2 =2 m/s ,所以 A 与 B 间的距离为 s= at =4 m. 2 (2)前 3 s 内物块所受力 F 是变力, 设整个过程中力 F 做的 功为 W,物体回到 A 点时速度为 v,则 v2=2as,由动能 1 2 定理知 W-2μmgs= mv ,所以 W=2μmgs+mas=24 J. 2
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
mv 2 1 根据受力分析以及向心力公式知 Fmax-mg= ⑤ R 代入数据可得 Fmax=102 N. 当滑块以 B 为最高点做往复运动的过程中过 C 点时速度最小,设 为 v2,此时滑块受轨道支持力也最小,设为 Fmin 1 2 从 B 到 C,根据动能定理有:mgR(1-cos θ)= mv2 ⑥ 2 2 mv2 根据受力分析及向心力公式有:Fmin-mg= ⑦ R 代入数据可得:Fmin=70 N. 根据牛顿第三定律可知 C 点受到的压力最大值为 102 N,最小值 为 70 N.
答案
(1)4 m
(2)24 J
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
【变式跟踪3】 (单选)如图4-2-6所示,质
量为m的物块与转台之间的最大静摩擦力
为物块重力的k倍,物块与转轴OO′相距 R,物块随转台由静止开始转动,转速缓 慢增大,当转速增加到一定值时,物块 即将在转台上滑动,在物块由静止到滑 图4-2-6
量小等优点.
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
2.应用动能定理的解题步骤
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
考点三
用动能定理求变力的功
【典例3】 如图4-2-5甲所示,一质量为m=1 kg的物块
静止在粗糙水平面上的A点,从t=0时刻开始物块受到
如图乙所示规律变化的水平力F的作用并向右运动,第 3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好 回到A点,已知物块与粗糙水平面间的动摩擦因数μ= 0.2,(g=10 m/s2)求:
答案
BD
考纲自主研读
考点互动探究
高考全程解密
随堂基础演练
借题发挥
1.动能定理公式中“=”的意义
(1)数量关系:即合外力所做的功与物体动能的变化具有等量 代换关系.可以通过计算物体动能的变化,求合力的功,进 而求得某一力的功. (2变化的原因.
(1)滑块在AB段上运动的总路程;
(2)在滑块运动过程中,C点受到的压力的最大值和最小值.
考纲自主研读 考点互动探究 高考全程解密 随堂基础演练
规范解答 (1)由于滑块在 AB 段受摩擦力作用,则滑块做往复运 动的高度将越来越低,最终以 B 点为最高点在光滑的圆弧面往复 运动. 设滑块在 AB 段上运动的总路程为 x.滑块在 AB 段上受摩擦力, Ff=μFN=μmgcos θ ① 从 A 点出发到最终以 B 点为最高点做往复运动, 根据动能定理有: mgRcos θ -Ffx=0 ② R 联立①②式解得 x= =8 m. μ (2)滑块第一次过 C 点时,速度最大,设为 v1,分析受力知此时滑 块受轨道支持力最大,设为 Fmax,从 A 到 C,根据动能定理有 1 2 mgR-FflAB= mv 1 ③ 2 斜面 AB 的长度 lAB=Rcot θ ④
相关文档
最新文档