测量系统分析(MSA)

合集下载

测量系统分析(MSA)

测量系统分析(MSA)

测量系统分析(MSA)1目的和范围规范测量系统分析,明确实施方法、步骤及对数据的处理、分析。

2规范性引用文件无3定义3.1测量系统:用来对测量单元进行量化或对被测的特性进行评估,其所使用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;也就是说,用来获得测量结果的整个过程。

3.2稳定性:是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。

稳定性是整个时间的偏倚的变化。

3.3分辨率:为测量仪器能够读取的最小测量单位。

别名:最小读数单位、刻度限度、或探测度、分辨力;要求低于过程变差或允许偏差(tolerance)的十分之一。

Minitab中常用的分辨率指标:可区分的类别数ndc=(零件的标准偏差/ 总的量具偏差)* ,一般要求它大于等于5才可接受,10以上更理想。

3.4过程总波动TV=6σ。

σ——过程总的标准差3.5准确性(准确度):测量的平均值是否偏离了真值,一般通过量具计量鉴定或校准来保证。

3.5.1真值:理论正确值,又称为:参考值。

3.5.2偏倚:是指对相同零件上同一特性的观测平均值与真值的差异。

%偏倚=偏倚的平均绝对值/TV。

3.5.3线性:在测量设备预期的工作量程内,偏倚值的差值。

用线性度、线性百分率表示。

3.6精确性(精密度):测量数据的波动。

测量系统分析的重点,包括:重复性和再现性3.6.1重复性:是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差。

重复性又被称为设备波动(equipment variation,EV)。

3.6.2再现性:是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性时测量平均值的变差。

再现性又被称为“评价人之间”的波动(appraiser waration,AV)。

3.6.3精确性%公差(SV/Toler),又称为%P/T:是测量系统的重复性和再现性波动与被测对象质量特性σ / (USL-LSL) *100%。

MSA测量系统分析

MSA测量系统分析

MSA测量系统分析MSA(测量系统分析)是一种用于评估和改进测量系统稳定性、偏倚和线性性能的方法。

通过进行MSA,可以确定测量系统是否足够稳定和准确,以便在不同的情况下对产品进行正确的测量。

稳定性是指测量系统在相同的测量条件下的一系列测量结果是否一致。

稳定性是MSA中最基本的指标之一,因为如果测量系统不稳定,那么无论多么准确的测量工具都无法提供可靠的测量结果。

偏差是指测量结果与真实值之间的差异。

在MSA中,需要比较测量系统的平均偏差与零偏差之间的差异。

如果两者之间存在较大的差异,则说明测量系统存在系统性的偏离问题,需要进行校准或修正。

线性是指测量系统的输出是否与输入之间存在良好的线性关系。

在MSA中,需要绘制出测量系统的线性回归图,通过斜率和截距来评估测量系统的线性性能。

如果回归线接近理想的45度直线,则说明测量系统的线性性能较好。

在进行MSA时,一般采用以下步骤来评估测量系统的稳定性、偏差和线性性能:1.收集测量数据:使用相同的测量系统对一批样本进行测量,并记录测量结果。

2.统计分析:对于每个样本,计算测量结果的平均值和标准偏差。

然后,计算每个样本平均值之间的差异,并计算整体平均偏差和标准偏差。

3. 制作控制图:使用收集的测量结果,绘制测量系统稳定性的控制图。

通常使用X-bar图来监控平均值的稳定性,使用R或S图来监控标准偏差的稳定性。

4.比较平均偏差和零偏差:计算测量系统的平均偏差和零偏差之间的差异,并进行比较。

如果差异较大,则说明测量系统存在系统性的偏离问题。

5.绘制线性回归图:使用测量数据,绘制测量系统的线性回归图。

计算斜率和截距,并与理想的45度直线进行比较。

如果回归线接近理想线,则说明测量系统具有良好的线性性能。

通过以上步骤,可以对测量系统进行全面的评估,并确定是否需要采取措施来改善测量系统的稳定性、偏差和线性性能。

常用的改善方法包括校准测量工具、调整测量程序和培训操作人员等。

总之,MSA是一种重要的质量管理工具,能够帮助企业评估和改进测量系统的稳定性、偏差和线性性能。

测量系统分析报告MSA

测量系统分析报告MSA

测量系统分析报告MSA1. 引言测量系统分析(Measurement System Analysis,简称MSA)是指通过分析和评估测量系统的性能、稳定性和可靠性,来判断测量结果的准确性和可靠性的过程。

本报告旨在对某测量系统进行全面的分析和评估,以帮助提升测量系统的质量和可靠性。

2. 测量系统分析方法在进行测量系统分析时,常采用以下方法:2.1 重复性与再现性分析重复性和再现性是评估测量系统可靠性的重要指标。

通过对同一对象进行多次测量,可以评估测量结果的一致性和稳定性。

2.2 偏倚分析偏倚分析用于评估测量系统是否存在系统性的误差。

通过对测量系统进行校准,并比较校准前后的测量结果,可以判断测量系统的偏倚情况。

2.3 线性分析线性分析用于评估测量系统是否存在线性关系。

通过测量系统对一系列已知标准进行测量,并绘制测量结果与标准值之间的图表,可以判断测量系统的线性关系。

3. 案例分析本次测量系统分析以某电子元件测量系统为例进行分析。

3.1 重复性与再现性分析通过对同一电子元件进行连续十次测量,并记录测量结果,得到以下数据:测量次数测量结果1 12.32 12.43 12.14 12.35 12.26 12.47 12.58 12.29 12.610 12.3通过计算这十次测量结果的平均值和标准偏差,得到重复性和再现性的评估数据。

3.2 偏倚分析为了评估测量系统的偏倚情况,我们对测量系统进行了校准,并测量了一系列标准样本。

校准前后的测量结果如下:标准样本校准前测量结果校准后测量结果1 2.3 2.12 3.4 3.23 4.5 4.44 5.6 5.75 6.7 6.56 7.8 7.9通过比较校准前后的测量结果,可以评估测量系统的偏倚情况。

3.3 线性分析为了评估测量系统的线性关系,我们选择了一系列已知标准进行测量,并绘制了测量结果与标准值之间的图表。

图表显示测量系统的测量结果与标准值之间存在一定的线性关系。

测量系统分析(MSA)

测量系统分析(MSA)

汇集南北管理精英,传递先进企业文化
测量系统开发检查表建议的要素
• 测量和定位点:合作GD&T清楚地确定固定和夹紧点以 及在零件的何处进行测量。 • 固定方法:自由状态或夹紧的零件定位。 • 零件方向:主要部分位置与其它部分。 • 零件准备:测量前零件应该干净、无油、温度稳定吗? • 传感器定位:角度方向,到最初定位器或网络的距离。 • 相互关系问题#1— 在车间内或在车间之间需要加倍(或 更多)的量具支持要求吗?制造的考虑、测量误差的考 虑、维修的考虑。哪个被认定是标准?怎样使每项有资 格?
名词解释
线性 1、整个正常操作范围的偏倚改变 2、整个操作规程范围的多个并且独立的偏倚误差的相互关 系 3、测量系统的系统误差分量 精密度 1、重复读数彼此之间的“接近度” 2、测量系统的随机误差分量
汇集南北管理精英,传递先进企业文化
名词解释
重复性 1、由一位评价人多次使用一种测量仪器,测量同一零件的同一特性时 获得的测量变差 2、在固定和规定的测量条件下连续(短期)试验变差 3、通常指E.V.-设备变差 4、仪器(量具)的能力或潜能 5、系统内变差; 再现性 1、由不同的评价人使用同一个量具,测量一个零 2、件的一个特性时产生的测量平均值的变差。 3、对于产品和过程条件,可能是评价人、环境(时间)或方法的误差 4、通常指A.V- 评价人变差 5、系统间(条件)变差 6、ASTM E456-96 包括重复性、实验室、环境及评价人影响
汇集南北管理精英,传递先进企业文化
测量系统开发检查表建议的要素
• 灵敏度:最小的输入信号形成测量设备可探测的(可辨 别的)输出信号对应用这种测量装置可接受吗?灵敏度 由固有的量具设计和质量(OEM)及使用中的维护和操 作条件确定。 • 测量系统制造问题(设备、标准、仪器): • 在系统设计中提出的变差源识别了吗?设计评审、验证 和确认。 • 校准和控制系统:建议的校准计划及设备和文件的审核。 频率、内部的或外部的、参数、过程中验证检查。 • 输入要求:机械的、电的、液压的、气动的、浪涌抑制 器、干燥器、过滤器、滤清器,准备和操作问题、绝缘、 分辨率和灵敏度。

测量系统分析报告MSA

测量系统分析报告MSA

测量系统分析报告MSA在现代制造业中,为了确保产品质量的稳定性和一致性,对测量系统进行准确的分析和评估是至关重要的。

测量系统分析(Measurement System Analysis,简称 MSA)就是一种用于评估测量过程的工具和方法,它可以帮助我们确定测量数据的可靠性、准确性以及可重复性。

测量系统通常由测量人员、测量设备、测量方法、测量环境和被测量对象等要素组成。

而 MSA 的目的就是要评估这些要素对测量结果的影响,并确定测量系统是否能够满足预期的测量要求。

MSA 主要包括以下几个方面的内容:一、测量系统的准确性准确性是指测量结果与真实值之间的接近程度。

在 MSA 中,通常通过与标准值进行比较来评估测量系统的准确性。

例如,如果我们要测量一个零件的长度,已知其标准长度为 100mm,而测量结果为98mm,那么就存在 2mm 的偏差。

为了提高准确性,我们需要对测量设备进行校准,并确保测量方法的正确性。

二、测量系统的重复性重复性是指在相同的测量条件下,对同一被测量对象进行多次测量时,测量结果的一致性。

如果一个测量系统具有良好的重复性,那么多次测量的结果应该非常接近。

例如,对同一个零件的同一尺寸进行10 次测量,如果测量结果的差异很小,说明测量系统的重复性较好。

三、测量系统的再现性再现性是指在不同的测量条件下,由不同的测量人员使用相同的测量设备和测量方法对同一被测量对象进行测量时,测量结果的一致性。

例如,不同的操作人员在不同的时间对同一个零件的同一尺寸进行测量,如果测量结果的差异较小,说明测量系统的再现性较好。

四、稳定性稳定性是指测量系统在一段时间内保持其性能的能力。

通过定期对测量系统进行监控和测量,可以评估其稳定性。

如果测量系统的稳定性较差,可能需要对其进行维护或更换。

为了进行有效的 MSA,我们通常采用以下几种方法:1、均值极差法(Average and Range Method)这是一种常用的评估测量系统重复性和再现性的方法。

MSA–测量系统分析

MSA–测量系统分析

MSA –测量系统分析引言MSA(测量系统分析)是一种用于评估和验证测量系统准确性和可靠性的方法。

在许多行业中,准确的测量数据对于产品质量和过程改进至关重要。

因此,对测量系统进行分析和评估是确保数据质量的关键步骤。

本文将介绍MSA的基本概念、主要组成部分和常见的分析方法,以及如何使用Markdown文本格式输出。

MSA的概述测量系统是指用于测量和收集数据的工具、设备和方法。

这些测量系统可以包括各种仪器、传感器、计量设备和人工操作。

MSA的目标是确定测量系统的偏差、重复性和稳定性,以评估测量过程的可靠性和准确性。

MSA的主要目标是确定测量系统的变异来源,并分析其对于测量结果的影响。

通过评估测量系统的可行性和稳定性,我们可以确定任何必需的改进和修正。

MSA的组成部分MSA包括以下三个主要组成部分:1.制程能力分析(PPK):通过对测量系统进行评估,确定其是否能够满足产品或过程的需求。

制程能力分析是一种量化的方法,用于确定测量系统能够产生多大程度的变异。

2.重复性与再现性分析:重复性是指在同一测量条件下进行多次测量时,测量结果之间的差异。

再现性是指在不同测量条件或不同测量者之间进行测量时,测量结果之间的差异。

通过对重复性和再现性进行分析,可以确定测量系统的一致性和可靠性。

3.精确度分析:精确度是指测量结果与真实值之间的接近程度。

通过与参考标准进行比较,我们可以评估测量系统的准确性和偏差。

常见的MSA分析方法以下是几种常见的MSA分析方法:1.方差分析(ANOVA):ANOVA是一种统计分析方法,用于分解测量变异的来源。

通过将测量结果进行分解,我们可以确定各个变异来源的贡献程度,并确定潜在的改进措施。

2.控制图:控制图是一种用于监控和分析过程变异的图表。

通过绘制测量结果的控制图,我们可以可视化测量系统的偏差和变异,并及时发现异常情况。

3.直方图:直方图是一种图表,用于显示测量结果的频率分布。

通过绘制测量结果的直方图,我们可以了解测量数据的分布情况,并判断测量系统的精确度和稳定性。

测量系统分析(MSA)通用课件

测量系统分析(MSA)通用课件

稳定性
稳定性是衡量测量系统在长时间内保持一致性的参数。
稳定性分析通常涉及在一段时间内多次测量同一标准值,以检查测量系统的变化。 这种方法有助于确定测量系统是否随时间推移而发生变化,并评估其可靠性。
重复性和再现性
重复性和再现性是衡量测量系统在不 同操作者或不同条件下的一致性的参 数。
VS
重复性是指在相同条件下,同一操作 者多次测量的一致性。再现性则涉及 不同操作者或不同条件下测量的结果 是否一致。这些分析有助于评估测量 系统的可重复性和可再现性,并确定 其可靠性。
偏倚通常由校准曲线、线性回归分析或其它统计方法确定。 校准曲线是通过比较已知标准值和测量系统所得值来建立的。 线性回归分析则用于评估测量系统的准确性,并确定是否存 在系统误差。
线性
线性是衡量测量系统在预期范围内的 一致性和准确性的参数。
线性分析通过比较不同水平的已知标 准值与测量 系统所得值来进行。这种 方法有助于识别测量系统在高、中、 低值的一致性,并确定是否存在非线 性误差。
范围
确定分析所涉及的测量设备和操作人 员范围,以及需要分析的测量过程和 产品特性。
确定测量系统类型
测量设备
根据分析目的和范围,选择适当的测量设备,并了解其技术规格和性能参数。
操作人员
确定负责测量的人员,了解其资质、经验和培训情况。
制定分析计划
方法
选择适当的测量系统分析方满足要求。
案例二:重复性和再现性分析案例
总结词
本案例介绍了如何进行重复性和再现性分析,以评估 测量系统的精密度和可靠性。
详细描述
本案例通过实际数据展示了如何进行重复性和再现性 分析。首先,对同一实际样品进行多次测量,计算测 量结果的重复性。接着,对不同时间、不同操作者、 不同仪器条件下进行测量,计算再现性。最后,根据 分析结果判断测量系统是否满足要求。

测量系统MSA分析

测量系统MSA分析

测量系统MSA分析1. 简介测量系统分析(Measurement System Analysis,简称MSA)是针对测量系统进行的一项评估,用于确定测量系统的准确性和稳定性。

MSA分析是质量管理中非常重要的一部分,可以帮助我们评估测量系统的可靠性,从而确保产品质量的准确性和可靠性。

2. MSA分析的目的MSA分析的主要目的是确保测量系统的有效性和稳定性。

它通过评估测量系统的各种组件,如测量设备、操作员和测量过程,来确定测量系统的可靠性和精确度。

具体来说,MSA分析有以下几个目标:•评估测量设备的准确性和稳定性•评估操作员的测量技能和一致性•评估测量过程的可重复性和再现性•识别并减少测量系统中的变异源3. MSA分析的方法在进行MSA分析时,通常可以采用以下几种方法:3.1 精度和偏差分析精度和偏差分析是一种常用的MSA分析方法,它通过比较测量系统的测量结果与参考值之间的差异来评估测量设备的准确性和稳定性。

通常可以采用直方图、散点图等方式来可视化表示测量结果与参考值之间的差异,进而确定测量设备的偏差情况。

3.2 重复性和再现性分析重复性和再现性分析是评估测量过程的可重复性和再现性的方法。

重复性指的是同一测量设备在同一测量条件下进行多次测量时产生的结果的一致性,而再现性指的是不同测量设备在相同测量条件下进行多次测量时产生的结果的一致性。

通过统计分析和可视化展示重复性和再现性的数据,可以评估测量过程的稳定性和可靠性。

3.3 线性度和偏移分析线性度和偏移分析是评估测量系统线性度和偏移情况的方法。

线性度指的是测量设备在不同测量范围内的测量结果是否存在线性关系,而偏移指的是测量设备的测量结果是否存在常数偏差。

通过对测量结果进行统计分析和可视化展示,可以确定测量系统的线性度和偏移情况。

4. MSA分析的应用MSA分析在实际应用中具有广泛的用途,特别是在制造业领域。

以下是一些常见的应用场景:•生产线上定期进行测量设备的校验和维护,以确保测量结果的准确性和稳定性。

测量系统分析(MSA)

测量系统分析(MSA)

测量系统分析(MSA)测量系统可分为“计数型”及“计量型”测量系统两类。

测量后能够给出连续性的测量数值的为计量型测量系统;而只能定性地给出测量结果的为计数型测量系统。

“计量型”测量系统分析通常包括(Bias)、稳定性(Stability)、(Linearity)、以及重复性和再现性(Repeatability&Reproducibility,简称R&R)。

在测量系统分析的实际运作中可同时进行,亦可选项进行,根据具体使用情况确定。

测量:是指以确定实体或系统的量值大小为目标的一整套作业。

我们通常用分辨力、偏倚、稳定性、线性、重复性和再现性等评价测量系统的优劣,并用它们控制测量系统的偏倚和波动,以使测量获得的数据准确可靠。

有效测量的十原则:1.确定测量的目的及用途。

一个尤其重要的例子就是测量在质量改进中的应用。

在进行最终测量的同时,还必须包括用于诊断的过程间测量。

2.强调与顾客相关的测量,这里的顾客包括内部顾客与外部顾客。

3.聚集于有用的测量,而非易实现的测量。

当量化很困难时,利用替代的测量至少可以提供关于输出的部分理解。

4.在从计划到执行测量的全程中,提供各个层面上的参与。

那些不使用的测量最终会被忽略。

5.使测量尽量与其相关的活动同时执行,因为时效性对于诊断与决策是有益的。

6.不仅要提供当期指标,同时还要包括先行指标和滞后指标。

对现在及以前的测量固然必要,但先行指标有助于对未来的预测。

7.提前制订数据采集、存储、分析及展示的计划。

8.对数据记录、分析及展示的方法进行简化。

简单的检查表、数据编码、自动测量等都非常有用,图表展示的方法尤为有用。

9.测量的准确性、完整性与可用进行阶段评估。

其中,可用性包括相关性、可理解性、详细程度、可读性以及可解释性。

10.要认识到只通过测量是无法改进产品及过程。

基本概念:3.稳定性:测量系统保持其位置变差和宽度变差随时间恒定的能力。

4.偏倚:观测平均值(在重复条件下的测量)与一参考值之间的差值。

测量系统分析(MSA)

测量系统分析(MSA)

稳定性好
真值 时间 1
时间 1
真值
稳定性差
时间 2
时间2
时间 3
时间3
Y的测量系统评价 对散布的评价
- 精密度 : 根据测量系统反复性和再现性的总变动
- 反复性 : 重新测量也有相同的结果吗 ?
- 再现性 : 用其他测量系统也有相同的结果吗 ?
Y的测量系统评价
精密度
- 测量系统中的总散布 术语: 随机误差( Random Error ), 分散( Spread ), 测试/再测试误差( Test/Retest error ) 重复性和再现性
据的信赖性,通过研究测量系统所发生的 Nhomakorabea动对工程散布的影响,从 而判断该测量系统的适合性
MSA 概要
测量系统评价的重要性
1.测量数据 1)作为分析判断的基本依据,有必要评价其信赖性; 2)依据测量系统进行观测和评价
2.测量系统的分析 是6SIGMA活动的最基本的工作和最重要的部分之一
3.测量系统分析被强调的原因 1)所有的产品通常都是由许多部件构成的; 2)产品的小型化趋势使产品的误差界限缩小; 3)部件更换或组装时通常要求有互换性; 4)为了能大量生产,通常有增大自动组装的必要性
计量型数据的 Gage R&R P/T 比
P / T = 5.15*s MS
Tolerance
一般用 %表现
说明有多少百分比的公差 由测量误差所占据
包括重复性和再现性
作为目标,我们追求 P/T < 30%
注意 : 5.15标准偏差占测量系统散布的 99%. 5.15是产业标准.
计量型数据的 Gage R&R
70
80
Process

测量系统分析(MSA)

测量系统分析(MSA)

测量系统分析(MSA)第一章通用测量系统指南第一节引言、目的和术语一.引言1.测量数据的作用:①测量数据和统计量与过程统计控制限值进行比较,确定过程是否调整。

②确定每个变量间是否存在函数关系。

2.测量数据的质量:①测量值与特性标准值“接近”——质量“高”。

测量值远离特性标准值——质量“低”。

②数据质量好坏的表现a.偏倚——指数据相对标准值的位置。

b.方差——指数据的分布。

二.目的:为评定测量系统提供可选择的方法三.术语1.量具——任何用来获得测量结果的装置:包括用来测量合格不合格的装置。

2.测量系统——用来对被测特性赋值的操作、程序、量具、设备、软件以及操作人员的集合。

3.测量过程——赋值的过程。

第二节测量系统的统计特性一.测量系统必须处于统计过程中,也就是说测量系统中的变差只有普通变差。

二.测量系统变异小于制造过程变异。

三.测量系统变异应小于公差带。

四.测量精度应高于过程变异和公差带的十分之一。

五.测量系统统计特性可能随被测项目改变而变形。

测量系统变差应小于过程变差和公差带两者中的较小者。

第三节标准一.分类最高标准——国家标准。

第一级标准——国家标准传递到下一级的标准。

第二级标准——第一级标准传递到下一级的标准。

工作标准——用来校准生产设备中建立的测量系统。

(也称生产标准)。

标准追溯性——通过一个不间断的比较链,可将单个测量结果与国家标准相联系。

二.使用:可追溯标准的使用有助于减少生产者和顾客间测量结果不一致时产生的矛盾。

第四节通用指南一.测量系统的评定步骤第一步:验证该测量系统在测量正确的变量。

第二步:确定该测量系统应具备什么样可接受的统计特性。

二.测量系统的评定1.第一阶段:了解测量过程,确定系统能否满足需要,有两个目的:①确定该系统是否具有所需要的统计特性。

应在实际使用该系统之前进行。

②确定对系统有显著影响的环境因素。

2.第二阶段:验证测量系统应持续具有恰当的统计特性。

常用“量具R&R”(量具的重复性和再现性)形式。

MSA测试系统分析

MSA测试系统分析

MSA测试系统分析概述MSA(Measurement System Analysis)是指测量系统分析,是用来评估和确认测量系统的可靠性和准确性的一种方法。

在各行各业的生产和质量控制过程中,测量系统都扮演着十分重要的角色,因此,对测量系统进行分析和评估是非常必要的。

本文将介绍MSA测试系统分析的背景、涉及的主要步骤和相关的统计方法。

背景在生产过程中,对产品的测量和检验是十分重要的环节。

通过测量,可以评估产品特性是否符合要求,从而提高生产过程的控制和产品质量。

然而,测量结果的准确性和可靠性受到许多因素的影响,包括测量设备、操作人员和环境等。

为此,需要对测量系统进行分析和评估,以确保测量结果的准确性和可靠性。

MSA测试系统分析通常包括以下几个主要步骤:确定测量系统的目的首先,需要明确测量系统的目的和应用情境。

例如,是用于产品的检验还是生产过程的控制,或者是用于供应商评估等。

不同的目的和应用情境可能需要使用不同的测量方法和统计方法。

选择适当的指标选择适当的指标是进行MSA测试系统分析的关键步骤。

常见的指标包括测量误差、重复性、稳定性等。

根据不同的情况,选择合适的指标进行分析。

收集数据是进行MSA测试系统分析的必要步骤。

根据所选择的指标,使用适当的方法进行数据的采集和记录。

通常可以使用测量仪器来收集数据,并记录在数据表中。

分析数据在收集到足够的数据后,可以对数据进行分析。

常用的统计方法包括统计描述、方差分析、回归分析等。

通过这些统计方法,可以评估测量系统的准确性、稳定性和重复性等指标。

结果解释和改进措施根据数据分析的结果,可以对测量系统进行评估和解释。

如果测量系统存在问题,可以采取相应的改进措施,如调整测量设备、培训操作人员或改善环境等。

通过对测量系统进行分析和评估,可以得出结论和建议。

根据分析结果,可以评估测量系统的可靠性和准确性,并提出改进建议,以提高测量系统的性能和效果。

结论MSA测试系统分析是一种重要的方法,用于评估和确认测量系统的可靠性和准确性。

测量系统分析(MSA)

测量系统分析(MSA)

%Tolerance
(SV/Toler) 30.91 20.51 23.12 0.00 23.12 118.79 122.74
各因素对变差的贡献度
൑ 10%,测量系统能力很好 ൑ 30%,测量系统处于临界
>10,良好 5~9 ,尚可
Number of Distinct Categories = 5
重复性&再现性(G&RR)
15
线性(Linearity)
什么是线性
在其量程范围内,偏倚是基准值的线性函数.
真值 1
观测值1
倾斜小
••••••
真值 2
观测值2
倾斜大
测定的下限范围
测定的上限范围
16
线性(Linearity)
线性案例
由一个测量员用同一台千分尺对长度分别为10mm, 20mm, 50mm, 100mm的块规各进行5次测量,测量的基准值及偏倚如下:

Gage R&R (ANOVA) for 膜厚值
Gage name:
膜厚仪
Date of study: 2019/8/5
Reported by: QA Tolerance: Misc:
Components of Variation
Percent10500 0
Gage R&R
Repeat
Reprod Part-to-Part
G&RR 练习
A组:选取10件bar-pin,用游标卡尺对标注厚度进行2个测量者,每件2次的G&RR分析.
B组:选取10件Bushing,用游标卡尺对标注外径进行2个测量者,每件2次的G&RR分析.
计数型测量系统分析

MSA测量系统分析

MSA测量系统分析

MSA测量系统分析简介MSA测量系统分析(Measurement System Analysis)是一种用于评估和优化测量系统可靠性和稳定性的统计方法。

在各个领域,测量系统在产品设计、生产过程控制和质量检验等方面起着重要的作用。

通过进行MSA分析,可以确定测量系统的误差、偏差和稳定性,并评估测量结果的可靠性和准确性。

MSA的重要性测量系统是一个包含人员、设备、程序和环境等多个因素的复杂系统。

任何一个因素的变化都可能对测量结果产生影响,从而导致产品的不一致或质量问题。

因此,进行MSA分析非常重要,它可以帮助我们理解和控制测量系统的误差来源,优化测量过程,提高产品质量。

MSA的指标和方法1. 测量系统误差测量系统误差是指测量结果与实际值之间的差异。

常用的误差指标有Ma(Measurement accuracy)、Repeatability(重复性)、Reproducibility(可再现性)和Stability(稳定性)等。

其中,重复性指示了测量系统对同一样本重复测量时的一致性,可再现性指示了不同操作者在相同的条件下测量时的一致性,稳定性指示了测量系统的长期稳定性。

2. 测量系统判定为了评估测量系统的可靠性和准确性,可以使用以下方法进行测量系统的判定: - 直接对比法:将同一个样本分别由不同测量系统测量,通过比较测量结果的一致性来评估测量系统的准确性。

- 方差分析法:对测量结果进行方差分析,判断测量系统的误差是否显著。

- 通过测量系统分析工具,如测量系统拆解图、测量系统误差分析图等,可直观地帮助我们理解和诊断测量系统的问题。

3. MSA的方案和步骤进行MSA分析时,首先要确定合适的样本数量,并选择合适的测量方法。

然后,按照以下步骤进行分析: 1. 收集样本数据:从不同的测量系统中收集一组样本数据。

2. 分析数据:使用统计方法对测量数据进行分析,计算测量系统的误差指标。

3. 评估误差来源:通过分析测量结果的差异,确定误差的来源。

测量系统分析MSA

测量系统分析MSA

测量系统分析MSA测量系统分析(Measurement System Analysis,MSA)是一种用于检验和评估测量系统准确度、可重复性和稳定性的方法。

在各种生产行业和研究领域中,测量系统都扮演着重要的角色,这些系统能够测量和记录各种物理量,比如尺寸、温度、压力等。

而MSA旨在确保测量结果的准确性和可靠性,从而保障生产和研究的可靠性和可重复性。

首先,MSA包括三个关键的要素,即精度(accuracy)、重复性(repeatability)和稳定性(stability)。

精度表示测量结果与真实值的接近程度,重复性指相同条件下多次测量的结果的一致性,稳定性表示测量系统在长时间使用过程中的性能保持程度。

这三个要素都是评估测量系统品质的重要指标,需要通过一系列的统计分析方法来评估。

其次,MSA可以通过多种技术和工具进行分析。

常见的分析方法包括方差分析(Analysis of Variance,ANOVA)、组间方差分析(Gauge R&R)和Cp/Cpk等指标分析。

方差分析通过比较测量系统的变异与总变异的比值,从而确定测量系统的贡献程度。

组间方差分析是一种常用的检验方法,它通过比较同一工件在不同测量系统上的测量结果,确定每个测量系统的准确度和重复性。

Cp/Cpk是一种常用的机制能力指数,可以评估测量系统的性能是否满足工艺要求。

在进行MSA分析时,还需要按照一定的步骤来进行实施。

首先,需要明确测量系统的目标和使用条件。

其次,需要确定要测量的元件或工件,并确定测量系统的参数和所需的样本数量。

然后,进行测量试验,并收集数据。

在收集数据之前,需要确保测量设备的正常运行和校准。

数据收集后,可以进行数据分析,评估测量系统的准确度和可重复性。

最后,根据分析结果,提出改进建议,优化测量系统的性能。

MSA的应用范围十分广泛,可以涵盖制造业、医药行业、科研领域等各个领域。

在制造业中,MSA可以用于产品质量控制、工艺改进和供应链管理等方面。

测量系统分析msa

测量系统分析msa

8、参考标准:一般在给定位置可得到的最高计量质量标准,在这个位置进行的
测量,都是以此标准为最终参照。 9、测量和试验设备(M&TE):完成一次测量所必需的所有测量仪器,测量标准, 基准材料以及辅助设备。 10、校准标准:在进行定期校准中作为基准的标准,用来减轻按照试验室基准 标准来进行的校准工作负担。 11、传递标准:用于把一个独立的已知值的标准与正在校准的元件进行比较的
第五阶段 反馈、评定 和纠正措施 批量生产
8、“过程分析(乌龟图)”在测量系统分析(MSA )中的运用
过程分析(乌龟图)工作表
使用什么方式进行 ⑤
(材料/设备/装置)
填写机器(包括试验设备),材 料,计算机系统,过程中所使用 的软件等的详细说明
由谁进行? ⑥ (能力/技能/知识/培训) 填写资源要求,特别注意要 求的技能和能力准则,安全 设备等
填写相关的过程控制、支持过程、 管理过程、程序、作业指导书、 方法和技术等的详细说明
使用的关键准则是什么? (测量/评估) ⑦ 填写过程有效性的测量,比 如矩阵和指标
注:测量系统分析(MSA)的“过程分析(乌龟图)”表中之具体和详细内容的填写请见附件二。
9、测量系统分析(MSA )的目的 1)、对参加课程培训的人员:
主要是针对产品特性所使用到的测量系统。
■ 所用的测量分析方法及接收准则必须与顾客关于测量系统分析 的参考手册相一致。
■ 如经顾客批准,也可以采用其它方法及接收准则。
■ ISO/TS16949:2002 标准中的体系内部审核检查表强调要有证 据证明上述要求已达到。 ■ 生产件批准程序(PPAP)手册中明确规定:对新的或改进的量 具、测量和试验设备必须参考测量系统分析(MSA)手册进行 变差统计研究。 ■ 产品质量先期策划(APQP)手册中明确规定:测量系统分析

测量系统分析(MSA)

测量系统分析(MSA)

测量系统分析(MSA)一、什么是测量系统分析?测量系统是指由测量仪器(设备)、测量软件、测量操作人员和被测量物所组成的三个整体。

MSA(Measurement System Analysis)是指检测测量系统以便更好地了解影响测量结果的变异来源及其分布的一种方法。

通过测量系统分析可把握当前所用的测量系统有无问题和主要问题出在哪里,以便及时纠正偏差,使测量精度满足要求。

重复性也叫设备变差。

用同一评价者在同一测量设备上多次测量同一部件,可评价测量设备的变差有多大。

再现性也叫人为变差。

用不同的评价者在同一测量设备上多次测量同一部件,可分析人为因素的影响有多大。

二、GRR评价方法(GRR变异等于系统内部和系统之间变异之和)1.首先界定此测量系统用于何处,如产品检验或工序控制2.选出10个可代表覆盖整个工序变化范围的样品3.从测试人员中选择2~3人对每个样品进行2~3次随机测量4.记录测量结果并用重复性和再现性表进行运算5.用判别标准进行判断,确定此系统是否合格6.对不合格之测量系统进行适当处理三、测量系统分析标准1.测量系统的精度(分辨率)需比被测量体要求精度高一个数量级,即如要求测量精度是0.001,测量仪器的精度要求须是0.0001。

2.如果GRR小于所测零件公差的10%,则此系统无问题。

3.如果GRR大于所测零件公差的10%而小于20%,那么此测量系统是可以接受的。

4.如果GRR大于所测零件公差的20%而小于30%,则接受的依据是数据测量系统的重要程度和商业成本。

5.如果GRR大于所测零件公差的30%,那么此测量系统不能接受,并且需要进行改善。

四、测量系统的控制测量系统控制需要注意以下几点:1.定期对测量系统进行评估,看GRR是否超出标准范围。

2.定期对仪器设备进行检定使其符合标准要求。

3.对测量系统要有规范的仪器校正标识卡和最后使用期限。

4.要有专人负责和管理仪器软硬件,并定期加以维护,确保其工作在正常状态。

量测系统分析(MSA)

量测系统分析(MSA)

根据 偏倚判定公式:偏倚 [ b (tv,1a / 2 )] 0 偏倚 [ b (tv,1a / 2 )] 得出:
偏倚的95%置信度区间为:(-0.1215,0.1319)
由于0落在偏倚自信度区间(-0.1215,0.1319),所以这个测量偏倚是 可以接受的,即在实际使用中,将不会带来额外的变差来源。
偏倚
-0.2 -0.3 -0.1 -0.1
0 0.1 0 0.1 0.4 0.3 0 0.1 0.2 -0.4 0
偏倚范例
根据数据得出: n=15, X 6.0067
X i(m ax) 6.4
X i (m in) 5.6
查附录C得出: d2=3.55 v=10.8 查标准t分布表得出: t(v,1-a/2)=2.206
线性的判定
线性判定 R2判定该量具是否有线性,a 判定线性大小
判定公式
| t |
|a| s
t gm2,1a / 2
(x j
x)2
| t |
|b|
1
2
x
t gm2,1a / 2
gm
(xi x)2
如果以上公式成立,线性为可接受
线性中的公式
Slope(a)
xy
(
1 gm
x
y)
x2
1 gm
(
x)2
Intercept(b) y ax
s
y
2 i
b
yi a
xi yi
gm 2
备注:x为参考值,y为偏倚,g为零件个数,m为测试次数
线性范例
数据表
零件编号 零件参考值
1 2 3 4 测5 试6 次7 数8 9 10 11 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汇集南北管理精英,传递先进企业文化
名词解释
GRR或量具R&R 1、量具重复性和再现性;测量系统重复性和再现性合成的
评估 2、测量系统能力;依据使用的方法,可能包括或不包括时
间影响 测量系统能力 1、测量系统变差的长期评估(长期控制图法) 一致性 1、重复性随时间的变化程度 2、一个一致的测量过程是考虑到宽度(变异性)下的统计
、今天和明天都具有同样的含义,产生同样的结果。
汇集南北管理精英,传递先进企业文化
名词解释
分辨力、可读性、分辨率 别名:最小的读数的单位、测量分辨率、刻度限度或探测
度 由设计决定的固有特性 测量或仪器输出的最小刻度单位 总是以测量单位报告 1:10经验法则
汇集南北管理精英,传递先进企业文化
名词解释
汇集南北管理精英,传递先进企业文化
测量系统的评定
测量系统的评定通常分为两个阶段,称为第一阶段和第二 阶段
第一阶段:明白该测量过程并确定该测量系统是否满足我 们的需要。第一阶段试验主要有二个目的 :
确定该测量系统是否具有所需要的统计特性,此项必须在 使用前进行 。
发现哪种环境因素对测量系统有显着的影响,例如温度、 湿度等,以决定其使用之空间及环境 。
第二阶段的评定 目的是在验证一个测量系统一旦被认为是可行的,应持续
具有恰当的统计特性 。
汇集南北管理精英,传递先进企业文化
测量系统
测量系统:是用来对被测特性定量测量或定性评价的仪 器或量具、标准、操作、方法、夹具、软件、人员、环 境和假设的集合;用来获得测量结果的整个过程
汇集南北管理精英,传递先进企业文化
名词解释
测量:定义为赋值(或数)给具体事物以表示它们之间关 于特定性的关系。这个定义由C.Eisenhart(1963)首 次提出。赋值过程定义为测量过程,而赋予的值定义为 测量值。 量具;任何用来获得测量结果的装置,经常用来特指用在车间的装置
;包括通过/不通过装置。 标准 1、用于比较的可接受的基准 2、用于接受的准则 3、已知数值,在表明的不确定度界限内,作为真值被接受 4、基准值 一个标准应该是一个可操作的定义:由供应商或顾客应用时,在昨天
受控
汇集南北管理精英,传递先进企业文化
为什麽要做MSA
變差
變差
所得結果
輸入
輸入/輸出
輸出
製程變差
製程
測量過程
+
測量變差
有多大? 有什麽影響 ?
若我們要知道制程輸出是否達到要求及在控制之內, 所用的測 量系統必須具備足夠能力去量度制程的變差, 原因是測量過程本身 亦存在一定的變差, 所以我們必須對所選用的測量系統/儀器先作一 些統計分析,才可決定這測量系統/儀器是否適用.
汇集南北管理精英,传递先进企业文化
名词解释
线性 1、整个正常操作范围的偏倚改变 2、整个操作规程范围的多个并且独立的偏倚误差的相互关
系 3、测量系统的系统误差分量 精密度 1、重复读数彼此之间的“接近度” 2、测量系统的随机误差分量
汇集南北管理精英,传递先进企业文化
名词解释
重复性 1、由一位评价人多次使用一种测量仪器,测量同一零件的同一特性时
有效分辨率 1、对于一个特定的应用,测量系统对过程变差的灵敏性 2、产生有用的测量输出信号的最小输入值 3、总是以一个测量单位报告 基准值 1、人为规定的可接受值 2、需要一个可操作的定义 3、作为真值的替代 真值 1、物品的实际值 2、未知的和不可知的
汇集南北管理精英,传递先进企业文化
名词解释
准确度 1、“接近”真值或可接受的基准值 2、ASTM包括位置和宽度误差的影响 偏倚 1、测量的观测平均值和基准值之间的差异 2、测量系统的系统误差分量 稳定性 1、偏倚随时间变化 2、一个稳定的测量过程是关于位置的统计受控 3、别名:漂移
汇集南北管理精英,传递先进企业文化
产生测量变差的原因
稳定性
工件+(零件)
变形 清洁度
仪器+(量具)
制 制造工差 造
制造变差
设 计


重复性

标 准

照明
态度

温度ቤተ መጻሕፍቲ ባይዱ
环境
振动
经验
能力


人员
汇集南北管理精英,传递先进企业文化
测量系统实施的时机
在产品试作时建立测量系统分析计划, 在产品量试时,对用于产品的每个测量系统进行分析。 1、新生产之产品PV(零件变差)有不同时 2、新仪器,EV(设备变差)有不同时 3、新操作人员,AV(评价人变差)有不同时 4、易损耗之仪器必须注意其分析频率
测量系统分析 (MSA)
汇集南北管理精英,传递先进企业文化
课程大纲
1、实施MSA的目的; 2、什么是测量系统; 3、名词解释; 4、测量系统实施的时机; 5、五性研究; 6、计数型研究; 7、测量系统实施前说明。
汇集南北管理精英,传递先进企业文化
目的
通过对测量系统的评价,以了解测量系统是否满足 产品生产过程的需要,找出测量系统的变差,并对其进 行改进,以保证产品的质量。
获得的测量变差 2、在固定和规定的测量条件下连续(短期)试验变差 3、通常指E.V.-设备变差 4、仪器(量具)的能力或潜能 5、系统内变差; 再现性 1、由不同的评价人使用同一个量具,测量一个零 2、件的一个特性时产生的测量平均值的变差。 3、对于产品和过程条件,可能是评价人、环境(时间)或方法的误差 4、通常指A.V- 评价人变差 5、系统间(条件)变差 6、ASTM E456-96 包括重复性、实验室、环境及评价人影响
培训、学徒期间。 • 确定变差来源了吗?使用小组、头脑风暴、渊博的过程知识,因果
图或矩阵建立误差模型(S.W.I.P.E或P.I.S.M.O.E.A)
汇集南北管理精英,传递先进企业文化
测量系统开发检查表建议的要素
• 开发测量系统的潜在失效模式及后果分析了吗? • 柔性测量系统或专用的测量系统:测量系统可以是永久的和专用的
汇集南北管理精英,传递先进企业文化
测量系统开发检查表建议的要素
• 测量系统设计和开发问题: • 要测量什么?特性的类型是什么?是机械特性吗?是动态的还是静
态的?是电性能吗?有重要的零件内变差吗? • 测量过程的结果(输出)用作什么目的?生产改进、生产监控、实
验室研究、过程审核、装运检查、进货检查、对D.O.E的反馈吗? • 谁将使用过程?操作者、工程师、技师、检查者、审核员? • 要求的培训:操作者、维护人员、工程师、教室、实际应用、在职
相关文档
最新文档