食品物性学---食品热物性.

合集下载

第二章食品物性学ppt课件

第二章食品物性学ppt课件

可编辑课件PPT
25
2.1.5 食品流变性质的测定
2.1.5.1 黏度测量 1)毛细管黏度计 毛细管黏度计大体上
是U型,主要适用于低 黏度的流体。
可编辑课件PPT
26
2)落球黏度计
这类黏度计含有一根管子,小球在重力的作用下 可以从管中落下,其操作方法是测量小球在重力作 用下,通过装有流体的管子所需的时间。
可编辑课件PPT
19
2.1.3.2 淀粉类食品
淀粉溶液经过加热处理后具有凝胶性,流变 学性质变化范围很宽,从简单的黏性流体扩延到 高弹性的凝胶,这种多样性使淀粉具有广泛的工 艺用途。
1)淀粉水分分散液结构与流变性质关系 淀粉增稠与凝胶性质主要取决于系统的微观
结构,而微观结构与淀粉加工及淀粉种类有关。 淀粉分散系是胶质系统,膨胀的淀粉颗粒形
1)应力松弛实验
如果食品物料变形成固定的形状并保持不变,
那么维持这种形变所需要的应力随着时间而下降,即
应力松弛现象。
2)爬升实验
如果物料上存在较大的恒力负载,随着时间的延 长物料持续变形,通常称为爬升。
爬升实验是指在标准时间段测量瞬间恒力作用, 在物质上所产生的形变。
可编辑课件PPT
31
3)动力学实验
2.1.2 食品的流变学特性变化规律
2.1.2.1 液态食品分散体系的流变学特征
1)食品分散体系的分类
(1)分子分散体系。分散的粒子半径小于 10-7cm ,相当于单个分子或离子的大小。如蔗糖溶于水 后形成的“真溶液”。
(2)胶体分散体系。分散相的粒子半径为 10-7~10-5cm。
可编辑课件PPT
第二章 食品物性学
第二章 食品物性学
2.1

食品物性学对食品加工的应用

食品物性学对食品加工的应用

食品物性学对食品加工的应用通过学习《食品物性学》这门课程,使我加深了对食品物性概念的正确理解,并学习了测定各物性的仪器,方法以及在食品加工中的应用。

食品物性主要是指食品及食品原料的物理特性和工程特性,包括食品的基本物理特征、食品的流变特性、食品质构、食品热物性、电特性、光学性质等,我们利用这些性质对食品在加工和检测方面的技术不断地研究,来开发新技术和增加经济效益,提高食品质量和获得消费者满意的食品。

下面通过简单的举例来学习各物性在食品生产中的应用:1食品的基本物理特征及应用基本物理性质包括圆度、球度、提及、表面积、密度、空隙率、曲率半径等,由于食品形态的不同,使每一种食品都会以自己固有的状态存在,也就是说我们可以利用基本的物理性质来鉴别不同的食品和食品不同的品质,现在主要有食品分选,分级,品质评价等方面的应用。

我们利用筛分法来分离谷物和种子,可以除去壳,梗或草籽等异物;在果蔬分类中,可以利用带孔的筛子分类器来分离不易产生损伤的物质,剔除不符合规格尺寸大小的水果;对于非球形的水果蔬菜可以采用质量分类器;密度分离法也可以用来分离谷粒和果蔬等,这种方法可以判断果蔬的成熟度;另外,密度分离法还可以用到食品加工的分离工序,比如乳业种用离心法分离乳脂和脱脂乳;"表面积会影响谷物、种子和其他物质在干燥过程中的水分流失,植物叶片面积和组成壳用来划分及预测其蒸发、呼吸及光合作用速度,水果蔬菜的表面积可用来研究贮藏过程中的呼吸速率、浸泡过程中的吸水率等"(节选自李云飞编著的《食品物性学》)。

2食品的流变特性及应用食品流变学(Rheology)是流变学的一个分支,是研究食品物质流动和变形发生、发展规律的科学。

在食品的生产过程中,经常要遇到有关食品物质的流动,变形等问题,这此问题不仅反映了食品物质的特性,同时也直接影响到食品的质量,产品加工及设备设计。

食品流变学在食品工业中的应用,"一是用于食品加工工艺方面,根据各种食品物质的不同流变特性,改进加工工艺,或者通过改变食品物质的温度、浓度及加工过程中的剪切速率和受剪切的时间、添加各种表面活性剂等各种方法,改进食品物质的流变特性,使其具有更好的加工性能,提高产品质量。

物性学——精选推荐

物性学——精选推荐

食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。

2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。

各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。

玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。

它与液态主要区别在于黏度。

玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。

4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。

6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。

蛋白质是很好的界面活性物质。

7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。

8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。

二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。

三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。

因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。

这种现象称作马兰高尼效果。

四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。

在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。

食品的物理特性

食品的物理特性

2、细胞状食品的质地及与其保藏的关组织 的性状与食品品质密切相关。 常见的细胞状食品有水果和蔬菜及其制品 等,在贮藏中最易变化的质地是硬度。

硬度计

一般而言,新鲜果蔬的硬度较大,随贮藏时间延长, 果蔬的硬度逐渐下降,品质发生劣变,最终导致软 化、腐烂。 果蔬的硬度主要由果实的细胞壁结构物质(纤维素、 半纤维素、木质素和果胶等)决定的,因此果蔬的 硬度在保藏过程中的变化主要与细胞壁结构物质的 降解引起的软化有关。
(2)液态食品中粒子的稳定性

液态食品大多属于胶体溶液或乳胶体液,对于这些 液体,从稳定性角度分析,可分为可逆分散系和不 可逆分散系。两者稳定性的区别是由分散相和分散 介质的亲和力大小决定的。亲和力越大,粒子与水 形成的水合结构就越稳定,形成稳定的分散系,称 为亲水性分散系统;相反,当粒子与水的亲和力较 小,两相分离为界面面积较小的状态时,自由能减 小,分散系变得不稳定,称为疏水性分散系统。
第一章
食品的特性
第二节
食品的物理特性


食品中含有无机物、有机物,甚至还包括具有细胞结 构的生物体,是一个复杂的物质系统。因此,食品的 物理性质是复杂多样的。 食品的物理性质主要包括力学性质、热学性质、光学 性质和电化学性质等。
食品的力学性质:是指食品在力的作用下产生变 形、振动、流动等的规律; 食品的热学性质:是指食品的相变规律、比热容、 潜热、传热规律及与温度有关的热膨胀规律等;
(一)食品质地的感官评价



食品质地的感官评价是以人的感觉为基础,通过感 官评价食品质地的各种属性后,再统计分析而获得 客观结果的试验方法。感官评价不仅仅是人的感觉 器官对接触食品时各种刺激的感知,而且还包括对 这些刺激的记忆、对比、综合分析等过程。 在进行感官评价时,为了更准确地表述食品的质地, 常常要用到感官评价术语。 与食品质地有关的感官评价术语:硬、软、酥松、 胶黏、弹性、细腻、油腻、粗糙、薄片状、粉状、 纤维状、蜂窝状、结晶状、泡沫状、海绵状、脆生、 玻璃状、凝胶状、黏、干、潮湿、水灵、多汁、奶 油状、烫的、冰冷的、清凉的、可塑性、砂质感、 收敛感等。

食品的物理特性

食品的物理特性

(2)液态食品中粒子的稳定性

液态食品大多属于胶体溶液或乳胶体液,对于这些 液体,从稳定性角度分析,可分为可逆分散系和不 可逆分散系。两者稳定性的区别是由分散相和分散 介质的亲和力大小决定的。亲和力越大,粒子与水 形成的水合结构就越稳定,形成稳定的分散系,称 为亲水性分散系统;相反,当粒子与水的亲和力较 小,两相分离为界面面积较小的状态时,自由能减 小,分散系变得不稳定,称为疏水性分散系统。
2、细胞状食品的质地及与其保藏的关系

细胞状食品属于组织状食品,其细胞组织 的性状与食品品质密切相关。 常见的细胞状食品有水果和蔬菜及其制品 等,在贮藏中最易变化的质地是硬度。

硬度计

一般而言,新鲜果蔬的硬度较大,随贮藏时间延长, 果蔬的硬度逐渐下降,品质发生劣变,最终导致软 化、腐烂。 果蔬的硬度主要由果实的细胞壁结构物质(纤维素、 半纤维素、木质素和果胶等)决定的,因此果蔬的 硬度在保藏过程中的变化主要与细胞壁结构物质的 降解引起的软化有关。

3、多孔状食品

所谓多孔状是指像面包、海绵蛋糕、饼干、馒头 那样,有大量空气分散在其中的状态。从分散体 系的角度理解,可认为多孔状食品是以固体或流 动性较小的半固体为连续相,气体为分散相的食 品。
多孔状食品可分为两类:一类为馒头、面包、海 绵蛋糕那样比较柔软的食品;另一类为饼干、膨 化小吃这样比较硬的食品;另外,冰淇淋等泡沫 状食品,也可算作多孔状食品。

食品的物理性质涉及多学科领域的知识,其研究具 有重要的意义,前景十分广阔。
例如,多功能近红外分析仪利用食品的光学性质可 实现对食品成分的无损检测,操作方便、快速、准 确、可靠。可用于食品水分、蛋白质、脂肪、纤维 素、pH等的检测,测样速度快(3~8秒);无需 样品制备;可减少操作者失误和提高效率。

食品物性学复习总结

食品物性学复习总结

(内容比较多,记忆起来比较困难,由于没有重点和PPT,只能总结到这一步了,重在理解!)(通宵做的,有不对的地方,改正一下)第一章绪论1食品物性学的概念及其影响作用?食品物性学重点讲述食品和食品原料的物理性质和工程特性,如力学特性、流变学特性、质构、光学特性、介电特性和热特性等。

影响作用:上述特性与食品组成、微观结构、次价力、表面状态等因素相关,进而影响食品的流动性、凝聚性、附着性、质构和口感;影响食品某些组分的扩散性、松弛性和质量稳定性,与食品生物化学反应速率相关联;影响食品对光、电、热的反应,食品分析检测相关联。

2食品物性学的主要研究内容?食品的形态、食品的质构及其描述、食品的流变特性、光电热特性、食品物性和微观结构等方面。

3食品物性学的主要特点?本课程所涉及内容与高分子物理有很多相似之处,食品物性学的研究材料相当复杂,有些是生命的活体,有些是特殊组织结构的物质,高分子和小分子物质的混杂。

本课程还与力学、电学、光学、热学等许多课程有联系。

第二章食品的主要形态和物理性质1.食品微观结构(三种),微观形态(五种)的基本概念分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列高分子结构:由许多小分子单元键合而成的长链状分子.气态:分子间的几何排列不但远程无序,近程也无序。

液态:分子间的几何排列只有近程有序,而远程无序。

结晶态:分子(或原子、离子)间的几何排列具有三维远程有序.液晶态:分子间的几何排列相当有序,在某方向上接近于晶态分子排列,具有一定的流动性。

玻璃态(无定形):分子间的几何排列只有近程有序,而远程无序,即与液态分子的排列相似。

是一种过渡的、热力学不稳定态。

2.食品微观作用力与食品宏观物性的关系分子内原子之间有相互作用力,分子之间也有相互作用力。

这种相互作用力包括吸引力和推拒力。

键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键力和其他作用力。

党原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。

食品物性学---食品热物性

食品物性学---食品热物性

分子扩散是由于分子的无规则运动引起的质量迁移。
对于一个两元系统(A,B)在单位时间内,组份A通
过单位面积的质量迁移流为,按Fick’s定律
JA
DAB
d A
dZ
其中p是组份A的浓度,单位为kg/m3; Z是扩散途径,单位为m DAB是 组份 A对组份 B的扩散系数,单位为
m2/s; JA是扩散质量流,单位为kg/(m2·s)。
热扩散系数 m2/s 4.0 0.60 0.13 0.22 0.15 0.069 0.12
表 3-11 几种常用包装材料的热阻
材料 蜡纸板 带玻璃纸的蜡纸板
铝箔
双层蜡防水纸
厚度 /mm 0.625 0.568 0.509 0.599 0.568 0.212
热阻 /W / m2 K 0.0096 0.0109 0.0070 0.0095 0.0075 0.0035
表 3-12 一些食品包装膜的气体渗透率(25℃)[10]
p 的单位是 cm3·mil/(m2·24h·atm)
(mil=10-3in=0.0154mm)
p 聚乙烯(PE)(低密度)
O2 8500
CO2 45000
(高密度)
9300
7000
玻璃纸
15
200
聚丙烯(polypropylene)
1500
因此,扩散系数的量纲为m2/s。
扩散系数是此系统的物理性质,对于食品材料来说, 多组份的系统,可以研究若干种扩散组份在食品系统 中的扩散系数。
第二节 食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。目 前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。

食品热物性详解

食品热物性详解
食品的热物性
1
自从人类从“茹毛饮血”进化为以熟食为主 以来,加热成了食品加工的重要手段。尤其 是现代化食品工业,为了提高食品的商品化 和保藏流通功能,加热、冷却、冷冻成了最 基本的加工方法。因此,食品的热物理性质 也成为食品生产管理、品质控制、加工和流 通等工程的重要基础。
2
Contents
近年来发展用差式扫描量热术(DSC)来测量材料的比热容。 此法所用的样品少(5一15mg);而且因其能测很大的温度范 围,故特别适合于测量食品材料的比热容和温度的关系。5
第一节 食品热物性基础
2、焓(enthalpy)
焓值是相对值,过去的教材中多取-20℃冻结态的焓值为
其零点;近年来多取-40℃的冻结态为其零点。
本 章 主 要 内 容
第一节 食品热物性基础
第二节 食品材料的热物理数据
第三节 差示扫描热量测定与定量差 示热分析
3
第一节 食品热物性基础
一、食品热物性的一般概念
1.食品的基本热参数 温度、比热容、焓、导热系数 2.食品的传热性质 表面热流量、质量平均温度、传热规律、 热传导、热对流、热辐射 3.热参数的检测 比热的检测、导热系数的检测
9
第二节食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。 目前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。
10
第二节食品材料的热物理数据
关于食品材料热物理性质的数据,收集最全的是美国供 热制冷空调工程师学会 (ASHRAE)1993年出版的手册。

食品的热学性质

食品的热学性质

食品的热学性质食品的热学性质是指与食品相关的温度范围内的热学特性。

它包括食品的热力学性质、胶体化学性质和溶解性。

食品的热学性质通常由食品的物理性质和化学性质两部分组成,其中物理性质包括食品的外观性质、理化性质和结构性质。

食品热学性质有三大类: 1。

不同类别的食品之间存在着微小的差异,这些差异称为热学特性。

一般来说,食品可以按照不同的标准进行分类。

目前使用最多的是按食品加工方法对食品进行分类。

例如按照食品原料的来源可以分为植物性食品、动物性食品、豆制品、果蔬食品、加工食品和其他类别。

一、食品的感官热学性质。

这种性质主要由感官获得。

人们可以根据经验对各种食品的色泽、香气、风味、形状等作出评价。

食品的外观性质是食品的表面性质。

它反映了食品本身的情况,也是判断食品质量优劣的基本依据。

例如,我们看到的鲜肉光泽新鲜,说明新鲜;又如油炸或炒菜的蔬菜呈金黄色,说明火候适宜;再如酒糟色泽白润、稠浓,说明发酵充分……从上述实例可以看出,外观性质只能作为判断食品好坏的参考因素。

所以我们不能仅凭感官去判断食品的优劣,还必须将外观性质和理化性质结合起来,才能准确地判断出食品的质量。

1。

蛋白质、淀粉及其衍生物和糖类的物理特性。

这些物理性质的差异是由它们的化学成分和结构特点决定的。

当油脂与水相遇时,会形成一层保护膜,并防止水分的蒸发,从而形成泡沫。

这种现象叫做乳化。

油脂粒子在水中的扩散速率与水分子的平均自由程密切相关,如果在这个平均自由程下不可逆地穿过某一尺寸的孔隙,则该粒子就完全丧失扩散能力。

具有这种性质的油脂称为亲水性。

脂肪酸分子结构中羧基的极性越强,亲水性越强;脂肪酸分子结构中羟基的极性越强,亲水性越强。

在高浓度的表面活性剂存在下,油脂的乳化能力增强,在表面活性剂的作用下,乳液的稳定性增加。

油脂与水相遇时,由于亲水性的差异,而出现扩散速率不同的现象,这就是凝聚。

由于水溶性颗粒的互相吸引和排斥作用,加入表面活性剂后,油水界面上形成双电层,溶剂水移向外层,而界面张力降低,亲水性较弱的油滴则向内靠拢,并产生絮凝现象。

食品物性学-食品与药品教学中心

食品物性学-食品与药品教学中心

2019/2/16
食品物质热学性质
食品热物性基础 差热分析仪(DSC)

2019/2/16
食品热物性基础
单位表面传热系数h
这是表示加热或冷却时,假定附着于固体表面的流 体界膜传热性质的物理量,用记号h表示。h的值定义为: 当流体与固体表面温度差为 1时,单位时间通过固体单位 表面积的热量,因此它是对流传热的参数。 q=hAΔ T 式中q:面积热流量(w/m2);A:有效表面积(m2); Δ T为固体表面温度与流体平均温度之差;h主要由流 体的粘度、密度、比热容、导热系数、流速、流体的平均 温度等因素决定,是由流体的热物性和流动物性决定的物 理参数。
2019/2/16
比热容的测量比较常用的是用热量计进行定 压的热混合法和护热板法。 混合法:其原理是把已知质量和温度的样品, 投入盛有已知比热容、温度和质量的液体量 热计中。在绝热状态下,测定混合物料的平 衡温度。由以上已知量计算试样的比热容。

比热容测定
2019/2/16
比热容测定 护热板法:测定原理如图所
示。测定时将试样放人电热护板 框中,同时结护热板框和试样加 热.使试样处在无热损失的理想 状态。即护热板和试样温度始终 保持一致。设在t时间内,供给样 品的能量为Q,试样温度升高为T, 则 Q=0.24IUt=cmΔ T c=0.24IUt/(mΔ T) 式中:I为电流;U为电压;t 为时间,m为试样质量; Δ T 为温 度变化。
2019/2/16
食品比热容的定义

比热容(specific heat capacity)又称比热容量,简称比热 (specific heat),是单位质量物质的热容量,即使单位质量 物体改变单位温度时的吸收或释放的内能。比热容是表示物 质热性质的物理量。通常用符号c表示。国标单位为J/(kg· K)。 常用其他单位:kJ/(kg· ℃)、cal/(kg· ℃)、kcal/(kg· ℃)等。

食品物性学期末复习资料

食品物性学期末复习资料

⾷品物性学期末复习资料第⼀章绪论1,⼀般认为,决定⾷品质量的主要因素有:视觉效应,化学感应,⾷品质构特性(前三者感官特性),营养价值第⼆章⾷品的主要形态与物理性质⽓态:分⼦间的⼏何排列不但远程⽆序,近程也⽆序。

液态:分⼦间的集合排列只有近程有序,⽽远程⽆序。

结晶态:分⼦间的集合排列具有三维远程有序。

晶体态:分⼦间集合排列相当有序,在某⽅向上接近于晶态分⼦排列,具有⼀定的流动性。

玻璃态(glass state):分⼦间的集合排列只有近程有序,⽽远程⽆序,即与液态分⼦排列相似,是⼀种过渡的、热⼒学不稳定态。

泡沫 : 泡沫是指液体中分散有许多⽓体的分散系统。

⽓体由液体中的膜包裹成泡,把这种泡称为⽓泡,有⼤量⽓泡悬浮的液体成为⽓泡溶胶。

当⽆数⽓泡分散在⽔中时呈⽩⾊,这便是⽓泡溶胶。

乳胶体:乳胶体⼀般是指两种互不相溶的液体,其中⼀⽅为微⼩的液滴,分散在另⼀⽅液体中。

根据分散相和连续相的不同可以分为⽔包油型(O/W)和油包⽔型(W/O)。

连续相与分散相间可以转换,称为相转换。

第3章黏性⾷品的流变特性1,Newton流体是的概念及其数学表达式⽜顿流体的特征:剪切应⼒与剪切速率成正⽐,黏度不随剪切速率的变化⽽变化。

(1)Newton流体的流变曲线是⼀条经过原点的直线,其斜率即为流体的黏度,斜率⼤⼩代表黏度的⾼低。

(2)黏度值是个常数,不受剪切速率或剪切应⼒单⽅⾯变化的影响,只有它们同时变化才能影响黏度值。

(3)只要有⼒作⽤即流动,⽆论⼒⼤⼩。

2,⾮Newton流体包括塑性流体、假塑性流体(剪切变稀)、胀塑性流体(剪切变稠)、触变性流体、流凝性流体等多种3,幂定律模型将⾮Newton流体的黏度描述为速率梯度或剪切速率绝对值的指数函数:σ=k(dvx/dy)n=k?n,4,假塑性流体(1)概念:在⾮⽜顿流体流动状态⽅程中,当05. 胀塑性流体(1)概念:在⾮⽜顿流体的流动状态⽅程中,如果16. 塑性流体(1)概念:当作⽤在物质上的剪切应⼒⼤⾬极限值时,物质开始流动,否则物质就保持即时状态并停⽌流动。

食品物性学思考题带答案_(2)

食品物性学思考题带答案_(2)

食品物性学思考题1.食品物性学研究的主要内容。

(1)食品质地:用来表示食品的组织状态、口感及美味感觉。

(2)力学特性(流变性):它包括食品在力的作用下变形、振动、流动、破断等各种变化规律,以及作用规律等等。

(3)光特性:食品的光学性质是指食品物质对光的吸收、反射及其感官反应的性质。

(4)电特性:食品及其原料的导电特性、介电特性,以及其它电磁和物理特性。

(5)热特性:研究内容常见的热物性指标,主要有:比热、潜热、相变规律、传热规律以及与温度有关的热膨胀规律等等。

2.食品物性学要解决的主要问题。

(1)了解食品与加工、烹饪有关的物理特性(2)建立食品品质客观评价的方法。

(3)通过对物性的试验研究,可以了解食品的组织结构和生化变化。

(4)为快速无损检测食品品质提供理论依据。

(5)为改善食品的风味,发挥食品的嗜好功能提供科学依据。

(6)为研究食品分子水平的变化提供试验依据。

3.食品胶体系统的分类有哪些?胶体系统是一种多相分散系统,亦称非均质分散系统。

按分散相分散粒子大小的不同,胶体系统可划分为三类:4.非牛顿流体的分类有哪些?液体在流动过程中不符合牛顿流体定律的称为非牛顿流体的流动。

根据流动状态方程中σ0的有无和n的取值范围,非牛流动还可以如下分类:(1)假塑性流动:(0 <n <1)(2)胀塑性流动:(1 <n <∞)(3)塑性流动:宾汉流动(σ0 ≠0 ,n=1)非宾汉塑性流动(σ0 ≠0 ,n≠1)(4)触变性流动(5)胶变性流动5.假塑性液体的流动特征及特性曲线。

在非牛顿流动状态方程式中,当0<n<1时,即:表观黏度随着剪切应力或剪切速率的增大而减少的流动,称作假塑性流动,亦称准塑性流动或拟塑性流动。

符合假塑性流动规律的液体称为假塑性液体。

特点:无屈服应力,即应力应变曲线通过坐标原点;随着流速的增加,表观黏度减少。

假塑性液体的流动特性曲线为:6.黏弹性体的特点有哪些?当给物质施以作用力时,把既有弹性,又可以流动的现象称为黏弹性。

食品物性学-食品的热物性

食品物性学-食品的热物性

多成分、非均质分散系统的宏观导热系数,不仅与成分 组成有关,也与这些成分分散的结构有关。平均值无意义。
非均质分散系统的宏观导热系数为有效导热系数。
精选2021版课件
14
第二节 食品的传热物性
2. 食品的有效导热系数
有效导热系数是在宏观上把非均质物质看成均质物质而 引入的概念。 有效导热系数的模型:并列模型、串联模型、MaxwellEucken公式、Kunii-Smith公式。
6
第一节 食品热物性基础
2. 热性能测试方法
定 量 差 示 热 分 析 (quantitative differential thermal anallysis, DTA):在程序控温条件下,测量试样与参比基准 物质之间的温度差与温度之间的关系的技术。
精选2021版课件
7
第一节 食品热物性基础
精选2021版课件
3
第一节 食品热物性基础
2. 热性能测试方法
DSC测试原理:
热流式 DSC
功率补偿式 DSC
-测量DT - 由DH = kDT计算DH - K值依赖于样品制备 和与传感器的接触情 况来确定
- 始终保持 Ts = Tr - 直接测量DH,比热、热焓测量 更准确
精选2021-版灵课敏件 度更高,解析度更佳 4
反应动力学 固化
Crystal Energy 纯度
Crystal P精e选ri2o02d1版课件比热
DH
DH
Ea Cold Crystal Temperature
Dynamic
Curing
Purity
Cp
5
第一节 食品热物性基础
2. 热性能测试方法
DSC的数据——热曲线:

食品的物性学、质量变化和分析检测基础

食品的物性学、质量变化和分析检测基础

2 、蛋白质的变化
①蛋白质的变性:食品在流通过程中,由于蛋白质 的变性,会对食品质量产生重要的影响,如溶解度 降低、食品变硬、不易消化吸收、易腐败变质等。 ②蛋白质的分解:食品中的蛋白质受到微生物分泌 的酶作用时会发生分解变质现象,蛋白质分解成许 多低分子化合物,产生挥发性胺和硫化物等物质, 使食品产生腐臭气体,并产生毒性。
四、食品的光学性质
食品的光学性质是指食品物质对光的吸收,
反射及其对感官反应的性质。 食品光学性质研究和应用的领域主要有以下 两个方面: ①通过光学性质实现对食品的成分测定。 ②食品色泽的研究:食品的颜色、色泽也是 反映食品品质的重要物理性质。
食品的质量变化
一、食品水分的变化
水分作为食品最主要的成分具有重要的意义,食品 中的水分不仅提供人体生理活动所需要的水分,而 且与食品质量有密切的关系,是构成食品食用品质 的一项重要指标。 首先,食品含水量的高低影响着食品一系列的物理 性质,从而影响食用时的口感、冷热感和咀嚼感等, 第二,食品的水分含量还会影响食品的形状、色泽、 光泽和香气等,引起食用前的心理作用和条件反射。 另外,水分不仅影响食品微生物的活动,还与食品 营养成分的变化、风味物质的变化及外观形态的变 化都有着密切的关系。
(3) 紫外线在食品加工中的应用

食品工业中,紫外线多应用在杀菌上,也可应用于 果蔬保鲜及对加工食品性能的改善上。紫外线杀菌 主要用于三个领域:表面杀菌、空气杀菌和液体杀 菌。表面杀菌常用于包装材料的消毒,如在牛乳的 生产中,用紫外线对包装材料消毒,可使其货架期 延长到两周。据报道,面包在出炉后先进行紫外照 射可明显延长其货架期;空气杀菌主要用于食品加 工环境的消毒,如果蔬的去皮操作中,用紫外线处 理过的气流流过去皮单元,产品质量会显著提高。 同样的技术也用于孵化室和冷藏室;紫外线处理可 有效进行液体杀菌,杀灭水中大部分微生物和减少 环境污染。紫外线消毒不改变水的颜色、味道和p H 值,在日本,紫外线辐射已用于天然矿泉水的消 毒。

食品物性学复习资料

食品物性学复习资料

食品物性学复习资料微观结构有序性:有结晶态、液晶态和玻璃态。

力学性质:粘性、粘弹性体等1.定义:流变学(Rheology)是研究材料的流动和变形的科学,它与物质的组织结构有密切关系。

食品流变学主要研究作用于食品的应力和由此产生的应变的规律,并用力、变形和时间的函数关系来表示2.食品流变学的研究目的①食品感官评价的重要内容,决定品质好坏,用食品流变仪测定法来代替感官评定法,定量地评定食品的品质、鉴定和预测顾客对某种食品是否满意。

②与食品的生化变化、变质情况密切相关。

③食品流变学实验可用于鉴别食品的原材料、中间产品,也可用于控制生产过程④流变学理论己经广泛应用于有关的工艺设计和设备设计。

第2章食品的主要形态与物理性质一、1、微观结构与作用力物质的结构:物质的组成单元(原子或分子)之间相互吸引和相互排斥的作用达到平衡时在空间的几何排列。

分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列2、高分子内原子间与分子间相互作用主价力:a.键合力包括:共价键、离子键、金属键次价力:b.范德华力(包括:静电力、诱导力、色散力) c.氢键 e.疏水键疏水相互作用是蛋白质折叠的主要驱动力。

同时也是维持蛋白质三级结构的重要因素3、高分子链结构与柔性高分子链之所以具有柔性的根本原因在于它含有许多可以内旋转的σ单键自由联结链:线形高分子链中含有成千上万个σ键。

如果主链上每个单键的内旋转都是完全自由的,则这种高分子链称为自由联结链。

柔性高分子链的理想状态◆如果高分子主链上没有单键,则分子中所有原子在空间的排布是确定的,即只存在一种构象,这种分子就是刚性分子。

◆如果高分子主链上虽有单键但数目不多,则这种分子所能采取的构象数也很有限,柔性不大柔性高分子链的外形呈椭球状。

随着分子的热运动,高分子链的构象不停地发生变化。

无规线团:通常把无规则地改变着构象的椭球状高分子二、聚集态结构与内聚能1、食品形态微观结构——按分子的聚集排列方式主要有三种类型:晶态:分子(或原子、离子)间的几何排列具有三维远程有序液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序气态:分子间的几何排列不但远程无序,近程也无序两种过渡态——玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)——凝胶态:有一定尺寸范围的粒子或者高分子在另一种介质中构成的三维网络结构形态,或者说另一种介质(例如:水、空气)填充在网络结构中①粒子凝胶:具有相互吸引趋势的粒子随机发生碰撞形成粒子团,当这个粒子团再与另外的粒子团发生碰撞时又形成更大的粒子团,最后形成一定的结构形态.②聚合物凝胶:都是由细而长的线形高分子,通过共价键、氢键、盐桥、二硫键、微晶区域、缠绕等方式形成交联点,构成一定的网络结构形态2、内聚能:1mol的聚集体气化时所吸收的能量高分子链上的极性基团的极性越小,单位摩尔体积中的内聚能就越低,高分子链的柔软性就越好3、食品主要成分结构形态蛋白质:一级结构、二级结构、三级结构、四级结构脂肪:层状、六方形Ⅰ、六方形Ⅱ、立方碳水化合物:单螺旋结构:直链淀粉双螺旋结构:角叉菜胶P25 图2-33 蛋盒结构:海藻酸盐P27 图2-35三、食品中的水分1、水的基本物性1)H-O键间电荷的非对称分布使H-O键具有极性,这种极性使分子之间产生引力.2)由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键,形成氢键网络结构水的分子团——多孔隙构造准稳定系统——每个水分子在结构中稳定的时间仅在10-12s左右,在极短的时间内,于其平衡位置振动和排列,并不断有水分子脱离和加入某一个分子团,这也是水具有低黏度和较好流动性的根本原因2、水与离子、亲水溶质间的相互作用离子和有机分子的离子基团与水形成水-离子键,其键能虽然远小于共价键,但是却大于水分子间的氢键,使水分子的流动性下降例如:在淀粉糊中加入糖,糖与水的结合改变淀粉的糊化,使糊化和糊化后的老化(β化)速度减慢。

食品物性学对食品加工的应用

食品物性学对食品加工的应用

食品物性学对食品加工的应用通过学习《食品物性学》这门课程,使我加深了对食品物性概念的正确理解,并学习了测定各物性的仪器,方法以及在食品加工中的应用。

食品物性主要是指食品及食品原料的物理特性和工程特性,包括食品的基本物理特征、食品的流变特性、食品质构、食品热物性、电特性、光学性质等,我们利用这些性质对食品在加工和检测方面的技术不断地研究,来开发新技术和增加经济效益,提高食品质量和获得消费者满意的食品。

下面通过简单的举例来学习各物性在食品生产中的应用:1食品的基本物理特征及应用基本物理性质包括圆度、球度、提及、表面积、密度、空隙率、曲率半径等,由于食品形态的不同,使每一种食品都会以自己固有的状态存在,也就是说我们可以利用基本的物理性质来鉴别不同的食品和食品不同的品质,现在主要有食品分选,分级,品质评价等方面的应用。

我们利用筛分法来分离谷物和种子,可以除去壳,梗或草籽等异物;在果蔬分类中,可以利用带孔的筛子分类器来分离不易产生损伤的物质,剔除不符合规格尺寸大小的水果;对于非球形的水果蔬菜可以采用质量分类器;密度分离法也可以用来分离谷粒和果蔬等,这种方法可以判断果蔬的成熟度;另外,密度分离法还可以用到食品加工的分离工序,比如乳业种用离心法分离乳脂和脱脂乳;"表面积会影响谷物、种子和其他物质在干燥过程中的水分流失,植物叶片面积和组成壳用来划分及预测其蒸发、呼吸及光合作用速度,水果蔬菜的表面积可用来研究贮藏过程中的呼吸速率、浸泡过程中的吸水率等"(节选自李云飞编著的《食品物性学》)。

2食品的流变特性及应用食品流变学(Rheology)是流变学的一个分支,是研究食品物质流动和变形发生、发展规律的科学。

在食品的生产过程中,经常要遇到有关食品物质的流动,变形等问题,这此问题不仅反映了食品物质的特性,同时也直接影响到食品的质量,产品加工及设备设计。

食品流变学在食品工业中的应用,"一是用于食品加工工艺方面,根据各种食品物质的不同流变特性,改进加工工艺,或者通过改变食品物质的温度、浓度及加工过程中的剪切速率和受剪切的时间、添加各种表面活性剂等各种方法,改进食品物质的流变特性,使其具有更好的加工性能,提高产品质量。

第八九章 食品热物性食品的电特性

第八九章  食品热物性食品的电特性

9
⑶热导率(therma-conductivity) 测量食品材料的热导率要比测量比热容困难得多,因为热导率 不仅和食品材料的组分、颗粒大小等因素有关,还与材料的均匀 性有关。
一般用于测量工程材料的热导率的标准方法,如平板法、同心 球法等稳态方法己不能很好地用于食品材料。因为这些方法需要 很长的平衡时间,而在此期间,食品材料会产生水分的迁移而影 响热导率。
4
8.1.5 水和冰的热扩散系数α 热扩散系数是物质的热导率与其密度和比热的乘积之比。即a =λ /(ρ · ,SI单位:m2/s Cp) 水的热扩散系数见表7-5(a),冰的热扩散系数见表7-5(b)。
表8-5(a)
T/℃ α/(× -6m2/s) 10
水的热扩散系数
0 0.133 10 0.138 20 0.143 30 0.147 40 0.150
8
焓值是相对值,过去的教材中多取-20℃冻结态的焓值为其 零点;近年来多取-40℃的冻结态为其零点。
过去,物质的焓值一般均按冻结潜热、冻结率和比热容的 数据计算而得;直接测量的数据很少、但对于食品材料,实际 上很难确定在某一温度时食品中被冻结的比例,而不同的冻结 率对应不同的焓值。 用DSC直接测量食品焓值是一种新方法,其温度扫描从60℃开始到1℃以上,这是认为到-60℃时,食品中的水分己全 部冻结;而到1℃以上水分己全部融化成液体。
10
被测食品材料原处于某 一均匀温度,当探针插进后, 加热丝提供一定的热量;热 电偶不断测量温度变化。经 一段过渡期后,温度T和时 问的对数lnt出现线性关系。 根据此直线的斜率可以求出 食品材料的热导率λ。
图8-2
(8-1)
此法的加热功率水平为5一30W/m;测量时间为3一12s,采 样间隔为20一50ms。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

β =(△V/V)/T
表 3-2a 水的(体积)热膨胀系数
T /℃ 0 2 4 0.27 6 31.24 8 60.41 /10-6 (1/K) -68.1 -32.7
第一节 食品热物性基础
4.热扩散系数(thermal diffusivity)
一般说来,热扩散系数a是根据比热容Cp,热导率λ和密 度ρ数据计算而得的,即a=λ/(ρCp)但也可以用实验 测量,它主要是用一个瞬问加热的类似于测热导率的探 头和热电祸;再与它有一定距离处加上另一个热电祸以 测量样品温度的变化曲线。 这个距离和所测得的热扩散系数数据有着很大的关系, 但在食品材料中精确控制这个距离也不是容易的事。
分子扩散是由于分子的无规则运动引起的质量迁移。 对于一个两元系统(A,B)在单位时间内,组份A通 过单位面积的质量迁移流为,按Fick’s定律 d A J A DAB dZ
其中p是组份A的浓度,单位为kg/m3; Z是扩散途径,单位为m DAB 是 组份 A 对组份 B 的扩散系数,单位为 m2/s; JA是扩散质量流,单位为kg/(m2· s)。 因此,扩散系数的量纲为m2/s。 扩散系数是此系统的物理性质,对于食品材料来说, 多组份的系统,可以研究若干种扩散组份在食品系统 中的扩散系数。
食品物性学
食品热物性
姓 名:邢亚阁 西华大学生物工程学院
自从人类从“茹毛饮血”进化为以熟食为主 以来,加热成了食品加工的重要手段。尤其 是现代化食品工业,为了提高食品的商品化 和保藏流通功能,加热、冷却、冷冻成了最 基本的加工方法。因此,食品的热物理性质 也成为食品生产管理、品质控制、加工和流 通等工程的重要基础。
过去,物质的焓值一般均按冻结潜热、冻结率和比热容
的数据计算而得;直接测量的数据很少、但对于食品材料, 实际上很难确定在某一温度时食品中被冻结的比例,而不同 的冻结率对应不同的焓值。
第一节 食品热物性基础
2、焓(enthalpy)
用DSC直接测量食品焓值是一种新方法,其温度
扫描从-60℃开始到1℃以上,这是认为到-60℃时, 食品中的水分己全部冻结;而到1℃以上水分己全 部融化成液体。
5 食品材料中的水分迁移
在食品处理中,水分的迁移是个复杂 的过程,它可能包括分子扩散、毛细管流动、 Knudsen流动、流体流动等多种因素。用 实验方法测得的用于表征此过程的是有效湿 扩散系数(apparent diffusivity of moisture)De。 食品的物理结构对水分的扩散性能起 了重要的作用,多空结构 ( 如用冷冻干燥处 理过的),其有效湿扩散系数De明显增大; 而脂肪会使De明显降低。
近年来发展用差式扫描量热术(DSC)来测量材料的比热容。 此法所用的样品少(5一15mg);而且因其能测很大的温度范 围,故特别适合于测量食品材料的比热容和温度的关系。
第一节 食品热物性基础
2、焓(enthalpy)
焓值是相对值,过去的教材中多取-20℃冻结态的焓值为
其零点;近年来多取-40℃的冻结态为其零点。
关于食品材料热物理性质的数据,收集最全的是美国供 热制冷空调工程师会 (ASHRAE)1993年出版的手册。
Sweat等(1995)收集和比较了400多篇关于食品材料热物理性 质数据的文章,发现食品材料的热物性不仅和其成分有关 〔如水、蛋白质、脂肪、碳水化合物等),而且与其处理 方 法有关。因此,热物理性质数据应指明实验材料的尺寸大小、 表面情况、空隙度、纤维方向等;给出食品的处理过程。 严格地讲,实验数据应讲清实验方法、实验条件〔如温度、 压力、相对湿度等)。而实 验结果应给出数据的偏差范围及 测量精度,目前的数据大都达不到这些要求。
主要内容
本 章 主 要 内 容
第一节 食品热物性基础
第二节 食品材料的热物理数据
第三节 差示扫描热量测定与定量差 示热分析
第一节 食品热物性基础
一、食品热物性的一般概念
1.食品的基本热参数 温度、比热容、焓、导热系数 2.食品的传热性质 表面热流量、质量平均温度、传热规律、 热传导、热对流、热辐射 3.热参数的检测 比热的检测、导热系数的检测
第一节 食品热物性ductivity)
测量食品材料热导率要比测量比热容困难得多,因为 热导率不仅和食品材料的组分、颗粒大小等因素有关,还 与材料的均匀性有关。一般用于测量工程材料的标准方法, 如平板法、同心球法等稳态方法已不能很好用于食品材料。 因为这些方法需要很长的平衡时间,而在此期间,食品材料 会产生水分的迁移而影响热导率。 目前认为测量食品材料热导率较好的方法是探针法。被 测食品材料原处于某一均匀温度,当探针插进后,加热丝提 供一定得热量,使测量温度变化。经一段过渡期后,温度和 时间的对数出现线性。关系。根据此直线的斜率可以求出视频 材料的热导率
第二节 食品材料的热物理数据
食品材料的热物理性质的测量是从18世纪开始的。 目前的数据中有2/3左右是在20世纪50一60年代发表的。 其中,只有一部分数据说明了材料的情况和实验的条件; 而大部分数据没有给出这些条件;有的甚至没给出含水量。 许多数据的离散度很大,因此实际上并没有多大的用处。
第二节 食品材料的热物理数据
表 3-1a 水的密度
T /℃ /103(kg/m3) 0 0.99987 3.98 1.00000 5 0.99999 10 0.99973 20 0.99823
表 3-1b 冰的密度
T /℃ /103(kg/m3) 0 0.917 -25 0.921 -50 0.924 -75 0.927 -100 0.930
第一节 食品热物性基础
1. 比热容(specific heat):
1)定义:传统的方法是在恒温槽中直接测量使食品材料温
度升高1K所需的热量。
2)测定方法:比较常用的事是用热量计进行定压的热混合法
和护热板法。混合法:原理是把已知质量和温度的样品,投入盛有已知 比热容、温度、和质量的液体量热计重。在绝热状态下, 测定混合物料的平衡温度,而后根据公式推算试样的比热 容。
相关文档
最新文档