多目标优化设计办法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合理选用材料
使总成本 f3 (X ) 尽可能小。
传动效率尽可能高
机械耗损率 f4 (X ) 尽可能小。
在优化设计中同时要求几项指标达到最优值的 问题称为多目标优化设计问题。
7.1 概述(续)
例如,在机械加工时,对于用单刀在一次走刀中将 零件车削成形,为选择合适的切削速度和每转给进量, 提出以下目标:
权因子的确定方法:
在确定权因子前,应先将各子目标函数进行 无量纲化,处理的方法是:
fi
(
X
)
Fra Baidu bibliotek
fi'(X ) min fi' ( X
)
X D
fi' ( X ) 是多目标问题中某个带量纲的子目标;
fi ( X ) 是作了无量纲处理后的第i个子目标函数 (1) 专家评判法(老手法)
凭经验评估,并结合统计处理来确定权数的方法。 特点:方法实用,但要求专家人数不能太少。
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
宿松百姓论坛
第七章 多目标优化设计方法
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
成立,则称X*为多目标优 化问题的非劣解或有效解。
若干个有效解组成的集合称为有效解集,用 D*pa 表示。
7.1 概述(续)
3、弱有效解(弱非劣解)
设 X* D 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的弱非劣解或弱有 效解。
即:
minF (X ) minF ( f1(X ), f2 (X ),..., fl (X ))
X D
X D
D为可行域,f1(X),f2(X),…,fl(X)为各个子目 标函数。
7.2 统一目标函数法(续)
二、统一目标函数的构造方法 1、线性加权和法(线性加权组合法)
根据各子目标的重要程度给予相应的权数,然后 用各子目标分别乘以他们各自的权数,再相加即构成 统一目标函数。
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想
统一目标函数法就是设法将各分目标函数 f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
(3)加权因子分解法
i 1*i2i (i 1, 2,..., L)
* 1i
本征权因子,反应第i个目标的相对重
要程度。
2i
校正权因子,用于调整各目标在量级 方面差异的影响。
2i 1 fi ( X ) 2 , (i 1, 2,..., L)
L
min f ( X ) i fi ( X ) i 1
s.t. gi ( X ) 0 (i 1, 2,..., m) hj ( X ) 0 ( j 1, 2,..., k)
注意:
1、建立这样的评价函数时,各子目标的单位已经脱 离了通常的概念。
2、权数(加权因子)的大小代表相应目标函数在优 化模型中的重要程度,目标越重要,权数越大。
L
即评价函数为: f (X ) i fi (X ) i 1
f1(X ), f2 ( X ),..., fL ( X ) ——各子目标函数
1,2 ,...,L ——权数
L
i 应满足归一性和非负性条件
i 1
i 1
i 0 (i 1, 2,..., L)
优化的数学模型为
X (x1, x2 ,..., xn )T
(2)容限法
若已知子目标函数fi(X)的变动范围为:
i fi ( X ) i , i 1, 2,..., L
则称
fi ( X )
i
i
2
(i
1, 2,...,
L)
为该目标函数的容限
这时权数可取为:i 1 fi ( X )2 ,i 1, 2,..., L
目的:在评价函数中使各子目标在数量级上达到 统一平衡。
机械加工成本最低; 生产率最高; 刀具寿命最长。
还应满足的约束条件是: 进给量小于毛坯所留最大加工余量 刀具强度等
7.1 概述(续)
对于一个具有L个目标函数和若干个约束条件的多 目标优化问题,其数学模型的表达式可写为:
求:
X [x1, x2 ,..., xn )T
n维欧氏空间的一个向量
min F ( X ) [ f1( X ), f2 ( X ),..., fL ( X )]T s.t. gi ( X ) 0, (i 1, 2,..., m)
所有弱有效解组成的集合称为弱有效解集,用 Dw*p 表示。
三者之间关系: Da*b D*pa Dw*p D
在多目标优化设计中,如果一个解使每个分目标函数 值都比另一个解为劣,则这个解称为劣解。
7.1 概述(续)
三、多目标优化问题的特点及解法 1、特点
多目标优化是向量函数的优化(单目标函数是标 量函数的优化);