直线与直线方程经典例题
完整版)直线与方程测试题及答案解析
完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
直线与方程典型题
直线与方程典型题1、光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程2、在等腰直角三角形ABC 中,AB=AC=4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到点P (如图).若光线QR 经过△ABC 的重心(三角形三条中线的交点),则AP=______3、点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:4、5、已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.6、78、(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.9、已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.10、11、已知函数x a x x f +=)(的定义域为),0(∞+,且222)2(+=f . 设点P 是函数图象上的任意一点,过点P 分别作直线x y =和y 轴的垂线,垂足分别为N M 、. (1)求a 的值;(2)问:||||PN PM ⋅是否为定值?若是,则求出该定值,若不是,则说明理由; (3)设O 为原点,若四边形OMPN 面积为求P 点的坐标。
直线与直线方程-练习
索引
1.直线 x+ 3y+3=0 的倾斜角 α 为( D )
A.30° C.120°
B.60° D.150°
解析 由已知得斜率 k=- 33=tan α,
又倾斜角 0°≤α<180°,所以 α=150°.
1 2 3 4 5 6 7 8 9 10
2.直线ax2-by2=1 在 y 轴上的截距是( B )
1 2 3 4 5 6 7 8 9 10
(2)若直线l在x轴、y轴上的截距均不为0,点P(a,b)在直线l上,求3a+3b的最 小值. 解 由题意及(1)得l的方程为x+y-3=0, ∵点P(a,b)在直线l上, ∴a+b=3, ∴3a+3b≥2 3a·3b=2 3a+b=6 3, 当且仅当 a=b=32时等号成立.
∴3a+3b 的最小值是 6 3.
1 2 3 4 5 6 7 8 9 10
5.(多选)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m
可以取下列哪些值( ACD )
A.0
B.1
C.2
D.3
解析 因为方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,
所以2m2+m-3=0,m2-m=0不能同时成立,
两式同时成立时解得m=1,所以m≠1.故选ACD.
7.过点(1,3)且在x轴上的截距为2的直线方程是__3_x_+__y_-__6_=__0. 解析 由题意知直线过点(2,0)和点(1,3),由两点式可得3y--00=x1- -22, 整理得 3x+y-6=0.
1 2 3 4 5 6 7 8 9 10
8.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为___32_,__+__∞__ . 解析 方程可化为 y=(3-2t)x-6,因为直线不经过第一象限, 所以 3-2t≤0,得 t≥32.
直线与方程练习题
直线与方程练习题一、填空题1. 直线斜率为2,过点(-1, 3),则直线方程为__________。
2. 直线过点(2, -5)和点(4, 1),则直线方程为__________。
3. 直线过点(-3, 4)且与x轴垂直,则直线方程为__________。
4. 直线过点(0, 7)且平行于y轴,则直线方程为__________。
5. 直线过点(3, -2)且平行于直线2x + 3y = 1,则直线方程为__________。
二、选择题1. 斜率为3,过点(1, 2)的直线方程可能是:A. y = 3x + 1B. y = 3x - 1C. y = -3x + 1D. y = -3x - 12. 过原点(0, 0)且垂直于直线2x + 3y = 6的直线方程可能是:A. x = 2B. x = -2C. y = 2D. y = -23. 过点(2, -5)且平行于直线3x - 2y = 9的直线方程可能是:A. 3x - 2y = 19B. 3x - 2y = -19C. 3x - 2y = 4D. 3x - 2y = -44. 过点(3, 4)且平行于x轴的直线方程可能是:A. x = 3B. x = -3C. y = 3D. y = -35. 过点(-2, 1)且与直线4x + 5y = 10垂直的直线方程可能是:A. 5x - 4y = 10B. 5x - 4y = -10C. 4x + 5y = 2D. 4x + 5y = -2三、应用题1. 设直线L过点(1, 2)和点(4, 7),求直线L的斜率和截距,并写出直线L的方程。
2. 已知直线L过点(-3, 5)且与x轴垂直,求直线L的方程。
3. 直线L过点(1, -4)且平行于直线2x - 3y = 6,求直线L的方程。
4. 直线L过点(-2, -1)且平行于y轴,求直线L的方程。
5. 直线L过点(3, 2)且与直线3x - 4y = 5垂直,求直线L的方程。
直线与方程例题与练习(含答案)
级 名倾斜角α的取值范围: . 角α与斜率 pp 平行的直线方程可设为 , ⇔PP的距离为 “直线定界,特殊点定域=-a b x +z b ,距z b距zb取距z b取距zb 取距z b取22()()x a y b -+-表示表示22x y +示 示示 示 的倾斜角的取值范围是的倾斜角的取值范围是 [[3π,)a -2a +1=a +,-2≤0,-a +=-2≤0,≤-≤-1. 1.103)线所在的直线方程为0104=+-y x ,求BC 边所在的直线方程。
边所在的直线方程。
答案:得B (10,5),A 的对称点(1,7),故BC 方程为06592=-+y x例6 6 .设.设x 、y 满足24,1,22,x y x y x y +³ìï-³-íï-£î则则z x y =+( )A .有最小值2,2,最大值最大值3 3B B .有最小值2,无最大值C .有最大值3,3,无最大值无最大值无最大值D D D.既无最小值.既无最小值.既无最小值,,也无最大值也无最大值 此题中,y x 的最大值是的最大值是2 最小值是最小值是 0 22x y +的最小值是的最小值是 165例7. 若x ,y 满足约束条件1122x y x y x y +³ìï-³-íï-£î,目标函数2z ax y =+仅在点(仅在点(11,0)处取得最小值,则a 的取值范围是( )(A) (A) ((1-,2 2 )) (B) (B) (4-,2 ) (C) (4,0]- (D) (2,4)-作业:作业:1.已知点A (1(1,-,-,-2)2)2),,B (m,2)2),且线段,且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是的值是( ( )A .-.-2B 2 B 2 B.-.-.-7 7 7C C .3D D..12.直线kx -y +1-3k =0当k 变化时,所有的直线恒过定点变化时,所有的直线恒过定点 ( ( )A .(1,3)B (1,3) B..(-1,-,-3) 3) 3)C C .(3,1)D D..(-3,-,-1) 1) 3、直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是所得的直线方程是( ( ) A .x -2y +4=0 B B..x +2y -4=0 C 0 C..x -2y -4=0 0 D D .x +2y +4=04、在圆x 2+y 2+2x -4y =0内,过点内,过点(0,1)(0,1)(0,1)的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是( ( )A.π6B.B.π4C.π3 D.3π45、已知变量,x y 满足约束条件2823y xx y x y £ìï-£íï+³î,则目标函数62z x y =-的最小值为的最小值为( )A .32B .4C .8D .26、若实数x ,y 满足不等式组330,230,10,x y x y x my +-³ìï--£íï-+³î且x y +的最大值为9,则实数m =( )(A )2- ((B )1- ((C )1 ((D )27.直线l 过点P (-2,3)2,3),且与,且与x 轴、y 轴分别交于A 、B 两点,若点P 恰为AB 的中点,则直线l 的方程为________________..3x -2y +1212==08.在直角坐标系中,若不等式组ïîïíì++££-³1)1(00x k y y x x 表示一个三角形区域,则实数k 的取值范围是___(-1,1)__ 9、 给出平面区域如图所示给出平面区域如图所示..若当且仅当x =23,y =45时,目标函数z =ax -y 取最小值,则实数a 的取值范围是围是 (-(-(- 125,-,- 310). .1010.已知直线.已知直线l 1:(k -3)x +(4(4--k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,平行,则k= 3或5 l 1与l 2的距离为的距离为________________________..55210或1111.已知两条直线.已知两条直线l 1:(3(3++m )x +4y =5-3m ,l 2:2x +(5(5++m )y =8.8.当当m 分别为何值时,l 1与l 2:(1)(1)相交?相交?相交? (2) (2) (2)平行?平行?平行? (3) (3) (3)垂直?垂直?垂直?[解析] (1)(1)当当m =-=-55时,显然l 1与l 2相交;当m ≠-≠-55时,两直线l 1和l 2的斜率分别为k 1=-3+m4,k 2=-25+m, 它们在y 轴上的截距分别为轴上的截距分别为 b 1=5-3m 4,b 2=85+m . 由k 1≠k 2,得-3+m 4≠-25+m,即m ≠-≠-77,且m ≠-≠-1. 1.∴当m ≠-≠-77,且m ≠-≠-11时,l 1与l 2相交.相交.(2)(2)由由îïíïìk 1=k 2,b 1≠b 2,得îïíïì-3+m 4=-25+m,5-3m 4≠85+m ,得m =-=-7. 7.∴当m =-=-77时,l 1与l 2平行.平行.(3)(3)由由k 1k 2=-=-11,得-3+m 4·(-25+m)=-=-11,m =-133.=-时,11,使得y O A xBP(3, 1)【答案】【答案】AB=AB=22(16)(42)29-+-=,直线AB 的方程为264216y x --=--,即25220x y +-=,假设在直线x-3y+3=0上是否存在点C ,使得三角形ABC 的面积等于1414,,设C 的坐标为(,)m n ,则一方面有m-3n+3=0①,另一方面点C 到直线AB 的距离为|2522|29m n d +-=,由于三角形ABC 的面积等于1414,则,则11|2522|29142229m n AB d +-××=××=,|2522|28m n +-=,即2550m n +=②或256m n +=-③.联立①②解得13511m =,5611n=;联立①③解得3m =-,0n =.综上,在直线x-3y+3=0上存在点C 13556(,)1111或(3,0)-,使得三角形ABC 的面积等于14.。
直线与方程题型总结答案
题型一:重点考查直线的倾斜角)2cos10,2sin10,)2cos130,2sin130,则直线.160【详解】方法一:由斜率和倾斜角关系,利用两点连线斜率公式可得tan 方法二:根据三角函数定义可知,P Q 在圆160QOM +,由此可得倾斜角.的倾斜角为)0180θ≤<,()()33cos10sin10sin 12010sin102sin1302sin10222cos1302cos10cos 12010cos1033cos10sin1022−+−−==−+−−−()()3sin10cos103sin 1030sin 20sin 202tan 20sin 70cos 2033sin 1060sin10cos102−−==−=−=−++tan160.PQ 的倾斜角为160;方法二:由三角函数的定义可知:点,P Q 在圆24x y +=上,如图所示,为直线PQ 与轴的交点,则10,130QOM ∠,120=,又OQ =,30OQM ∴∠,160QOM +∠,∴直线PQ 的倾斜角为160. 160.2023春·安徽合肥·高二统考开学考试)直线y ++ 34π⎤⎡⋃⎥⎢⎦⎣精练核心考点3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,4ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭【详解】解:直线l 的斜率为3≤,α∈3,4⎤⎡⎫⎪⎥⎢⎦⎣⎭ππ. .(2023·全国·高二专题练习)直线,135︒︒⎤⎦【详解】解:直线x y −,则3x =,直线的斜率不存在,倾斜角为90;1≤,可得为不等于90的倾斜角),90135θ︒<≤综合,倾斜角的取值范围是45︒≤.题型二:重点考查直线的斜率19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭)因为点M 在函数)在线段AB ()19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭,记点16,2P ⎛− ⎝16,2P ⎛⎫− ⎪⎝⎭,所以21y +精练核心考点30,则实数D .323303=两点的直线的方向向量为题型三:重点考查斜率与倾斜角的变化关系第一象限,则直线l 的倾斜角的取值范围是()30,60)30,90 )60,9060,90⎤⎦B【详解】因为直线:l ,直线23x y +()0,2B ;30; 90;)30,90.·全国·高二专题练习)经过点P10PA k −=且直线l 与连接点如下图所示,则tan PA k ≤α∴∈π[0,4故选:B例题3.(精练核心考点2.(2023·全国·高二专题练习)已知坐标平面内三点ABC 的边A .0,⎡⎢⎣C .3⎡⎢⎣【答案】D【详解】如图所示,1为ABC 的边BD 斜率k .(2023·全国·高二专题练习)若实数的取值范围为5,73⎡⎤⎢⎥⎣⎦题型四:重点考查斜率公式的应用精练核心考点题型五:重点考查由直线与线段相交求直线斜率(倾斜角)范围3,7⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭【详解】解:设过点P 且垂直于当直线l 由位置PA 绕点P 此时,11354725PA k k +≥==+当直线l 由位置PC 绕点P 此时,1254PB k k +≤==精练核心考点1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭题型六:重点考查两直线的平行或垂直关系;方法二:直线1l 的方向向量()6,3AB =−的方向向量(3,6CD =因为0AB CD ⋅=,所以AB CD ⊥,所以5.(2023·全国·高二专题练习)已知两条直线60my +=2)30m x y −+=,当m 为何值时,相交; 平行; 垂直.【答案】(1)m ≠−3;题型七:重点考查直线的方程.(2023·全国·高二专题练习)在ABC中,已知点轴上截距是y轴上截距的3⎫,即(−⎪⎭;题型八:重点考查两直线的交点坐标【详解】三条直线不能构成三角形三条直线相交于同一点S的最小值AOBS最小值为AOB题型九:重点考查两点间的距离公式故选:B.xA B'=所以函数的最小值为故答案为:42精练核心考点1.(2023·全国·高二专题练习)已知故选:B2.(2023·全国·高二课堂例题)【答案】32【详解】()2221x x x ++=+()(224824x x x −+=−+=如图,设点(),0A x ,()1,1B −,值.由于AB AC BC +≥,当A ,B 故答案为: 32.3.(2023·全国·高二专题练习)函数为 .【答案】41【详解】()()219f x x =−+1故答案为:41题型十:重点考查点到直线的距离公式例题2.(2023秋·高二课时练习)求垂直于直线3105的直线l 的方程. 【答案】390x y −+=或3x −【详解】设与直线35x y +−则由点到直线的距离公式知()()2310310⨯−−+−===mm d350y+=.春·上海·高二期中)已知ABC的三个顶点y+=,且60)2,3,所以因此有+24=723+6=0m n m n −−⎧⎨⎩或+24=723+6=0m n m n −−−⎧⎨⎩,解得:=3=4m n ⎧⎨⎩或=3=0m n −⎧⎨⎩, 所以点A 的坐标为:()3,4或()3,0−.题型十一:重点考查两条平行线间的距离公式精练核心考点。
高中数学《直线与直线方程》练习题
高中数学《直线与直线方程》练习题A 组——基础对点练1.直线x +3y +a =0(a 为实常数)的倾斜角的大小是( ) A .30° B .60° C .120°D .150°解析:直线x +3y +a =0(a 为实常数)的斜率为-33,令其倾斜角为θ,则tan θ=-33,解得θ=150°,故选D. 答案:D2.如果AB <0,且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:直线Ax +By +C =0可化为y =-A B x -C B ,∵AB <0,BC <0,∴-A B >0,-CB >0.∴直线过第一、二、三象限,不过第四象限,故选D. 答案:D3.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A .[0,π4] B .[3π4,π) C .[0,π4]∪(π2,π)D .[π4,π2)∪[3π4,π)解析:由直线方程可得该直线的斜率为-1a 2+1,又-1≤-1a 2+1<0,所以倾斜角的取值范围是[3π4,π). 答案:B4.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32 B .m ≠0 C .m ≠0且m ≠1D .m ≠1解析:由⎩⎪⎨⎪⎧2m 2+m -3=0,m 2-m =0,解得m =1,故m ≠1时方程表示一条直线.答案:D5.设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +2y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由a =1可得l 1∥l 2,反之,由l 1∥l 2可得a =1,故选C. 答案:C6.设直线l 的方程为x +y cos θ+3=0(θ∈R),则直线l 的倾斜角α的取值范围是( ) A .[0,π) B .⎝ ⎛⎭⎪⎫π4,π2C.⎣⎢⎡⎦⎥⎤π4,3π4 D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线l 的方程,可得斜率k =-1cos θ. 因为cos θ∈[-1,1]且cos θ≠0, 所以k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞), 又α∈[0,π),所以α∈⎣⎢⎡⎭⎪⎫π4,π2∪⎝ ⎛⎦⎥⎤π2,3π4,综上知,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.答案:C7.(2018·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( ) A .3x +4y +15=0 B .4x +3y +6=0 C .3x +y +6=0D .3x -4y +10=0解析:设所求直线的斜率为k ,依题意k =-14×3=-34.又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 答案:A8.直线(2m +1)x +(m +1)y -7m -4=0过定点( ) A .(1,-3) B .(4,3) C .(3,1)D .(2,3)解析:2mx +x +my +y -7m -4=0,即(2x +y -7)m +(x +y -4)=0,由⎩⎪⎨⎪⎧ 2x +y =7,x +y =4,解得⎩⎪⎨⎪⎧x =3,y =1.则直线过定点(3,1),故选C. 答案:C9.(2018·张家口模拟)直线l 经过A (2,1),B (1,-m 2)(m ∈R)两点,则直线l 的倾斜角α的取值范围是( ) A .0≤α≤π4 B .π2<α<π C.π4≤α<π2D .π2<α≤3π4解析:直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.答案:C10.已知直线x +a 2y -a =0(a 是正常数),当此直线在x 轴,y 轴上的截距和最小时,正数a 的值是( ) A .0B .2 C.2 D .1解析:直线x +a 2y -a =0(a 是正常数)在x 轴,y 轴上的截距分别为a 和1a ,此直线在x 轴,y 轴上的截距和为a +1a ≥2,当且仅当a =1时,等号成立.故当直线x +a 2y -a =0在x 轴,y 轴上的截距和最小时,正数a 的值是1,故选D. 答案:D11.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0, 则点N 的坐标是( ) A .(-2,-1) B .(2,3) C .(2,1)D .(-2,1)解析:∵点N 在直线x -y +1=0上, ∴可设点N 坐标为(x 0,x 0+1).根据经过两点的直线的斜率公式,得k MN =(x 0+1)+1x=x 0+2x 0.∵直线MN 垂直于直线x +2y -3=0,直线x +2y -3=0的斜率k =-12,∴k MN ×⎝ ⎛⎭⎪⎫-12=-1,即x 0+2x 0=2,解得x 0=2.因此点N 的坐标是(2,3),故选B.答案:B12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________. 解析:如图,因为k AP =1-02-1=1,k BP =3-00-1=-3,所以k ∈(-∞,-3]∪[1,+∞). 答案:(-∞,-3]∪[1,+∞)13.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则实数a =________. 解析:令x =0,则l 在y 轴上的截距为2+a ;令y =0,得直线l 在x 轴上的截距为1+2a .依题意2+a =1+2a ,解得a =1或a =-2. 答案:1或-214.(2018·武汉市模拟)若直线2x +y +m =0过圆x 2+y 2-2x +4y =0的圆心,则m 的值为________.解析:圆x 2+y 2-2x +4y =0可化为(x -1)2+(y +2)2=5,圆心为(1,-2),则直线2x +y +m =0过圆心(1,-2),故2-2+m =0,m =0. 答案:015.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,求b 的取值范围. 解析:b 为直线y =-2x +b 在y 轴上的截距,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].B 组——能力提升练1.已知f (x )=a sin x -b cos x ,若f ⎝ ⎛⎭⎪⎫π4-x =f ⎝ ⎛⎭⎪⎫π4+x ,则直线ax -by +c =0的倾斜角为( ) A.π3 B .π6 C.π4D .3π4解析:令x =π4,则f (0)=f ⎝ ⎛⎭⎪⎫π2,即-b =a ,则直线ax -by +c =0的斜率k =a b =-1,其倾斜角为3π4.故选D. 答案:D2.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=0解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P (1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程为x +y -2=0. 答案:A3.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,而这两点连线所在直线的斜率为12,故直线AB 的斜率一定是-2,只有选项A 中直线的斜率为-2,故选A. 答案:A4.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1) B .(1-22,12) C .(1-22,13]D .[13,12)解析:由⎩⎪⎨⎪⎧x +y =1y =ax +b 消去x ,得y =a +b a +1,当a >0时,直线y =ax +b 与x 轴交于点(-b a ,0),结合图形(图略)知12×a +b a +1×(1+b a )=12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b=1-22,故选B. 答案:B5.已知p :“直线l 的倾斜角α>π4”;q :“直线l 的斜率k >1”,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当π2<α≤π时,tan α≤0,即k ≤0,而当k >1时,即tan α>1,则π4<α<π2,所以p 是q 的必要不充分条件,故选B.6.若经过点(1,0)的直线l 的倾斜角是直线x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -4=0 B .3x -4y -3=0 C .3x +4y -3=0D .4x +3y -4=0解析:设直线x -2y -2=0的倾斜角为α,则其斜率tan α=12,直线l 的斜率tan 2α=2tan α1-tan 2α=43.又因为l 经过点(1,0),所以其方程为4x -3y -4=0,故选A. 答案:A7.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( ) A .-53或-35 B .-32或-23 C .-54或-45D .-43或-34解析:由题知,反射光线所在直线过点(2,-3),设反射光线所在直线的方程为y +3=k (x -2),即kx -y -2k -3=0.∵圆(x +3)2+(y -2)2=1的圆心为(-3,2),半径为1,且反射光线与该圆相切, ∴|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或k =-34.答案:D8.已知倾斜角为θ的直线与直线x -3y +1=0垂直,则23sin 2θ-cos 2θ=( )A.103 B .-103 C.1013D .-1013解析:依题意,tan θ=-3(θ∈[0,π)),所以23sin 2θ-cos 2θ=2(sin 2θ+cos 2θ)3sin 2θ-cos 2θ=2(tan 2θ+1)3tan 2θ-1=1013,故选C. 答案:C9.(2018·天津模拟)已知m ,n 为正整数,且直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,则2m +n 的最小值为( ) A .7 B .9 C .11 D .16解析:∵直线2x +(n -1)y -2=0与直线mx +ny +3=0互相平行,∴2n =m (n -1),∴m +2n =mn ,两边同除以mn 可得2m +1n =1,∵m ,n 为正整数, ∴2m +n =(2m +n )⎝ ⎛⎭⎪⎫2m +1n =5+2n m +2m n ≥5+22n m ·2m n =9.当且仅当2n m =2mn 时取等号.故选B. 答案:B10.直线x cos θ-y -1=0(θ∈R)的倾斜角α的取值范围为________.解析:直线的斜率为k =cos θ∈[-1,1],即tan α∈[-1,1],所以α∈[0,π4]∪[34π,π).答案:[0,π4]∪[34π,π)11.过点A (1,2)且与直线x -2y +3=0垂直的直线方程为________.解析:直线x -2y +3=0的斜率为12,所以由垂直关系可得要求直线的斜率为-2,所以所求方程为y -2=-2(x -1),即2x +y -4=0. 答案:2x +y -4=012.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.解析:动直线x +my =0(m ≠0)过定点A (0,0),动直线mx -y -m +3=0过定点B (1,3).由题意易得直线x +my =0与直线mx -y -m +3=0垂直,即P A ⊥PB .所以|P A |·|PB |≤|P A |2+|PB |22=|AB |22=12+322=5,即|P A |·|PB |的最大值为5.答案:513.已知直线x =π4是函数f (x )=a sin x -b cos x (ab ≠0)图象的一条对称轴,求直线ax +by +c =0的倾斜角. 解析:f (x )=a 2+b 2sin(x -φ),其中tan φ=b a ,将x =π4代入,得sin(π4-φ)=±1,即π4-φ=k π+π2,k ∈Z ,解得φ=-k π-π4,k ∈Z.所以tan φ=tan ⎝ ⎛⎭⎪⎫-k π-π4=-1=b a ,所以直线ax +by +c =0的斜率为-a b =1,故倾斜角为π4.高中语文《椭圆》练习题 A 组——基础对点练1.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),则m =( ) A .2 B .3 C .4 D .9 解析:由4=25-m 2(m >0)⇒m =3,故选B.答案:B2.方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ) A .k >4 B .k =4 C .k <4D .0<k <4解析:方程kx 2+4y 2=4k 表示焦点在x 轴上的椭圆,即方程x 24+y 2k =1表示焦点在x 轴上的椭圆,可得0<k <4,故选D. 答案:D3.已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B .x 28+y 26=1 C.x 22+y 2=1D .x 24+y 2=1解析:依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A. 答案:A4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,左、右焦点分别为F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等差数列,则此椭圆的离心率为( ) A.12 B .55 C.14D .5-2解析:由题意可得2|F 1F 2|=|AF 1|+|F 1B |,即4c =a -c +a +c =2a ,故e =c a =12. 答案:A5.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π4,则椭圆和双曲线的离心率乘积的最小值为( )A.12 B .22 C .1D . 2解析:如图,假设F 1,F 2分别是椭圆和双曲线的左、右焦点,P 是第一象限的点,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,∴|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.设|F 1F 2|=2c ,又∠F 1PF 2=π4,则在△PF 1F 2中,由余弦定理得,4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos π4,化简得,(2-2)a 21+(2+2)a 22=4c 2,设椭圆的离心率为e 1,双曲线的离心率为e 2,∴2-2e 21+2+2e 22=4,又2-2e 21+2+2e 22≥22-2e 21·2+2e 22=22e 1·e 2,∴22e 1·e 2≤4,即e 1·e 2≥22,即椭圆和双曲线的离心率乘积的最小值为22.故选B. 答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________. 解析:将椭圆的方程化为标准形式得y 22k +x 22=1,因为x 2+ky 2=2表示焦点在y轴上的椭圆,所以2k >2,解得0<k <1. 答案:(0,1)7.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a )=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率等于13,其焦点分别为A ,B .C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C 的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB |+|CA ||AB |,因为点C 在椭圆上,所以由椭圆定义知|CA |+|CB |=2a ,而|AB |=2c ,所以sin A +sin B sin C =2a 2c =1e =3. 答案:39.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x 轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c . (1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c , 代入椭圆,得c 2a 2+y 2b 2=1. 解得|y |=b 2a =|AF 2|,即b 2a =36c , ∴a 2-c 2=36ac .∴e 2+36e -1=0,解得e =32. (2)设M (0,b ),N (0,-b ),P (x 0,y 0), 则直线MP 的方程为y =y 0-bx 0x +b .令y =0,得点R 的横坐标为bx 0b -y 0.直线NP 的方程为y =y 0+bx 0x -b .令y =0,得点Q 的横坐标为bx 0b +y 0. ∴|OR →|·|OQ →|=⎪⎪⎪⎪⎪⎪b 2x 20b 2-y 20=⎪⎪⎪⎪⎪⎪⎪⎪a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0),其中e =12,焦距为2,过点M (4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程. (2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y 23=1.(2)由题意可知A ,B ,M 三点共线, 设点A (x 1,y 1),点B (x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意. 则AB 所在直线l 的斜率存在,设为k , 则直线l 的方程为y =k (x -4).由⎩⎨⎧y =k (x -4),x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且⎩⎪⎨⎪⎧x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47, 可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0. 则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2), AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组——能力提升练1.(2018·合肥市质检)已知椭圆M :x 2a 2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,设圆C 在点P 处的切线斜率为k 1,椭圆M 在点P 处的切线斜率为k 2,则k 1k 2的取值范围为( )A .(1,6)B .(1,5)C .(3,6)D .(3,5)解析:由于椭圆M :x 2a2+y 2=1,圆C :x 2+y 2=6-a 2在第一象限有公共点P ,所以⎩⎪⎨⎪⎧a 2>6-a 2,6-a 2>1,解得3<a 2<5.设椭圆M :x 2a 2+y 2=1与圆C :x 2+y 2=6-a 2在第一象限的公共点P (x 0,y 0),则椭圆M 在点P 处的切线方程为x 0xa 2+y 0y =1,圆C 在P 处的切线方程为x 0x +y 0y =6-a 2,所以k 1=-x 0y 0,k 2=-x 0a 2y 0,k 1k 2=a 2,所以k 1k 2∈(3,5),故选D. 答案:D2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2c ,若椭圆上存在点M 使得sin ∠MF 1F 2a =sin ∠MF 2F 1c,则该椭圆离心率的取值范围为( )A .(0,2-1)B .(22,1) C .(0,22)D .(2-1,1)解析:在△MF 1F 2中,|MF 2|sin ∠MF 1F 2=|MF 1|sin ∠MF 2F 1,而sin ∠MF 1F 2a =sin ∠MF 2F 1c ,∴|MF 2||MF 1|=sin ∠MF 1F 2sin ∠MF 2F 1=ac .①又M 是椭圆x 2a 2+y 2b 2=1上一点, F 1,F 2是该椭圆的焦点, ∴|MF 1|+|MF 2|=2a .②由①②得,|MF 1|=2ac a +c ,|MF 2|=2a 2a +c .显然,|MF 2|>|MF 1|,∴a -c <|MF 2|<a +c ,即a -c <2a 2a +c <a +c ,整理得c 2+2ac -a 2>0, ∴e 2+2e -1>0, 解得e >2-1,又e <1,∴2-1<e <1,故选D. 答案:D3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2), 则x 214+y 212=1,① x 224+y 222=1,②①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0, ∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1), 即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足0<x 202+y 20<1,则|PF 1|+|PF 2|的取值范围是________.解析:由点P (x 0,y 0)满足0<x 202+y 20<1,可知P (x 0,y 0)一定在椭圆内(不包括原点),因为a =2,b =1,所以由椭圆的定义可知|PF 1|+|PF 2|<2a =22,当P (x 0,y 0)与F 1或F 2重合时,|PF 1|+|PF 2|=2,又|PF 1|+|PF 2|≥|F 1F 2|=2,故|PF 1|+|PF 2|的取值范围是[2,22). 答案:[2,22)5.(2018·保定模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3.(1)求椭圆C 的方程.(2)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m .证明:2m -k 为定值. 解析:(1)因为e =32=c a , 所以a =23c ,b =13c .代入a +b =3得,c =3,a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)证明:因为B (2,0),P 不为椭圆顶点,则直线BP 的方程为y =k (x -2)⎝ ⎛⎭⎪⎫k ≠0,k ≠±12,① 把①代入x 24+y 2=1, 解得P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.② ①与②联立解得M ⎝ ⎛⎭⎪⎪⎫4k +22k -1,4k 2k -1.由D (0,1),P ⎝ ⎛⎭⎪⎪⎫8k 2-24k 2+1,-4k 4k 2+1,N (x,0)三点共线知-4k4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N ⎝ ⎛⎭⎪⎪⎫4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k (2k +1)2(2k +1)2-2(2k -1)2=2k +14,则2m -k =2k +12-k =12(定值).。
直线与方程习题(带答案)
直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
直线与直线的方程
1 . 2
所以方程表示一条直线的条件是 m∈R,且 m≠-1.
(2)由(1)易知,当 m= 此时的方程为 x= (3)依题意,有
1 时,方程表示的直线的斜率不存在, 2
4 ,它表示一条垂直于 x 轴的直线. 3
2m - 6 =-3,所以 3m2-4m-15=0. m - 2m - 3
2
所以 m=3 或 m=-
5 5 ,由(1)知当 m=-1 或 m=3 时,m2-2m-3=0,故 m≠3,即所求 m 的值为- . 3 3
(4)因为直线 l 的倾斜角是 45°,所以斜率 k=1. 故由-
14.已知方程(m ―2m―3)x+(2m +m-1)y+6-2m=0(m∈R). (1)求该方程表示一条直线的条件. (2)当 m 为何实数时,方程表示的直线斜率不存在?求出这时的直线方程. (3)已知方程表示的直线 l 在 x 轴上的截距为-3,求实数 m 的值. (4)若方程表示的直线 l 的倾斜角是 45°,求实数 m 的值
6.D
10- c 6 2 + 82
=3,解得 c=-20 或 c=40. 所以 b+c=-12 或 48.
7.B
解析:方法 1:因为 a+2b=1,所以 a=1-2b. 所以 ax+3y+b=0 可化为(1-2b)x+3y+b=0, 整理得(1-2x)b+(x+3y)=0. 当 x=
1 1 ,y=- 时上式恒成立, 2 6
A.(2,1),(-1,-2)B.(-1,2),(1,-2) C.(1,-2),(-1,2) D.(-1,-2),(2,1) 6.已知两条平行直线 l1 : 3x+4y+5=0,l2 : 6x+by+c=0 间的距离为 3,则 b+c=( A.-12 B.48 C.36 ) D.-12 或 48 )
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。
直线与方程练习题及答案详解
直线与方程练习题直线与方程练习题一、选择题一、选择题 1.设直线0ax by c ++=的倾斜角为a ,且sin cos 0a a +=,则,a b 满足(满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为(的直线方程为( ) A .012=-+y x B .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,平行, 则m 的值为(的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过(通过( )A .第一、二、三象限.第一、二、三象限B .第一、二、四象限.第一、二、四象限C .第一、三、四象限.第一、三、四象限D .第二、三、四象限.第二、三、四象限 5.直线1x =的倾斜角和斜率分别是(的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在,不存在D .0180,不存在,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0¹mB .23-¹m C .1¹mD .1¹m ,23-¹m ,0¹m二、填空题二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
高考数学专题《直线与直线方程》习题含答案解析
专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件【答案】C 【解析】直线x +y =0和直线x−ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C 2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( )ABC.D【答案】C 【解析】原点到直线40x y +-==故选C.3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ().A.过点)2-BC .倾斜角为60°D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解【详解】点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l的斜率tan k θ==60°,故B ,C 正确;由1y =-,知直线l 在y 轴上的截距为1-,故D 错误.故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是().A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.【详解】当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误;∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m =m =B 选项正确;直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-,令11m m m-=-,得1m =±,故D 选项正确.故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是().A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0°【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案.【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确;对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确;对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误;对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确.故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______.【答案】32-43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距.【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43.故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y =【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可.【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒,又因为直线2l 和直线3l 都经过点()1,2,所以直线2l 和直线3l 的方程分别为1x =,2y =.故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________.【答案】-4;2【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //,334a -∴=,解得4a =-;∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________.【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34.因为直线2l 的方程为6810x y --=即为13402x y --=,所以直线1l 与2l 平行,则直线1l 与2l310.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|PA |+|PB |=a 的取值范围是 ___________.【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围.【详解】因为||AB ==||||PA PB +=,由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1),画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3,所以直线l 的斜率为k =2a ,令2123aa ⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( )A .8B .9C .16D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解.【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=,又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,练提升即2b a =时取“=”,由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,2N ,那么||MN 的最小值为( )A .2B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3),所以动点M 在以PQ5,2=圆心的坐标为3(1,)2-,所以点N3=,所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,,则直线方程为:故选l θ1sin(22p q-=l 20y --=40y +-=0x -=360y +-=122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-23πθ=tan θ=1y x -=-40y +-=B4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A.B.C.D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________.【答案】240x y -+= (0,1)-【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行,所以设方程为()201x y n n -+=≠,因为直线过点(2,1)M -,代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程;(2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=.7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1)求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ;(2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程.【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2.【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求.【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2),即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m 2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意,综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,()4,B n -在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值;(2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式.【答案】(1)2(2)0(3)2y x =+【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4),把A (2,4)代入ky x=得k =2×4=8,所以反比例函数解析式为8y x=,把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上,所以4m =k ,﹣4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==,在Rt △BOF 中,tan 4BF nBOF OF -∠==,而tan ∠AOD +tan ∠BOC =1,所以144m n-+=,而m +n =0,解得m =2,n =﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析.【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=.(2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,=,而6>10.(2021·全国高三专题练习)AOB V 是等腰直角三角形,||AB =l 过点(1,1)P 与AOB V 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标;(2)试写出表示AMN V 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标;(2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMN S V 的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解.【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k +=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭.(2)当1k …时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭,1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭.当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,当1k …时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+.综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ).A .1或3B .1或5C .3或5D .1或2【答案】C 【解析】练真题由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5,故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是()A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=,所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( )A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解.【详解】点(0,1)-到直线3410x y -+=的距离为515d =,故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即 111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=-0,求得 b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标b a--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >1,故有1b 13<.综上可得b 的取值范围应是 112⎛⎫-⎪ ⎪⎝⎭,,故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果与都是无理数,则直线不经过任何整点③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数⑤存在恰经过一个整点的直线【答案】①③⑤【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;②令直线为:,则直线经过整点,②错误;③令直线为:,过两个不同的整点,则,两式作差得:即直线经过整点x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --直线经过无穷多个整点,③正确;④令直线为:,则不过整点,④错误;⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤∴l l 1132y x =+ll y =()0,0。
高中直线与方程知识点及经典例题
直 线一、直线斜率、倾斜角1、斜率:k=θtan (θ为倾斜角) [)0180θ∈︒︒,2、斜率:k=2121x x y y --(21x x ≠)已知两点可以求斜率3、k 与θ的关系例1 过A (1,2)点,且不过第四象限的直线,求直线的斜率k 的取值范围?例2 已知直线倾斜角30120θ︒︒⎡⎤∈⎣⎦,,求直线斜率k 的取值范围例3 已知直线斜率k []31,-∈,求直线倾斜角θ的取值范围例4 已知直线l 的倾斜角β是直线1l :012=+-y x 的倾斜角α的2倍,求直线l 的斜率.练 习1.下列说法中,正确的是( ). A. 直线的倾斜角为α,则此直线的斜率为tan α B. 直线的斜率为tan α,则此直线的倾斜角为α C. 若直线的倾斜角为α,则sin 0α> D. 任一直线都有倾斜角,但它不一定有斜率2.直线l 过点P (-1,2),且与以A (-6,-3),B (3,-2)为端点的线段相交(包括端点),求l 的倾斜角的范围 ?3.已知直线l 过点P (−1,2),且与以A (−2,−3)、B (3,0)为端点的线段相交,求直线l 的斜率的取值范围是4.经过点P (0,-1)作直线l 与连接A(1,-2),B (2,1)的线段总有公共点,找出直线l 的倾斜角α与斜率k 的取值范围.5.经过点()10,P 作直线l ,若直线l 与连接()33,13---,),(B A 的线段总有公共点,找出直线l 斜率k 的取值范围.二、直线的四种形式: 1.点斜式: 作用:几何意义: 范围:定点问题:例1 已知直线0355:=+--a y ax l(1)求证:不论a 为何值,直线l 总经过第一象限 (2)为使直线不经过第二象限,求a 的取值范围例2 点P 是(x,y )线段x+2y-4=0(22-≤≤x )上的任意一点,求xy 1+的范围.2.斜截式: 作用: 几何意义: 范围:例3 设直线l 的方程为(a+1)x+y+2-a=0(a R ∈) (1)若直线l 在两坐标轴上的截距相等,求l 的方程 (2)若l 不经过第二象限,求a 的范围(3)证明:不论a 为何值,直线恒过某定点,并求定点坐标 (4)证明:不论a 为何值,直线恒过第四象限 作业:1.已知直线01=+++a y ax ,不论a 取何值,则该直线恒过的定点为 .2.已知直线()0121:=-+-+a y a ax l 不通过第四象限,则a 的取值范围是 .3.下列图象不可能是直线()2--=a ax y 图象的是( ) A .B .C .D .4.如果直线()0,0<<+=b a b ax y 和直线()0>=k kx y 的图像交于点P ,那么点P 应该位于第 象限.3.截距式: 作用:几何意义: 范围:例1 已知直线过(3,-2)且在x 轴的截距a 是与y 轴的截距是3倍,求直线的截距式.4.求直线方程:两个已知条件设方程:有一个未知数 1、已知点:点斜式 2、已知k :斜截式 3、已知截距关系:截距式例2 (1)求过点P(2,−1),在x 轴和y 轴上的截距分别为a 、b ,且满足a=3b 的直线方程.(2)已知直线l 过点(1,0),且与直线)1(3-=x y 的夹角为︒30,求直线l 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2 第二章 解析几何初步
第一节:直线与直线方程(王建明)
一、直线的倾斜角和斜率
(1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l ,
把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角,
叫作直线l 的倾斜角。
(0°≤α<180°)
(2)斜率k=tan α=1
212x x y y -- (0°≤α<180°),当α=90时,k 不存在。
(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。
例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。
例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。
例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k
的取值范围。
例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。
练习:
1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12
,则m 的值是( B )
A .4
B .3
C .1或3
D .1或4 变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ--
2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.
点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ⎝ ⎛⎦
⎥⎤-∞,-12∪[5,+∞) 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围.
答案:⎝
⎛⎦⎥⎤-∞,-12∪[5,+∞) 二、两直线的平行与垂直
1.平行的判定:
2. 垂直的判定:
例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行?
(2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。
练习:
的值平行,求实数与直线已知直线a ay x a l ay x l 01)13(:012:.121=---=-+
的值平行,求实数与直线已知直线a y a x a l ay x a l 03)2()2(:013)2(:.221=-++-=+++
例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6).
例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。
练习:
1.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?
答案:a=-1
2.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程.
答案:3x -2y -5=0.
三、直线的方程
1、点斜式: y-y 0=k (x -x 0) (斜率存在,可为0)
1、 斜截式: y=kx +b (b 是与y 轴的交点) (斜率存在,可为0)
2、 两点式: 121y y y y --=1
21x x x x -- (斜率存在,不能为0) 3、 一般式:A x +B y +C=0 (任意直线)
4、 截距式:
a x +b
y =1 (斜率存在且不过原点且不为0) 典型例题 表示
b +kx =y 的直线直线都可以用b),A(0.经经过定D 1表表
by x 可以用方程.不经不经过原点的直C 表示
)y -)(y x -(x =)x -)(x y -(y 程 的直线直线都可以
)y ,(x P 、)y ,(x P .经经过任意两个不同B 表示
)x -k(x =y -y 的直线直线都可以用)y ,(x P .经经过定A )
(四种种法中正确的1.下12112122211100000=+a 面例 例2.求过定点P (2,3)且在两坐标轴上的截距相等的直线方程.
例3.已知△ABC 的顶点A (1,-1),线段BC 的中点为D (3,2
3).
(1)求BC 边上的中线所在直线的方程;
(2)若边BC 所在直线在两坐标轴上的截距和是9,求BC 所在直线的方程.
例4.方程(m 2-2m -3)x +(2m 2+m -1)y =2m -6满足下列条件,请根据条件分别确定实数m 的值.
(1)方程能够表示一条直线;(答案:m 1-≠)
(2)方程表示一条斜率为-1的直线.(答案:m 2-=)
例5.直线l 的方程为(a -2)y =(3a -1)x -1(a ∈R).
(1)求证:直线l 必过定点;(答案:(15,35
)) (2)若直线l 在两坐标轴上的截距相等,求l 的方程;(答案:5x +5y -4=0)
(3)若直线l 不过第二象限,求实数a 的取值范围.(答案:分斜率存在与不存在)
练习:
1.若直线7x +2y -m =0在两坐标轴上的截距之差等于5,则m =( )
A .14
B .-14
C .0
D .14或-14
2、直线过点(3,2),且在两坐标轴上的截距相等的直线方程。
3、经过点A (-1,8),B (4,-2)的直线方程。
4、已知A(1,2), B (3,1),求线段AB 的垂直平分线方程。
5、一条光线从点P (6,4)射出,与x 轴相交于点Q (2,0)经x 轴反射,求入射光线和反射光线所在的直线方程。
四、直线的交点坐标与距离公式
1、求两条直线的交点(联立方程组)
例(1)若三条直线:2x+3y+8=0,x-y-1=0 和x +ky +k+
21=0相交于一点,则k=
(2)已知直线l 1:x+y+2=0, l 2:2x-3y-3=0,求经过的交点且与已知直线3x +y -1=0平行的直线l 的方程。
2、 两点间的距离公式︱P 1P 2︱= 212212)()(y y x x -+-
例(1)已知点A (a,-5)与B (0,10)间的距离是17,求a 的值。
例(2)已知点A (-1,2),B (2,7),在x 轴上求一点P ,使︱PA ︱=︱PB ︱,并求的 ︱PA ︱值。
例.直线l 的方程为(a -2)y =(3a -1)x -1(a ∈R).
(1)求证:直线l 必过定点;(答案:(15,35
)) (2)若直线l 在两坐标轴上的截距相等,求l 的方程;(答案:5x +5y -4=0)
(3)若直线l 不过第二象限,求实数a 的取值范围.(答案:分斜率存在与不存在)
五、点到直线的距离
例1:求点A(-2,3)到直线l:3x+4y+3=0的距离d= 。
例2:已知点(a,2)到直线l: x-y+1=0的距离为2,则a= 。
(a<0)
例3:求直线y=2x+3关于直线l: y=x+1对称的直线方程。
练习:
1.已知△ABC中,A(-2,1),B(3,-3),C(2,6),试判断△ABC的形状
2.求过点M(-2,1)且与A(-1,2),B(3,0)两点距离相等的直线方程.
3.已知点A(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于( )
A. 2 B.2-2 C.2-1 D.2+1
4.已知点A(1,3),B(3,1),C(-1,0),求△ABC的面积.
六、两平行直线间的距离
例1:求平行直线l1:2x-7y-8=0与l2:6x-21y-1=0的距离
例2:已知直线l1:(t+2)x+(1-t)y=1与l2:(t-1)x+(2t+3)y+2=0相互垂直,求t的值。
例3:求点A(2,2)关于直线2x-4y+9=0的对称点坐标。
练习:
1.两条互相平行的直线分别过点A(6,2)和B(-3,-1),如果两条平行直线间的距离为d,
求:(1)d的变化范围;(2)当d取最大值时,两条直线的方程.
2.求与直线l:5x-12y+6=0平行,且到l的距离为2的直线的方程.。