TVS管与压敏电阻的区别
稳压管,TVS管,压敏电阻,FUSE的作用和原理
![稳压管,TVS管,压敏电阻,FUSE的作用和原理](https://img.taocdn.com/s3/m/0a495d086c85ec3a87c2c57b.png)
稳压管、TVS管、压敏电阻、FUSE稳压管:1、浪涌保护电路:稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开.2、电视机里的过压保护电路:EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态.3、电弧抑制电路:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它.4、串联型稳压电路:在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用瞬态电压抑制二极管(TVS管)瞬态电压抑制二极管(TVS管)常称为防雷管,是一种安全保护器件。
这种器件在电路系统中起到分流、箝位作用,可以有效降低由于雷电、电路中开关通断时产生的高压脉冲,避免雷电、高压脉冲损坏其它器件。
其工作原理是交流到直流震荡产生直流波,用TVS去掉尖峰,直接并接在次级被保护的设备之前。
TVS是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。
当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。
正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。
TVS管和压敏电阻的区别
![TVS管和压敏电阻的区别](https://img.taocdn.com/s3/m/131d4d1c59eef8c75fbfb37a.png)
TVS管的作用TVS管是一种二极管形式的高效能保护器件。
当TVS二极管的两极受到反向瞬态高能量冲击时,它能以10-12秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件免受各种浪涌脉冲的损坏。
由于它具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压较易控制、无损坏极限、体积小等优点,目前已广泛应用于计算机系统、通信设备、交/直流电源、汽车、电子镇流器、家用电器、仪器仪表、RS232/422/423/485、I/O、LAN、ISDN、ADSL、USB、MP3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱动接收保护、电机电磁波干扰抑制、声频/视频输入、传感器/变速器、工控回路、继电器、接触器噪声的抑制等各个领域。
TVS管的选取计算选取时应注意以下几点:①TVS额定反向关断电压VWM应大于或等于被保护电路的最大工作电压。
②最小击穿电压VBR=VWM/KBR (其中,KBR=0.8~0.9)。
③TVS的最大箝位电压VC应小于被保护电路的损坏电压,即VC=KC×VBR (其中,KC=1.3)。
④在规定的脉冲持续时间内,TVS的最大峰值脉冲功耗PM必须大于被保护电路内可能出现的峰值脉冲功率。
在确定了最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。
TVS管与压敏电阻器的比较目前,国内不少需进行浪涌保护的设备上使用的是压敏电阻器。
TVS管一般用于电快速瞬变脉冲群的防护,其特性比压敏电阻器优越得多,具体特性参数的比较表5所列。
表5 TVS管与压敏电阻器的比较TVS管的应用实例交流电路图4为微机电源采用TVS管作线路保护的原理图。
图4 微机电源部分原理图下面就图4中的线路保护加以说明。
①在进线的交流220 V处加双向TVS管D1,以抑制220 V交流电网中的尖峰干扰。
TVS与压敏电阻的区别
![TVS与压敏电阻的区别](https://img.taocdn.com/s3/m/95459268a98271fe910ef955.png)
TVS与压敏电阻的区别
1) TVS管和压敏电阻不象开关元件那样具有开关特性,而是类似稳压二极管那样具有稳压特性。
2) 压敏电阻能承受更大的浪涌电流,而且其体积越大所能承受的浪涌电流越大,最大可达几十kA到上百kA
3)TVS管的非线性特性和稳压管一样,击穿前漏电流很小,击穿后是标准的稳压特性,比起压敏电阻来TVS管最大箝位电压偏离击穿电压较小,优于压敏电阻,但通流能力比压敏电阻较小。
4) 从反应速度来看,TVS管的反应速度很快,为ps级,而压敏电阻反应速度较慢,为ns级。
5)TVS管的可靠性高,不易劣化,使用寿命长。
而压敏电阻的可靠性较差,易老化,使用寿命较短。
两者各有千秋,压敏电阻具有尺寸小,不占空间,成本低等因数.而TVS钳制电压比较低,但价格较高。
两者现在都有较低容值的产品问世,可以很好满足高速信号线的要求。
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用
![常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SPD)应用](https://img.taocdn.com/s3/m/333d9b21192e45361066f51b.png)
常见防雷(surge,lighting)器件(TVS,压敏电阻,气体放电管,固体放电管,SP D)应用TVS瞬态干扰抑制器性能与应用瞬态干扰瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。
瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。
硅瞬变吸收二极管硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。
硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。
可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。
TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。
使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。
TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。
TVS的特性TVS的电路符号和普通的稳压管相同。
其电压-电流特性曲线如图1所示。
其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。
图2是TVS的电流-时间和电压-时间曲线。
在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压VBR,而被击穿。
随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。
其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。
TV、稳压管、压敏电阻
![TV、稳压管、压敏电阻](https://img.taocdn.com/s3/m/351490156c175f0e7cd13798.png)
【请保留版权,谢谢!】文章出自电子元件技术网。
(1)VRWM: reverse stand-off voltage 刚刚导通时候的电压,电路正常工作且TVS不导通(不工作)时的电压;
本文来自:我爱研发网() - R&D大本营
详细出处:/bbs/Archive_Thread.asp?SID=13容无效</P><P>电容累计到一定的电荷后就没作用了</P><P>键盘端口只有用TVS,有TVS与电阻阵列组成的EMI FILTER,做这个最合适了</P><P>压敏电阻钳位电压太高,只适合做模拟电路插入噪声的消除,对于数字ASIC IO口保护难当大任
在ESD保护元件的选择方面,目前常用的ESD保护元件有压敏电阻、聚合物和瞬态电压抑制器(TVS)二极管。聚合物和陶瓷压敏电阻等外保护技术提供低电容,但它们的高ESD钳位电压限制了其保护极敏感IC免受ESD损伤的能力。相比较而言,TVS元件,特别是安森美半导体的TVS元件具有极低的钳位电压,且在多重应力条件下仍能维持优异性能,是一种更为理想的ESD保护元件。
优点:
钳制电压低, 耐冲击
集成程度高
缺点:
价格昂贵
电容较大,不适用于高速传输线路
原创文章:"/bbs/viewthread.php?tid=796"
【请保留版权,谢谢!】文章出自电子元件技术网。
1.
TVS管超过它的耐压值后,会瞬间导通短路,反应速度在ns级,瞬态功率抑制能力更强,最大可达到1500W;而稳压管是稳压作用的,超过它的稳压值,只要功率不超过它的耐受值,就会稳定在它的稳压值范围内。
常用压敏电阻型号
![常用压敏电阻型号](https://img.taocdn.com/s3/m/8ea7e2d105a1b0717fd5360cba1aa81144318f2a.png)
常用压敏电阻型号
压敏电阻是一种电阻器件,其特点是在正常情况下具有很高的电阻值,但在电压超过一定范围时,电阻值会急剧下降,从而起到保护电路的作用。
常见的压敏电阻型号有以下几种:
1. VDR:Voltage Dependent Resistor,即压敏电阻,是一种基本的压敏电阻器件。
它的电阻值与电压呈非线性关系,在一定范围内的电压变化下,其电阻值变化相对较小;但一旦电压超过其额定电压,其电阻值会急剧下降,形成一个低阻态,从而实现对电路的保护。
2. MOV:Metal Oxide Varistor,即金属氧化物压敏电阻,是一种采用氧化锌等金属氧化物制成的压敏电阻器件。
它的电阻值也是与电压呈非线性关系,但相比于VDR,其额定电压范围更大,且具有更好的稳定性和重复性。
3. TVS:Transient Voltage Suppressor,即暂态电压抑制器,是一种特殊的压敏电阻器件。
它能够有效地抑制瞬间高峰电压,起到保护电路的作用。
TVS的额定电压范围也较广,常见的有5V、12V、24V等。
4. GDT:Gas Discharge Tube,即气体放电管,也是一种常见的压敏电阻器件。
它使用气体放电现象来保护电路,在电压超过其额定电压后,气体放电管内部的气体会导电,使电路中的电流通过气体放电管,从而达到保护的效果。
以上是常见的压敏电阻型号,不同的型号适用于不同的电路保护需求,选择时需要考虑其额定电压、响应时间、重复性等因素。
TVS的选用
![TVS的选用](https://img.taocdn.com/s3/m/9820c41559eef8c75fbfb348.png)
TVS的特性及应用2004-12-13 作者:huanghm瞬态电压抑制器(Transient V oltage Suppressor)简称TVS,是一种二极管形式的高效能保护器件。
当TVS二极管的两极受到反向瞬态高能量冲击时,它能以10-12秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达数千瓦的浪涌功率,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。
由于它具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压较易控制、无损坏极限、体积小等优点。
目前已广泛应用于计算机系统、通讯设备、交/直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、I/O、LAN、ISDN、ADSL、USB、MP3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱动接收保护、电机电磁波干扰抑制、声频/视频输入、传感器/变速器、工控回路、继电器、接触器噪音的抑制等各个领域。
具体有以下三大特点:1、将TVS二极管加在信号及电源线上,能防止微处理器或单片机因瞬间的肪冲,如静电放电效应、交流电源之浪涌及开关电源的噪音所导致的失灵。
2、静电放电效应能释放超过10000V、60A以上的脉冲,并能持续10ms;而一般的TTL器件,遇到超过30ms的10V脉冲时,便会导至损坏。
利用TVS二极管,可有效吸收会造成器件损坏的脉冲,并能消除由总线之间开关所引起的干扰(Crosstalk)。
3、将TVS二极管放置在信号线及接地间,能避免数据及控制总线受到不必要的噪音影响。
一、TVS的特性及主要参数1、TVS的特性曲线TVS的电路符号与普通稳压二极管相同。
它的正向特性与普通二极管相同;反向特性为典型的PN结雪崩器件。
在瞬态峰值脉冲电流作用下,流过TVS的电流,由原来的反向漏电流ID上升到IR时,其两极呈现的电压由额定反向关断电压VWM上升到击穿电压VBR,TVS被击穿。
了解TVS二极管的应用
![了解TVS二极管的应用](https://img.taocdn.com/s3/m/d58a40b1ff00bed5b9f31df9.png)
瞬态抑制二极管(TVS)又叫钳位型二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为 10-12 毫秒,因此可有效地保护电子线路中的精密元器件。
TVS 允许的正向浪涌电流在TA=250C,T=10ms 条件下,可达 50~200A。
双向 TVS 可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向 TVS 适用于交流电路,单向 TVS 一般用于直流电路。
可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。
耐受能力用瓦特(W)表示。
TVS(Transient Voltage Suppression)是一种限压保护器件,作用与压敏电阻很类似。
也是利用器件的非线性特性将过电压钳位到一个较低的电压值实现对后级电路的保护。
TVS 管的主要参数有:反向击穿电压、钳位电压、瞬间功率、结电容、响应时间等。
TVS 的响应时间可以达到 ps 级,是限压型浪涌保护器件中快的。
用于电子电路的过电压保护时其响应速度都可满足要求。
TVS 管的结电容根据制造工艺的不同,大体可分为两种类型,高结电容型 TVS 一般在几百~几千 pF 的数量级,低结电容型 TVS 的结电容一般在几pF~几十 pF 的数量级。
一般分立式 TVS 的结电容都较高,表贴式 TVS 管中两种类型都有。
在高频信号线路的保护中,应主要选用低结电容的 TVS 管。
TVS 管的非线性特性比压敏电阻好,当通过 TVS 管的过电流增大时,TVS 管的钳位电压上升速度比压敏电阻慢,因此可以获得比压敏电阻更理想的残压输出。
在很多需要精细保护的电子电路中,应用 TVS 管是比较好的选择。
TVS 管的通流容量在限压型浪涌保护器中是的,一般用于末级的精细保护,因其通流量小,一般不用于交流电源线路的保护,直流电源的防雷电路使用 TVS 管时,一般还需要与压敏电阻等通流容量大的器件配合使用。
气体放电管与压敏电阻的区别
![气体放电管与压敏电阻的区别](https://img.taocdn.com/s3/m/8a09f4bdd5bbfd0a78567348.png)
1、气体放电管只能放在N和PE之间,因为气体放电管的导通延时长和导通后需要续流,使电路容易短路。
所以不能用在三相之间。
2、压敏电阻是限压型元器件,放电管是开关型元器件!反应时间都是纳秒级的放电管比压敏电阻慢一点!压敏电阻反应时间是≤25NS 放电管是≤100NS压敏电阻的性能存在一个衰减的问题!放电管不会!3、各有优缺点:压敏电阻主要用于电源系统的防雷,气体放电管主要用于信号线路如数据线、电话、有线电视、卫星通信等的防雷。
4、只在零线上接放电管不能防雷!但零线上能接放电管,而火线上则不行,这是因为正常情况下零线没电压,火线有。
5、“谢谢,可是有的同行说,如果这样那光是一个压敏电阻不行,需串一个气体放电管才能通过TUV认证.是吗?有相关条文吗?谢谢”安规上没有相关条文说一定要压敏电阻串气体放电管才行,但是大家都这样做,原因是他们两个的响应特性互补,组合使用效果最佳,具体来讲,气体放电管是硬响应特性的放电元件,漏电流小,但是残压较高,反应时间慢(≤100ns), 动作电压精度较低,而压敏电阻是软响应特性的放电元件,残压较低,反应时间较快(≤25ns),但是漏电流较大,所以两个是“最佳拍档”.6、由于压敏电阻(MOV)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。
为解决这一问题在压敏电阻之间串入气体放电管。
压敏电阻与气体放电管串联,在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。
7、压敏电阻与气体放电管串联在一起,气体放电管起到什么作用,这种结构有什么优点与缺点?答:气体放电管有续流,但不容易失效。
另耐冲击电流能力强。
压敏电阻的主要特性是限压,气体放电管的主要特性是泄流,各用其长处!L-PE上串联:可延长压敏的使用寿命,并且于限制电压影响不大。
共模防护。
L-N上串联:可以把放电管省掉不用,尤其,单相系统。
浪涌保护器工作原理
![浪涌保护器工作原理](https://img.taocdn.com/s3/m/0d86827183c4bb4cf7ecd16e.png)
以下是电源系统SPD选择的要点:1、根据被保护线路制式,例如:单相220V、三相220/380V TNC/TNS/TT 等,选择合适制式SPD2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。
一般终端设备的耐冲击电压1.5kV,具体可参照GB 50343-54。
Up值小于其耐冲击电压即可。
3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。
一级SPD是有雷电流泄放参数的10/350波形的。
4、根据GB 50057-里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。
至于型号,不同厂家型号不一,没什么参考价值。
建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。
浪涌保护器设计原理、特性、运用范畴设计原理在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。
如下图所示,MOV将火线和地线连接在一起。
MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。
这些半导体具有随着电压变化而改变的可变电阻。
当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。
反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。
如果电压正常,MOV会闲在一旁。
而当电压过高时,MOV可以传导大量电流,消除多余的电压。
随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。
按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。
打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。
另一种常见的浪涌保护装置是气体放电管。
这些气体放电管的作用与MOV 相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。
气体放电管压敏电阻tvs的区别
![气体放电管压敏电阻tvs的区别](https://img.taocdn.com/s3/m/a333305d2379168884868762caaedd3382c4b57e.png)
气体放电管(Gas Discharge Tube,简称GDT)和压敏电阻(Varistor,简称TVS)都是常见的电压保护元件,在电子设备中起着重要的作用。
它们之间有很多区别,本文将针对这些区别进行详细的介绍。
1. 工作原理气体放电管是一种利用气体放电来保护电子设备的元件。
当电压超过气体放电管的工作电压时,气体放电管会突然导通,将电压引到接地,从而保护设备免受过压的损害。
压敏电阻是一种非线性电阻,在正常工作时呈高阻状态,当电压超过其额定电压时,压敏电阻会立即变为低阻状态,吸收过压电流,起到保护电路的作用。
2. 灵敏度气体放电管的工作电压通常在数百伏至数千伏之间,具有较高的耐压能力。
它对快速、高能量的过压脉冲有很好的响应能力。
压敏电阻的工作电压较低,一般在几伏至几百伏之间,对于低能量的过压脉冲有较好的响应能力。
3. 响应速度气体放电管的响应速度非常快,当发生过压时,气体放电管会立即导通,引导电压到地,起到保护作用。
压敏电阻的响应速度较快,但相对于气体放电管来说较慢,需要一定的时间来达到低阻状态。
4. 适用范围气体放电管广泛应用于需要快速响应高能过压的场合,如通信设备、电源系统等。
压敏电阻常用于对低能量过压的保护,如电子电路中的防雷保护、过压保护等。
5. 结构和尺寸气体放电管通常较大,由于其内部需要包含气体放电管和电极之间的间隙,使得其体积较大。
压敏电阻体积较小,可根据需要设计成不同尺寸和形状,适用于各种紧凑空间的设计。
气体放电管和压敏电阻在工作原理、灵敏度、响应速度、适用范围以及结构和尺寸等方面存在很大的差异。
在实际应用中,需要根据具体的场合和需求来选择合适的电压保护元件,以保障电子设备的安全和稳定运行。
电子设备在使用过程中,常常会受到各种不同类型的电压干扰,因此需要采用一些电压保护元件来保护设备免受损害。
气体放电管(GDT)和压敏电阻(TVS)作为常见的电压保护元件,在实际应用中有着不同的特点和优势。
片式氧化锌压敏电阻器与TVS管技术对比
![片式氧化锌压敏电阻器与TVS管技术对比](https://img.taocdn.com/s3/m/8e5490d7360cba1aa811da2d.png)
片式氧化锌压敏电阻器与TVS管技术对比QQ:917603226深圳顺络电子有限公司2008.01.22目录一、 片式氧化锌压敏电阻器的微观结构和工作原理二、 TVS管微观结构和工作原理三、 片式氧化锌压敏电阻器和TVS管性能对比四、我公司片式氧化锌压敏电阻器的竞争优势一、 片式氧化锌压敏电阻器微观结构和工作原理片式氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷流延工艺制成的多晶半导体陶瓷元件。
它的微观结构、等效电路如图1、2所示。
氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体, 晶界物质中含有大量金属氧化物形成大量界面态,这样两个晶粒和一个晶界(即微观单元)形成一个类似背靠背双向PN结, 整个陶瓷就是由许多背靠背双向PN结串并联的组合体。
由于氧化锌压敏陶瓷晶界非常薄,仅有埃数量级,则当施加电压小于其反向PN结击穿电压时,属于肖特基势垒热电子发射电导,其导通电流与PN结势垒及温度有关;当施加电压大于其反向PN结击穿电压(3.2V)时,属于隧道电子击穿导电,其导通电流只与所施加电压有关,隧道电子击穿时间小于几百皮秒。
其中:当施加电压小于其反向PN结击穿电压时,Rb远大于Rg,施加电压几乎全部加在晶界上,Rb >10MΩ;当施加电压大于其反向PN结击穿电压时,晶界产生隧道电子击穿导电,Rb远小于Rg,施加电压加在晶粒和晶界上,Rg+Rb阻值只有欧姆级;因此当外施电压小于氧化锌压敏陶瓷晶界击穿电压(即压敏电压)时,压敏电阻呈现绝缘体高阻值,其漏电流仅有微安级;当外施电压大于氧化锌压敏陶瓷晶界击穿电压(即压敏电压)时,压敏电阻呈现导体低阻值,通过电流有几十安培,而且随着外施电压稍微升高,通过电流急速增长。
图1 压敏电阻器微观结构图2 压敏电阻器等效电路氧化锌压敏陶瓷的典型V-I特性曲线如图3所示:图3 压敏电阻器伏安特性曲线由于片式氧化锌压敏电阻器应用于电子电路和数据传输线路中,被保护电路的工作电压很低,同时对其电容有特殊要求,因此通过结构设计和工艺调整,可以得到不同线路保护要求的压敏电阻器。
气体放电管原理选型及应用
![气体放电管原理选型及应用](https://img.taocdn.com/s3/m/340e04dcd15abe23482f4d96.png)
气体放电管选型丨原理丨应用丨放电管参数丨规格丨参数丨放电管资料丨开关管资料丨防雷元件-放电管开关管TVS管区别气体放电管原理选型及应用气体放电管按照高效率弧光放电的气体物理原理工作。
从电气的角度看,气体放电管就是压敏开关。
一旦施加到放电管上的电压超过击穿电压,毫微秒内在密封放电区形成电弧。
高浪涌电流处理能力和几乎独立于电流的电弧电压对过压进行短路。
当放电结束,放电管熄灭,内阻立即返回数百兆欧姆。
气体放电管近乎完美的满足保护性元件的所有要求。
它能将过压可靠的限制在允许的数值范围内,并且在正常的工作条件下,由于高绝缘阻抗和低电容特性,放电管对受保护的系统实际上不发生任何影响。
一般来说,当浪涌电压超过系统绝缘的耐电强度时,放电管被击穿放电,从而在短时间内限制浪涌电压及减少干扰能量。
当具有大电流处理能力的弧光放电时,由于弧光电压低,仅几十伏左右,从而防止了浪涌电压的进一步上升。
气体放电管即利用这一自然原理实现了对浪涌电压的限制。
气体放电管主要参数:1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在μs数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8×20μs 电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为≤1pF。
4)直流击穿电压当外施电压以500V/s的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在-55℃~+125℃之间。
6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Ω气体放电管的应用示例1)电话机/传真机等各类通讯设备防雷应用如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3通讯设备防雷应用2)气体放电管和压敏电阻组合构成的抑制电路图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
TVS管主要特性参数优点和缺点,选型依据及注意事项
![TVS管主要特性参数优点和缺点,选型依据及注意事项](https://img.taocdn.com/s3/m/806f0a451eb91a37f1115c53.png)
TVS管主要特性参数优点和缺点,选型依据及注意事项一.TVS管概述TVS(Transient V oltage Suppressor)瞬态电压抑制器。
当两极受到反向瞬态高能量冲击时,能以10 的负12 次方秒量级的速度,将两极间的高阻抗变为低阻抗,使两极间的电压箝位于一个预定值,有效地保护电子线路中的精密元器件。
在浪涌电压作用下,TVS 两极间的电压由额定反向关断电压VWM 上升到击穿电压VBR,而被击穿,随着击穿电流的出现,流过TVS 的电流将达到峰值脉冲电流IPP,同时在其两端的电压被钳位到预定的最大钳位电压VC 以下,其后,随着脉冲电流按指数衰减,TVS 两极间的电压也不断下降,最后恢复到初态;TVS 管有单向与双向之分,单向TVS 管的特性与稳压二极管相似,双向TVS管的特性相当于两个稳压二极管反向串联。
二.其主要特性参数1、反向截止电压VRWM 与反向漏电流IR:反向截止电压VRWM 表示TVS 管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。
2、击穿电压VBR:TVS 管通过规定的测试电流时的电压,这是表示TVS 管导通的标志电压。
3、脉冲峰值电流IPP:TVS 管允许通过的10/1000μs 波的最大峰值电流(8/20μs 波的峰值电流约为其5 倍左右),超过这个电流值就可能造成永久性损坏。
在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小,一般是几A~几十A。
4、最大箝位电压VC:TVS 管流过脉冲峰值电流IPP 时两端所呈现的电压。
5、脉冲峰值功率Pm:脉冲峰值功率Pm 是指10/1000μs 波的脉冲峰值电流IPP 与最大箝位电压VC 的乘积,即Pm=IPP*VC;在给定的最大钳位电压下,功耗PM 越大,其浪涌电流承受能力越大,在给定的功耗PM 下,钳位电压越低,其浪涌电流的承受能力越大;另外,峰值脉冲功耗还与脉冲波形,持续时间和环境温度有关:典型的脉冲波形持续时间为1ms,当施加到二极管上的脉冲波形持续时间小于TP,则随着TP 的减小脉冲峰值功率增加;TVS 所能承受的瞬态脉冲式不重复的,如果电路内出现重复性脉冲,应考虑脉冲功率的累积可能损坏TVS。
PTC热敏电阻
![PTC热敏电阻](https://img.taocdn.com/s3/m/b23f21d4b9f3f90f76c61b45.png)
1、压敏电阻主要有两个参数标称压敏电压和通流容量。
相比TVS,通流量大,但响应速度低。
2、TVS吸收浪涌电流很小,但响应速度较快(ns级)。
3、热敏电阻。
PTC热敏电阻主要参数额定零功率电阻R25零功率电阻,是指在某一温度下测量PTC热敏电阻值时,加在PTC热敏电阻上的功耗极低, 低到因其功耗引起的PTC热敏电阻的阻值变化可以忽略不计. 额定零功率电阻指环境温度25℃条件下测得的零功率电阻值. 最小电阻Rmin指PTC热敏电阻可以具有的最小的零功率电阻值.居里温度Tc对于PTC热敏电阻的应用来说,电阻值开始陡峭地增高时的温度是重要的,我们将其定义为居里温度.居里温度对应的PTC热敏电阻的电阻RTc = 2*Rmin.温度系数αPTC热敏电阻的温度系数定义为温度变化导致的电阻的相对变化.温度系数越大,PTC热敏电阻对温度变化的反应越灵敏. α = (lgR2-lgR1)/(T2-T1)表面温度Tsurf表面温度Tsurf是指当PTC热敏电阻在规定的电压下并且与周围环境间处于热平衡状态已达较长时间时,PTC热敏电阻表面的温度.动作电流Ik流过PTC热敏电阻的电流,足以使PTC热敏电阻自热温升超过居里温度,这样的电流称为动作电流. 动作电流的最小值称为最小动作电流.动作时间ts环境25℃条件下,给PTC热敏电阻加一个起始电流(保证是动作电流),通过PTC热敏电阻的电流降低到起始电流的50%时经历的时间就是动作时间.不动作电流INk流过PTC热敏电阻的电流,不足以使PTC热敏电阻自热温升超过居里温度,这样的电流称为不动作电流. 不动作电流的最大值称为最大不动作电流.最大电流Imax最大电流是指PTC热敏电阻最高的电流承受能力.超过最大电流时PTC热敏电阻将会失效.残余电流Ir残余电流是在最大工作电压Vmax下,热平衡状态下的电流.最大工作电压Vmax最大工作电压是指在规定的环境温度下,允许持续地保持在PTC热敏电阻上最高的电压.对同一产品而言,环境温度越高,最大工作电压值越低.额定电压VN额定电压是在最大工作电压Vmax以下的供电电压.通常Vmax = VN + 15%击穿电压VD击穿电压是指PTC热敏电阻最高的电压承受能力.PTC热敏电阻在击穿电压以上时将会击穿失效压敏:压敏电阻的测量: 压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用.压敏电阻在电路中,常用于电源过压保护和稳压.测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损压敏电阻标称参数压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面.压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点.压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数. 1、所谓压敏电压,即击穿电压或阈值电压.指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等.可根据具体需要正确选用.一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值.VAC为额定交流电压的有效值.ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命.如一台用电器的额定电源电压为220V,则压敏电阻电压值V1mA=1.5Vp=1.5××220V=476V,V1mA=2.2VAC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V之间.(描述可能有错)2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值.为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量.然而从保护效果出发,要求所选用的通流量大一些好.在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品.如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和.要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻. 压敏电阻器的应用原理压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合.压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏.使用时只需将压敏电阻器并接于被保护的IC或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作. 压敏电阻的选用选用压敏电阻器前,应先了解以下相关技术参数:标称电压是指在规定的温度和直流电流下,压敏电阻器两端的电压值.漏电流是指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过的电流值.等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电压峰值.通流量是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流.浪涌环境参数包括最大浪涌电流Ipm(或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等. 3.1 标称电压选取一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值.对于过压保护方面的应用,压敏电压值应大于实际电路的电压值,一般应使用下式进行选择: VmA=av/bc式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9; 这样计算得到的VmA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结果应扩大1.414倍.另外,选用时还必须注意: (1) 必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命; (2) 在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器. 压敏电阻所吸收的浪涌电流应小于产品的最大通流量. 应用电路浪涌和瞬变防护时的电路.对于压敏电阻的应用连接,大致可分为四种类型: 第一种类型是电源线之间或电源线和大地之间的连接,作为压敏电阻器,最具有代表性的使用场合是在电源线及长距离传输的信号线遇到雷击而使导线存在浪涌脉冲等情况下对电子产品起保护作用.一般在线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻则对传输线和大地间的感应脉冲有效.若进一步将线间连接与线地连接两种形式组合起来,则可对浪涌脉冲有更好的吸收作用. 第二种类型为负荷中的连接,它主要用于对感性负载突然开闭引起的感应脉冲进行吸收,以防止元件受到破坏.一般来说,只要并联在感性负载上就可以了,但根据电流种类和能量大小的不同,可以考虑与R-C串联吸收电路合用. 第三种类型是接点间的连接,这种连接主要是为了防止感应电荷开关接点被电弧烧坏的情况发生,一般与接点并联接入压敏电阻器即可. 第四种类型主要用于半导体器件的保护连接,这种连接方式主要用于可控硅、大功率三极管等半导体器件,一般采用与保护器件并联的方式,以限制电压低于被保护器件的耐压等级,这对半导体器件是一种有效的保护. 4 氧化锌压敏电阻存在的问题现有压敏电阻在配方和性能上分为相互不能替代的两大类: 4.1 高压型压敏电阻高压型压敏电阻,其优点是电压梯度高(100~250V/mm)、大电流特性好(V10kA/V1mA≤1.4)但仅对窄脉宽(2≤ms)的过压和浪涌有理想的防护能力,能量密度较小,(50~300)J/cm3. 4.2 高能型压敏电阻高能型压敏电阻,其优点是能量密度较大(300J/cm3~750J/cm3),承受长脉宽浪涌能力强,但电压梯度较低(20V/mm~500V/mm),大电流特性差(V10kA/V1mA>2.0). 这两种配方的性能差别造成了许多应用上的“死区”,在10kV电压等级的输配电系统中广泛采用了真空开关,由于它动作速度快、拉弧小,会在操作瞬间造成极高过压和浪涌能量,如果选用高压型压敏电阻加以保护(如避雷器),虽然它电压梯度高、成本较低,但能量容量小,容易损坏;如果选用高能型压敏电阻,虽然它能量容量大,寿命较长,但电压梯度低,成本太高,是前者的5~13倍. 在中小功率变频电源中,过压保护的对象是功率半导体器件,它对压敏电阻的大电流特性和能量容量的要求都很严格,而且要同时做到元件的小型化.高能型压敏电阻在能量容量上可以满足要求,但大电流性能不够理想,小直径元件的残压比较高,往往达不到限压要求;高压型压敏电阻的大电流特性较好,易于小型化,但能量容量不够,达不到吸能要求.中小功率变频电源在这一领域压敏电阻的应用几乎还是空白.TVS与压敏电阻的区别:1) TVS管和压敏电阻不象开关元件那样具有开关特性,而是类似稳压二极管那样具有稳压特性。
浪涌抑制器件特性及选用
![浪涌抑制器件特性及选用](https://img.taocdn.com/s3/m/e917aee8ba1aa8114531d9a2.png)
浪涌抑制器件特性及选用浪涌防护器件目前在防雷浪涌过压的爱惜器件中要紧有:防雷器、放电管、压敏电阻和半导体浪涌爱惜器。
在防雷器件的利用中按防护同流量能力的大小大致分为防雷器>气体放电管>压敏电阻>SAD (Surge Arrest Device ),从价钱上按相同容量的防浪涌器件,SAD 的价钱高于放电管,约是压敏电阻的2倍,但SAD 的响应时刻最快,同时漏电流也相对较小。
以上四种防浪涌器件中,放电管和SAD 都存在有动作后的续流问题,在应用中应加以考虑。
压敏电阻压敏电阻的特性金属氧化物压敏电阻的V/I 特性曲线相似于指数函数,可简单表示为:a KV I ,其中K 为陶瓷常数,取决于压敏电阻器的制作工艺材料等,关于金属氧化物压敏电阻指数a 可大于30,压敏电阻的V/I 特性如图1:图1 压敏电阻的V/I 特性图2 压敏电阻的等效电路其中L为引线电感量,C为电容器,Rig为中间相的电阻值,Rv为理想的压敏电阻,Rb为ZnO的导通阻抗。
压敏电阻的工作电压,指在规定的工作电压时,导通电流较小,当所加电压为压敏电压的倍时,压敏电阻的漏电流为uA级别,可忽略不计。
脉冲电流,一样指流通过压敏电阻电流波形为8/20us波的瞬态最大脉冲电流。
能量耐量,指压敏电阻的能够经受的最大的能量,W。
压敏电压,指压敏电阻流通过1mA的电流时,所需加在压其计算为:⎰=10)()(t t dt t i t v敏电阻上的电压。
响应时刻,指压敏电阻对浪涌的响应速度,一样为皮秒到纳秒级别,可和SAD防浪涌器件做比较。
温度系数,指温度转变时压敏电阻的V/I特性随着转变,压敏电阻呈负温度特性,当温度升高时,压敏电阻的动作电压、脉冲电流、能量耐量和持续负荷都相应的降低。
压敏电阻发生浪涌过电压冲击时,在压敏电阻上测得的电压峰值既为残压,残压于压敏电压的比值,称为残压比,一样要求残压比小于3。
在实际应用中应考虑到残压对爱惜元件的阻碍。
压敏电阻的选型
![压敏电阻的选型](https://img.taocdn.com/s3/m/31a426d15fbfc77da269b164.png)
压敏电阻的选型电子元件知识 2008-09-25 21:46:47 阅读417 评论0 字号:大中小订阅 .如果电机是AC24V的,在电机方向线对地接一个470K压敏电阻;如果电机是AC220V,则加471K压敏电阻。
意义重要是消除电机换相产生的尖峰高压。
压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。
压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。
1、所谓压敏电压,即击穿电压或阈值电压。
指在规定电流下的电压值,大多数情况下用1mA 直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。
可根据具体需要正确选用。
一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值。
VAC 为额定交流电压的有效值。
ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。
如一台用电器的额定电源电压为220V,则压敏电阻电压值V1mA=1.5Vp=1.5×1.414×220V=476V,V1mA=2.2VAC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V 之间。
2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。
为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。
然而从保护效果出发,要求所选用的通流量大一些好。
在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。
如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。
要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。
气体放电管压敏电阻tvs的区别 -回复
![气体放电管压敏电阻tvs的区别 -回复](https://img.taocdn.com/s3/m/25e53f65ae45b307e87101f69e3143323968f580.png)
气体放电管压敏电阻tvs的区别-回复气体放电管(Gas Discharge Tube,简称GDT)和压敏电阻(Transient Voltage Suppressor,简称TVS)是电子领域中常用的保护元件,其中GDT主要用于对高压放电保护,而TVS则用于对瞬态电压保护。
本文将从原理、结构、特性和应用等方面,逐步回答气体放电管和压敏电阻的区别。
第一部分:原理及结构差异气体放电管:气体放电管是一种利用气体放电的原理,具有高击穿电压和快速响应特性的保护元件。
其内部结构通常由一个或多个电极、一个灌装有稀薄惰性气体的玻璃管和一个外壳组成。
当外部电场达到气体放电管的击穿电压时,气体将放电并导通,从而将大部分电流引导到地,有效保护设备免受过电流损坏。
压敏电阻:压敏电阻是一种非线性电阻器件,通过压电材料和导电颗粒杂化形成。
它的内部结构主要由压电陶瓷材料、导电颗粒和金属电极组成。
当施加在压敏电阻上的电压超过其正常工作电压时,导电颗粒之间的间隙会被压缩,从而使电阻值迅速下降,形成一条低阻路径,将电流引向地。
第二部分:特性对比1. 响应速度:气体放电管由于其内部气体放电的本质,可以在纳秒级的时间内响应过压。
而压敏电阻基于电阻值的响应,其响应时间在纳秒至微秒之间。
2. 瞬态电压容量:气体放电管在导电状态下,能够承受较大的瞬态电压,通常在数千伏至几十千伏之间。
压敏电阻则通常在数百伏至几千伏之间。
3. 能量容量:气体放电管由于其大电流能力,能够吸收较大的能量冲击。
而压敏电阻的能量容量相对较低。
4. 电压保护能力:气体放电管在导电状态下有较低的电压保护电阻,所以能较好地保护设备免受过电压损害。
压敏电阻在其正常工作电压范围内有较高的电阻值,因此对于低电压的过压保护较为有效。
第三部分:应用领域气体放电管:气体放电管广泛应用于通信领域、电力设备、工业控制和雷达等领域。
其中主要为防止雷击、过电流、过压等对设备造成损坏。
压敏电阻:压敏电阻主要应用于电子产品中,作为电压保护元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TVS管与压敏电阻的区别
在ESD保护领域,目前主流的是哪几类产品?这些产品的工作原理是什么?怎么选型?各种适用于哪些具体应用?他们之间有什么区别?共同点又有哪些?下面让财冠为您一一解答:
一、TVS管
TVS(Transient Voltage Suppresser瞬态电压抑制器)是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。
当它的两端经受瞬间的高能量冲击时,TVS能
以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压钳制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。
正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压
TVS管是瞬态电压抑制器(Transient Voltage
Suppressor)的简称。
它的特点是:响应速度特别快(为ps级);耐浪涌冲击能力较放电管和压敏电阻差,其10/1000μs波脉冲功率从
400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。
TVS管有单向与双向之分(单向的型号后面的字母为“A”,双向的为“CA”),单向TV S管的特性与稳压二极管TVS管使用时,一般并联在被保护电路上。
为了限制流过TVS管的电流不超过管子允许通过的峰值电流IPP,应在线路上串联限流元件,如电阻、自恢复保险丝、电感等。
相似,双向TVS管的特性相当于两个稳压二极管反向串联。
二、压敏电阻
压敏电阻是一种限压型保护器件。
利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。
压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。
压敏电阻主要可用于直流电源、交流电源、低频信号线路、带馈电的天馈线路。
压敏电阻的失效模式主要是短路,当通过的过电流太大时,也可能造成阀片被炸裂而开路。
压敏电阻使用寿命较短,多次冲击后性能会下降。
因此由压敏电阻构成的防雷器长时间使用后存在维护及更换的问题
三、稳压二极管
稳压二极管(又叫齐纳二极管),是一种直到临界反向击穿电压前都具有很高电阻的半导体器件,在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定。
稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。
稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更多的稳定电压。
四、自恢复保险丝
自恢复保险丝是一种过流电子保护元件,自恢复保险丝是由高科技聚合树脂及纳米导电晶粒经特殊工艺加工制成,正常情况下,纳米导电晶体随树脂基链接形成链状导电通路,保险丝正常工作;当电路发生短路或者过载时,流经保险丝的大电流使其集温升高,当达到居里温度时,其态密度迅速减小,相变增大,内部的导电链路呈雪崩态变或断裂,保险丝呈阶跃式迁到高阻态,电流被迅速夹断,从而对电路进行快速,准确的限制和保护,其微小的电流使保险丝一直处于保护状态,当断电和故障排除后,其集温降低,态密度增大,相变复原,纳米晶体还原成链状导电通路,自恢复保险丝恢复为正常状态,无需人工更换。
共同点:
1. TVS管,压敏电阻和稳压二极管不具有开关特性,而都具有稳压特性。
不同点:
1.从反应速度来看,TVS管的反应速度很快,为ps级,而压敏电阻反应速度较慢,为ns级。
2.
TVS管的可靠性高,不易劣化,使用寿命长。
而压敏电阻的可靠性较差,易老化,使用寿命较短。
3.
压敏电阻具有尺寸小,不占空间,成本低等因数.而TVS钳制电压比较低,但价格较高。
TVS静电防护
压敏电阻过压保护
自恢复保险丝过流保护
TVS管主要针对过压保护,ESD一般有过流保护的功能
ESD指的是静电防护,如防静电工作服和手腕带这些简单的 ESD 用品
ESD保护二极管是TVS的一种.如压敏电阻也属于TVS的一种.但是论效果,还是ESD保护二极管较好,因为钳位电压低,反应速度快,结电容低等优势..
压敏电阻cj大,反应慢,抗ESD就象被人打了七伤拳,每打一次都受点内伤,最后多打几次,内脏破裂而亡.
当然ESD
diode也属TVS管类,但它与一般的TVS管不同,ESD管承受瞬间电流比较小,所以Package 做起来会比较小;要求承受电流时间也不同,一般TVS管是10/1000us,而ESD
diode管用在ns级别上,其实还有很多不同的,就别多说了!
压敏电阻采用物理吸收原理每经过一次ESD事件,材料就会受到一定物理损伤形成永久性的
漏电通道,而TVS是采用的半导体钳位原理,在经历ESD事件时,瞬间将能量传递出去,对器件
本身并无影响.
.
压敏电阻是0603封装,工作电压5v,容值0.2pf是业界中目前最低的容值主要用在
HDMI和VGA端口但是其它端口也可以使用
.
他们应用的场合不同,TVS一般用于处级和次级保护,而ESD主要用于板级保护.TVS(transie
nt voltage suppressor) ,而ESD( Electrolstatic discharge
).选择TVS一般是看器件的功率和封装,ESD器件一般看中的是它的ESD rating (HBM/MM)和IEC61000-4-
2的LEVEL,高速的USB和I/O很重视它的C.当然他们的ppk.IPP.VC.Vbr.Vm也都很重要.具
体的内容大家可以参考MICROSEMI/ONSEMI/PROTECKDEVICES等公司的网站.一般都
有比较专业的介绍。
压敏电阻是电阻的一种,瞬间大电压过来时阻值变小泄压
TVS是一种二极管,受高压会反向击穿,高压直接泄地
TVS耐压值高,ESD效果好,成本贵;压敏电阻耐压值低,ESD效果差,成本便宜,如果压敏
电阻可以满足条件就用压敏电阻,看你具体情况选择了!
本文由财冠国际LRC一级代理商整理汇编而成。