锂离子动力电池及其在汽车上的应用

合集下载

21700电池在新能源车上的应用

21700电池在新能源车上的应用

产品5: 5.0Ah 高容量电池
主要特点
大容量、高端纯电动车
Power Your Life2!8
后补贴时代的产品生存之道
安全性好 可靠性高 能量密度、功率密度高 环境适应性好 成本低
29
Thank you!
30
2020
中功率快充电 池
Medium Power FC
高容量电池
High Energy
PHEV BEV PT
3.6 Ah 190 Wh/kg SOP:2017.10
4.5 Ah 240 Wh/kg SOP:2018.4
5.0 Ah 250 Wh/kg SOP:2020.7
BEV 3C
4.0 Ah 210 Wh/kg SOP:2017.7
寻找更高能量密度的材料 尽一切办法减少非活性物质的体积和重量比 将电池容量做大 为提高电池的能量密度,拿到更高的政策补贴,将电池 做“大”的趋势非常明显。
14
我们幸运的站在了新能源发展的风口 ----
风来了,站对风口,猪也能飞上天!
做风口上的猪
决定它能飞多高的是技术,而质量和成本则决定了它能 否飞稳、飞远。
创一流产品,振兴民族企业
Creating Superior Product Prospering Chinese Industrial
21700电池在新能源车上的应用
苏金然 2018/04/27
主要内容
一、新能源车用锂离子电池的发展 二、21700的崛起 三、力神21700电池产品介绍
2
新能源车用锂离子电池的发展
电动、网联、智能、共享成为未 来新能源汽车发展的趋势
6
新能源车用锂离子电池的发展

能 源 汽 车 技

锂离子电池在电动汽车中的应用现状及发展综述

锂离子电池在电动汽车中的应用现状及发展综述

锂离子电池在电动汽车中的应用现状及发展综述摘要:近年来人们是水平的提高,对汽车需求量也在逐年增多。

随着全球环境污染问题的日益突出和传统燃料资源的枯竭,电动汽车正逐渐成为人们日常出行的一种新方式,其主要的动力来源是电池。

而锂离子电池由于具有高功率密度、较高的能量密度、寿命长、循环性能好等特点,逐渐成为电动汽车主要的能量储存装置。

目前,大力推动锂电池、电化学储能、电动汽车等新能源领域重要技术和基础装备的发展,逐步降低对石化能源的依赖,探索出一条可持续能源安全路径是全球诸多国家的重要战略方向。

本文就锂离子电池在电动汽车中的应用现状展开探讨。

关键词:锂离子电池;电动汽车;电池管理系统引言作为新能源汽车主导的电动汽车具有污染低,效率高,噪音低,不依赖汽油,结构相比传统内燃机汽车更简单等优点。

电池是纯电动汽车的关键核心部件。

锂离子动力电池以其工作电压高、比能量高、循环寿命长、自放电率低、无记忆性、无污染、外形多样等优势,成为了纯电动汽车动力电池的主流之选,但在续航里程、充电时间、安全性等方面仍存在问题。

1锂离子电池工作原理锂离子电池的构成包括正极、隔膜、负极、有机电解液及电池外壳。

按照正极材料不同,电动汽车行业使用比较广泛的锂电池主要有磷酸铁锂电池和三元锂电池。

以磷酸铁锂电池为例,正极材料采用磷酸铁锂,负极采用石墨,聚合物隔膜把正负极分开,带电荷的锂离子在其中能够自由移动。

其工作原理如下:充电:LiFePO4-xLi+-xe-→xFePO4+(1-x)LiFePO4;放电:FePO4+xLi++xe-→xLiPO4+(1-x)LiPO4。

充电时,带正电荷的锂离子从正极磷酸铁锂上出发,穿过隔膜到达负极的层状石墨上,并被储存在那里。

这样,电池就完成了充电。

当电池放电时,也就是当能量以电能的形式从电池中释放出来时,锂离子通过电解液,从负极出发,穿过隔膜返回到正极。

电机会将电能转化为机械能,从而让汽车行驶。

2锂离子动力电池的性能锂离子动力电池使用时优势较多,具有安全、可靠及兼顾充电效率等方面的性能。

动力电池技术在新能源汽车中的应用

动力电池技术在新能源汽车中的应用

动力电池技术在新能源汽车中的应用新能源汽车的崛起已经成为汽车行业的一股强大的趋势,而作为核心Driving force的动力电池技术,也成为了制约新能源汽车发展的瓶颈之一。

今天我们将从不同的角度来探讨动力电池技术在新能源汽车中的应用。

一、市场需求推动动力电池技术发展随着空气污染的日益严重和国家政策的支持,新能源汽车市场需求逐渐增加,而满足市场需求的前提就是动力电池技术的发展。

目前国内的动力电池市场主要由国产一级供应商和国外厂商占据。

这一市场格局说明了市场对动力电池技术的高度依赖和迫切需求,也让不少企业意识到动力电池领域发展的重要性。

从市场角度考虑,动力电池技术发展的重要性可以概括为以下几点:1. 提高新能源车的动力性能和续航能力;2. 降低新能源汽车的价格和成本;3. 推动新能源汽车产业化和发展。

因此,从市场需求出发,推动动力电池技术发展已经成为新能源汽车行业发展的一项重要策略。

二、动力电池技术发展的现状及趋势目前,国内外的动力电池技术主要包括:锂离子电池、镍氢电池和钠离子电池等。

其中,锂离子电池技术因其优势在新能源汽车市场占据主导地位。

随着技术的发展和创新,动力电池技术也在不断进化。

比如,由于新能源汽车的使用需求,针对动力电池的环保性、安全性、续航能力和功率性能等方面进行了很多改进和优化。

例如,电芯制造工艺和电池管理技术等环节的突破,对动力电池的安全性和稳定性有了较大提高。

而随着科技的进步,智能电池管理系统、快速充电技术和形态多样的动力电池等也是未来发展的重点。

需要注意的是,由于动力电池的复杂性和高成本,目前动力电池技术还面临着一些问题,例如:寿命短、充放电效率低、成本偏高、提质增效难等。

因此,提升动力电池技术的性价比、持久性和安全性,降低制造成本,是今后动力电池技术发展的重点。

三、动力电池技术在新能源汽车中的应用随着动力电池技术的发展,新能源汽车在实现高速行驶的同时可以保持较长的续航能力,为消费者提供更好的用车体验。

锂离子电池在电动汽车行业的应用现状与展望

锂离子电池在电动汽车行业的应用现状与展望

锂离子电池在电动汽车行业的应用现状与展望随着全球对环保和可再生能源的重视,电动汽车正成为替代传统燃油汽车的主流选择。

而对于电动汽车来说,锂离子电池是不可或缺的重要组成部分。

当前,锂离子电池已广泛应用于电动汽车和混合动力车,其市场需求日益增加。

本文将探讨锂离子电池在电动汽车行业的应用现状以及展望。

一、锂离子电池在电动汽车行业的应用现状目前,大部分电动汽车采用的是锂离子电池。

这主要是由于锂离子电池的优点:1.高能量密度:锂离子电池比铅酸蓄电池和镍氢电池等其它电池具有更高的能量密度,可以储存更多的电能。

2.长寿命:锂离子电池具有更长的使用寿命。

同时,它们的充电和放电效率也相对较高,这保证了电池供能的稳定性。

3.较小的体积和重量:锂离子电池的体积和重量比传统电池更轻,可以减少车辆的整体重量,提高车辆的行驶效率和续航里程。

另外,与其它类型的电池相比,锂离子电池的环保性也更高,因为它们不含重金属或汞等有害物质。

锂离子电池在电动汽车行业中的应用越来越广泛,全球各大汽车厂商都在不断推出新款和升级版的电动汽车。

其中,特斯拉Tesla的Model S、Model X和Model 3均采用了锂离子电池作为其能源来源。

值得一提的是,特斯拉还推出了大型电池储能系统——Powerwall和Powerpack,这些储能系统可以存储太阳能和风能等再生能源,使其能够在需要时供应给家庭和企业使用。

二、锂离子电池在电动汽车行业的展望随着科技的不断进步,锂离子电池在电动汽车行业中的应用前景非常广阔。

未来,锂离子电池的发展重点将放在以下几个方面:1.提高电池能量密度:随着技术的进步,电池能量密度将逐渐提高,这将帮助电动汽车实现更长的续航里程。

2.降低电池成本:车辆的整体成本中最大的贡献者是电池。

因此,降低电池成本将帮助电动汽车在市场上更具竞争力。

3.加强电池可靠性:电池的可靠性将是电动汽车的一个重要因素。

电池在使用中可能会发生故障,因此需要加强检测和制造过程的准确性。

锂离子电池在电动汽车中的应用

锂离子电池在电动汽车中的应用

锂离子电池在电动汽车中的应用【摘要】:在环境污染日益严重、能源消耗日益加剧的今天,能源成为了我们迫切需要解决的问题之一。

如今,新能源得到了人们的认同和推广,新能源汽车在汽车发展方向备受关注。

近年来,锂离子电池已被研究人员用在电动车上作为动力能源,成为电动车发展的一个新趋势。

相对以前的电池,锂离子电池中无镉、汞、铅三种元素,这与我们国家的可持续发展战略的要求相符合。

本文介绍了锂离子电池在电动汽车中的应用、特点及原理。

【关键词】:新能源、锂离子、汽车、应用近些年来,随着人们生活水平的提高及环境保护意识的的增强,人们都意识到能源是一个很值得关注的问题。

出于能源和环境的考虑,电动汽车在各国政府和汽车制造商的推动下得到了快速的发展,其中,纯电动汽车以其能真正实现“零排放”而成为电动汽车的重要发展方向1。

锂离子电池凭借其优良的性能成为新一代电动汽车的理想动力源,它具有重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应范围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用蓄电池2。

缺点是价格较贵、安全性较差。

现已有的一些新型材料有:钴酸锂,锰酸锂、磷酸铁锂、磷酸钒锂等,他们很大程度上提高了锂离子电池的安全性。

1、锂离子蓄电池:1.1 锂离子蓄电池作为动力电池的简介:锂离子蓄电池是通过涂在电极上的活性材料存储和释放锂离子,即通过锂离子在电极活性材料上的脱附来存储电能。

锂离子动力蓄电池分为单体电池、模块和系统等三个层次,将若干个锂离子蓄电池的单体电池组合成带有监测电路、电气和通讯接口及通风散热功能的蓄电池管理系统。

动力蓄电池模块可由上百个单体电池串联及并联而成。

串联的目的是提高蓄电池模块总电压,并联的目的是提高蓄电池模块容量3,将这些锂离子电池用在车上作为动力源成为电动汽车的一个重要发展方向,目前已经有公司致力于这方面的研究和推广,成效显著。

1.2 锂离子蓄电池的特点4:锂离子电池有许多优越特性,比如高能量,较高的安全性,工作温度范围宽,工作电压平稳、贮存寿命长(相对其他的蓄电池)。

新能源汽车及动力锂电池发展分析

新能源汽车及动力锂电池发展分析

新能源汽车及动力锂电池发展分析摘要:新能源汽车的技术,已经非常成熟了。

现在世界上,新能源汽车的产量,已经达到了几百万辆,虽然产量很大,但市场还是很好的,我们可以吸收更多的新能源汽车。

新能源汽车的动力来源是电池,因此新能源汽车的发展非常迅速,这不仅仅是因为它的经济实力,更重要的是它的技术。

新能源汽车以动力锂电池为主体,技术要求较高,技术水平有待进一步提高。

提高电池的质量,优化生产流程,对促进新能源行业发展具有重要意义。

关键词:新能源汽车;动力;锂电池引言:当前,能源与环保问题是社会高度关注的焦点,新能源汽车在此背景下得到快速发展和应用。

在新能源汽车发展中,锂电池是一个重要的组成部分,随着时代的发展,节能和环境保护的需要,推动了其发展和应用。

隔膜系锂电材料是目前世界上最有价值的锂离子电池,而国内对这种材料的研究还存在着较大的发展空间。

1.动力锂电池的概述分析1.1动力锂离子电池的基本构成动力锂离子电池是以铝塑复合膜、极耳、导电剂、粘合剂、电解液、隔膜、正极材料等为主要原料。

其中,正极材料、电解液、隔膜和负极材料构成了整个锂电池的关键技术。

在锂电池充电过程中,锂离子在正极产生,锂离子被电解质溶液传输到负极,并被吸附到负极的碳纳米管中,使其持续提高充电容量。

锂离子电池具有较高的充放电性能,因此它被广泛地用于电动汽车。

1.2动力锂电池的特征由于其低的自放率、高能量密度、循环无污染、高效、无记忆等特性,成为新能源汽车行业的首选动力来源。

锂电池组件是新能源汽车的核心组件,也是其唯一的电源。

锂电池有很高的工作温度:20~40℃是它的最佳工作温度,超过这个温度就会降低它的工作寿命和工作性能。

在较低的温度下,锂电池的放电量和放电压都会大幅度下降;在较高的温度下,锂电池很容易发生热失控,一旦内部的热量积累起来,无法及时排出,就会发生火灾,从而危及到人类的生命和财产。

而电池的散热系统,则是保证锂电池工作正常的重要保障。

动力电池技术的研究进展及其应用前景

动力电池技术的研究进展及其应用前景

动力电池技术的研究进展及其应用前景动力电池技术是新能源汽车发展的关键技术之一,其研究进展和应用前景备受关注。

在过去几年里,随着国内汽车产业的不断发展和对环保、节能技术的需求增加,动力电池技术已成为重要的研究领域。

在本文中,本人将会介绍一些动力电池技术的研究进展和应用前景,从而展示其在未来汽车工业发展中的大好前景。

一、研究进展动力电池技术的研究进展主要包括以下几个方面。

1. 锂离子电池技术随着锂离子电池技术的成熟和应用,其在新能源汽车领域也越来越受关注。

与传统的铅酸电池和镍氢电池相比,锂离子电池具有更高的能量密度、更长的寿命和更小的体积重量比。

目前,国内外众多企业都在该技术领域展开了卓有成效的研究。

2. 固态电池技术固态电池是一种新型电池技术,相较于传统的电解液电池,其可以更好的满足高能量密度、低内电阻、高循环寿命等新能源汽车动力需求。

在过去的几年里,国内外众多企业都在该技术领域进行了相关研究,一些新型材料和工艺技术已经实现了商业化生产。

3. 金属空气电池技术金属空气电池属于一种新型的电池技术,由于其具有高能量密度、长寿命和简洁结构等优点,正逐渐成为新能源汽车领域的热门研发方向。

目前,国内外众多企业都在该技术领域进行了相关研究,实现商业化生产的例子也不断涌现。

二、应用前景动力电池技术的不断发展和进步,为新能源汽车的发展打下了坚实的基础。

以下是动力电池技术的应用前景。

1. 电动汽车随着环保理念的推广,电动汽车的应用越来越广泛。

锂离子电池被广泛应用于电动汽车领域,其使用寿命和安全性能得到了大幅提升,成为电动汽车超长续航、安全可靠的保障。

2. 能源存储动力电池技术还可以应用于电网能源存储,为电力系统的平衡提供可靠、安全的备用电源。

固态电池和金属空气电池技术由于具有高能量密度、低内阻和长寿命等优点,成为能源存储领域的热点研发方向。

3. 智慧城市动力电池技术还可以应用于智慧城市建设,为城市的交通运输、环境保护和能源消耗提供可靠的技术保障。

锂离子电池的优势与不足及其在动力电池中的应用分析

锂离子电池的优势与不足及其在动力电池中的应用分析

锂离子电池的优势与不足及其在动力电池中的应用分析锂离子电池作为一种先进的蓄电技术,在现代社会中得到了广泛的应用,尤其在动力电池领域具有重要的地位。

本文将对锂离子电池的优势和不足进行分析,并探讨其在动力电池中的具体应用。

一、锂离子电池的优势1. 高能量密度:锂离子电池相比传统的镍氢电池和铅酸电池,具有更高的能量密度,可以存储更多的电能,从而实现更长的使用时间。

这使得锂离子电池在移动设备、电动车辆等领域具有较大的市场优势。

2. 长循环寿命:锂离子电池具有较长的循环寿命,可以进行多次充放电循环,而且在循环过程中容量衰减较小。

这使得锂离子电池可以经受较为严苛的使用条件,比如电动汽车的长时间驾驶需求。

3. 快速充电能力:锂离子电池充电速度较快,可以在短时间内完成大部分充电工作。

这对于用户来说十分便利,在短暂的时间内即可获得足够的电能储备。

4. 环保节能:锂离子电池无污染物排放,无柴油发动机噪音,具有较高的环保与节能特性。

随着环保意识的提升,锂离子电池被广泛应用于电动汽车、太阳能储能等领域。

二、锂离子电池的不足1. 安全性风险:锂离子电池在充电、放电过程中可能会因短路、过充、过放等原因引发热失控,甚至发生爆炸、火灾等安全事故。

因此,锂离子电池的使用需要高度重视安全措施,以确保用户和设备的安全。

2. 成本较高:与其他电池相比,锂离子电池的制造成本较高,虽然随着技术的进步和规模效应的发挥,其成本有所下降,但仍然对大规模商业应用产生一定影响。

3. 有限的充电次数:锂离子电池虽然具有较长的循环寿命,但终究无法避免容量衰减和寿命的限制。

当充电次数到达一定次数后,锂离子电池的性能将会逐渐下降,需要更换新电池。

三、锂离子电池在动力电池中的应用锂离子电池在动力电池领域有广泛的应用,尤其在电动汽车和混合动力汽车中表现出较大的优势。

1. 电动汽车中的应用:锂离子电池具有高能量密度和快速充电能力,可以为电动汽车提供强大的动力支持,同时充电速度快可以有效缩短充电时间,提高使用效率。

约翰·古迪纳夫 锂离子电池的先驱,并推动其在汽车领域应用

约翰·古迪纳夫 锂离子电池的先驱,并推动其在汽车领域应用

科学启示录-人物II II I约翰•古迪纳夫(1922年7月25日~),美国化学家、固体物理学家,1991年发明了锂离子电池,被誉为■■锂电池之父”O1922年7月25日,约翰•古迪纳夫出生在一个书香家庭,父亲是大学历史老师.生活富足。

古迪纳夫患有先天读写困难症,这令他在青少年时期学习起来非常艰难。

尽管如此,古迪纳夫还是克服了种种困难,考入耶鲁大学。

1943年,他获得了数学学士学位,以班上最优异的成绩毕业。

当时正值二战期间,大学毕业的古迪纳夫毅然加入美国空军,作为气象专家在美国陆军航空部队工作。

1948年退役后,古迪纳夫考入芝加哥大学,主攻固体物理,师从大名鼎鼎的齐纳二极管的发明人、诺贝尔奖获得者一一Clarence Zener,这对他未来钻研动力电池材料研究起到了相当大的作用。

1952年,古迪纳夫获得固态物理博士学位。

随后,他进入林肯实验室进行关于内存的材料物理研究。

在此期间,古迪纳夫第一次接触到了锂离子在固体中的迁移.随后开始固态陶瓷的基础研究。

1976年,古迪纳夫进入牛津大学任教并兼任无机化学研究负责人,借此展开了对固体化学的研究。

他主要研究可用于能量转换的新材料,并提出了碱金属离子固态电解质的构架结构概念,由此获得了以尖晶石层状结构氧化物作为阴极的锂离子二次电池的基本专利。

1980年,古迪纳夫研究的钻酸锂被未成功开发锂电池的索尼公司采用,并与石墨负极材料结合,开发出全新的可充电锂电池。

这种锂离子电池一经问世立刻受到市场欢迎,古迪纳夫也由此声名大噪。

1983年,古迪纳夫等人在研究中利用猛尖晶石大大提高了锂电池的安全性。

随后,本该安享晚年的古迪纳夫没有退居二线。

1986年,他又参与研发了固体氧化物燃料电池(SOFC)的新型电解质和电极材料,并对电子从集中变为流动交互行为的物理现象做出了解释。

1997年,75岁高龄的古迪纳夫又开发出了低成本的磷酸铁锂LiXFePO4正极材料,加快了锂离子电池的商业化。

大型动力锂离子电池及其在汽车上的应用LargeFormatLIBForVehicle-Phylion

大型动力锂离子电池及其在汽车上的应用LargeFormatLIBForVehicle-Phylion

Battery changing the worldBattery changing the worldVenture Capital Funds投资机构,联想等Tech&Mgt.Team技术骨干和管理团队Company Structure of PHYLION(Suzhou ) 星恒公司结构1994 Study on Lithium-ion battery for vehicles1994年物理所402组开始车用动力锂离子电池的研究1998 Pilot production line for HEV battery 1998年物理所发起成立的富丽龙公司开始车用电池试生产2003 Suzhou plant operational同年苏州工程开始投建2003 Mass Production of LiMn 2O 42003年车用高性能锰酸锂在物理所的自主知识产权基础上开始量产2006 Battery for E-bikes introduced2006年自行车用大容量锂离子电池大规模投放市场2000 Member of China ’s national EV Project星恒参与承担国家863十五车用电池项目2007 Battery for gardening tools introduced2007年园林工具用大容量电池投放市场u Research of newmaterials (with Institute ofPhysics, Chinese Academy of Science)材料的基础研究u Research of the interfacebetween electrolyte andcathode/anode 电解液与正负极材料界面研究u Pilot production of materials 材料的中试uCell design 电芯设计uBattery pack design, including battery management system 电池包的设计u Complete performance and safety testing全性能测试u Design of manufacturing equipment关键制造设备的开发设计u Manufacturing of cells and battery packs 电芯和电池组的规模制造u Quality control 质量控制u Marketing and Sales 大规模市场销售u Dedicated pilot line for automotive cells (from Nov 2009)独立的车用大容量电池生产线Basic research 基础研究Engineering工程化Manufacturing 大规模制造Battery changing the worldCell/module/package Design 电芯、模块和电池组设计Materials selection 材料筛选Performance and safety test 性能和安全性测试只/天Quality control system 管理体系::算到达北项液管式倍度几求段温项事温宽度温正’s for E-bikebattery863集中测试Battery changing the worldBattery changing the worldBattery changing the worldBattery changing the world。

锂离子电池在新能源汽车中的应用与优化

锂离子电池在新能源汽车中的应用与优化

锂离子电池在新能源汽车中的应用与优化随着环境保护和能源消耗的严峻形势,新能源汽车正在逐渐成为汽车行业的发展趋势。

而锂离子电池作为新能源汽车的核心能量存储装置,在提供持久动力的同时,也带来了一系列的应用与优化挑战。

锂离子电池是一种采用锂离子运动来存储和释放电能的装置。

它具有高能量密度、长循环寿命、低自放电率和环境友好等特点,成为新能源汽车领域的首选能量储存技术。

首先,锂离子电池在新能源汽车中的应用已经得到广泛推广。

新能源汽车的主要动力系统是由电池组成,锂离子电池被广泛应用于电动汽车和插电混合动力车辆中。

锂离子电池的高能量密度和较高的电压输出能够满足电动汽车对长续航里程和高功率需求的要求。

同时,锂离子电池具有较低的自放电率和较长的循环寿命,可以确保电池在长时间使用过程中保持较好的性能稳定性。

其次,锂离子电池在新能源汽车中的应用还面临着一些问题和挑战,需要进一步优化。

首先,锂离子电池的能量密度和续航里程仍然有待提高。

当前,虽然锂离子电池具有较高的能量密度,但与传统燃油车相比仍有一定差距。

因此,需要进一步提高电池的能量密度,以满足长距离驾驶需求。

其次,锂离子电池的充电速度与传统加油时间相比较长,这也限制了电动汽车充电便捷性和用户体验。

因此,需要研究新的电池材料和充电技术,以提高充电速度和效率。

此外,锂离子电池的安全性也是一个关键问题,需要进一步加强电池的热管理和防护措施,防止电池发生过热、短路等安全事故。

为了优化锂离子电池在新能源汽车中的应用,需要从多个方面进行研究和改进。

首先,可以通过研究新的电池材料来提高锂离子电池的能量密度和循环寿命。

例如,钴、镍和锰等金属氧化物可以替代传统的钴酸锂作为正极材料,提高电池的能量密度。

同时,通过改进电池的电解液、隔膜和电极结构等组成部分,也可以改善电池的性能和安全性。

其次,可以研究新的充电技术,如快速充电和无线充电,以提高充电速度和效率,改善用户体验。

此外,通过改进电池系统的热管理和电池包的设计,可以提高电池的安全性,并防止电池在过热等异常情况下发生事故。

动力电池产品分析锂离子电池在电动汽车领域的应用

动力电池产品分析锂离子电池在电动汽车领域的应用

动力电池产品分析锂离子电池在电动汽车领域的应用动力电池产品分析:锂离子电池在电动汽车领域的应用随着环境问题的日益突出,汽车行业迎来了电动汽车的发展浪潮。

电动汽车作为一种环保的交通工具,其核心技术之一就是动力电池。

而锂离子电池作为当前最主流、成熟的动力电池技术,被广泛应用于电动汽车领域。

本文将对锂离子电池在电动汽车领域的应用进行分析。

一、锂离子电池的基本原理锂离子电池是一种利用锂离子在正负极之间的迁移来储存和释放电能的设备。

其基本结构由正极、负极、电解质和隔膜组成。

正极材料通常采用锂化合物,如锰酸锂、三元材料等;负极材料则采用碳材料,如石墨或硅碳复合材料。

二、锂离子电池在电动汽车领域的优势1. 高能量密度:锂离子电池具有较高的能量密度,能够储存更多的电能,从而提供更长的行驶里程。

与其他电池类型相比,锂离子电池的能量密度更高。

2. 长循环寿命:锂离子电池具有较长的循环寿命,能够经历多次充放电循环而不损失太多性能。

这对于电动汽车来说尤为重要,可以保证电池在整个使用寿命内都能够稳定可靠地工作。

3. 快速充电能力:锂离子电池具有较高的充电效率和充电速率,可以实现快速充电。

这使得电动汽车在短时间内就能够补充大量的电能,提高了用户的使用便利性。

4. 环保无污染:与传统燃油车相比,电动汽车使用锂离子电池作为动力源不产生尾气污染,对环境更加友好。

三、锂离子电池在电动汽车产品中的应用锂离子电池由于其优越的性能特点,成为电动汽车领域的主要动力电池产品。

目前市场上大多数电动汽车都采用锂离子电池作为动力源。

以下是几个典型的电动汽车产品及其所采用的锂离子电池示例:1. 特斯拉Model S特斯拉Model S是一款豪华电动轿车,其采用的是锂离子电池组。

这款电动汽车的动力来源于特斯拉自家研发的锂离子电池组,能够提供较长的续航里程,并具备较高的动力输出。

2. 蔚来EP9蔚来EP9是一款高性能电动超级跑车,采用锂离子电池作为其动力源。

锂电池在新能源汽车中的应用

锂电池在新能源汽车中的应用

锂电池在新能源汽车中的应用摘要:中国的经济持续发展,使人们的生活质量得到了极大地改善,人们的生活方式也随之改变。

以前,大部分人都是骑自行车或公交的。

许多家庭如今拥有了自己的车。

汽车以常规能源为动力,产生了大量的温室气体,并对环境产生了一定的影响。

因此,对新型能源在汽车能源领域的应用进行深入的研究是十分必要的。

新能源汽车在国内的应用越来越成熟,越来越受到市场的青睐。

锂离子电池是新型汽车的重要动力来源。

文章对其在新能源车辆方面的应用进行了探讨。

关键词:新能源汽车;锂电池技术;汽车电池锂电池的好坏直接关系到新能源汽车的使用寿命和质量。

锂电池是一种新的材料,也是一种新的能源。

过去,锂电池是一种小型储能系统的动力来源,但是它的适用范围没有今天这么广泛。

随着锂离子电池的材料问题逐渐被解决,其优势逐渐显现并被广泛地运用。

目前,锂离子电池面临的主要问题是薄膜锂电池。

目前,国内的研究与生产条件尚不健全,对新能源汽车的发展造成一定的阻碍。

一、新能源汽车核心部件锂离子电池在新能源汽车发展中,动力锂电池是一个非常关键的环节。

当今世界,都在关注环保这个问题[1]。

人类的发展不仅带来了严重的环境问题,而且还带来了相当严峻的能源状况。

为了解决这个问题,世界上正在逐渐将发展重点转向环保与能源安全。

与燃油车相比,新能源车更具环保优势,主要包括电控系统、电机、电池等,而锂电池在市场上占有重要地位。

锂电池在手机、便携设备中得到了广泛的应用,但因其在环保、能源方面的巨大压力,以及其资源的丰富、价格低廉、性能优良等诸多优点,将会是新能源汽车发展的重要动力来源。

二、国内外锂离子电池技术整合创新现状及其存在问题(一)我国锂离子电池技术创新状况虽然我国的锂离子电池经过十几年的发展,已经形成了一条完整的产业链,但从国内的情况来看,国内的锂离子电池产业并不是很集中,与发达国家相比还有很大的差距。

我国的锂离子电池产业在创新方面取得了一定的成绩,但与发达国家相比仍存在着一定的差距。

新能源汽车电池技术的发展和应用

新能源汽车电池技术的发展和应用

新能源汽车电池技术的发展和应用在不断加剧的全球气候变化情况下,为减少环境污染和对化石能源的依赖,新能源汽车的市场需求越来越大。

而新能源汽车中电池技术的发展更是关键的一环。

本文将着重探讨新能源汽车电池技术的发展和应用。

一、电池技术的历史与现状电池技术的发展可追溯至19世纪初。

1800年英国化学家Alessandro Volta发明了第一块实用的电池,之后,电池技术逐渐得到了发展。

经过200多年的演变,电池技术已经形成了多个系列,包括铅酸蓄电池、镍氢电池、锂离子电池等。

目前,新能源汽车中主流的电池技术是锂离子电池。

它相比其他电池技术有着更高的能量密度、更小的体积和重量、更长的寿命、更好的稳定性和安全性等优点,而且它的可回收率也更高。

不断增长的市场需求,也在推动锂离子电池技术的不断改进和应用。

二、锂离子电池技术的发展锂离子电池技术最初于20世纪70年代在英国诞生。

经过几十年的努力,锂离子电池技术在电动工具、笔记本电脑等领域得到了广泛的应用。

随着新能源汽车市场的发展,锂离子电池技术在汽车领域的应用也变得越来越普遍。

近年来,锂离子电池技术的发展主要集中在提高电池的能量密度、延长电池寿命、提高安全性和降低成本方面。

其中,能量密度的提高意味着更小的电池体积和更长的续航里程,而电池寿命的延长和安全性的提高可以降低电池更换和维修的成本,降低整个新能源汽车的使用成本。

三、锂离子电池技术的应用锂离子电池技术在新能源汽车中的应用,不仅包括纯电动汽车,还包括插电式混合动力汽车和轻混动力汽车。

纯电动汽车完全依靠电池驱动,插电式混合动力汽车既可以使用电池驱动,也可以使用内燃机驱动,而轻混动力汽车则主要使用内燃机,电池只是起到辅助作用。

由于电池技术不断发展,新能源汽车的续航里程也在不断提高。

例如特斯拉Model S在2012年实现了电池续航里程超过400公里的突破,而到了2017年,Model S和Model X的电池续航里程已经超过了600公里。

纯电动车用锂离子电池发展现状与研究进展

纯电动车用锂离子电池发展现状与研究进展

纯电动车用锂离子电池发展现状与研究进展一、概述随着能源和环境问题的日益突出,纯电动车作为一种清洁、高效的交通工具受到了广泛关注。

锂离子电池作为纯电动车的核心能源储存装置,在电动汽车的发展中起着至关重要的作用。

本文将探讨纯电动车用锂离子电池的发展现状与研究进展。

锂离子电池在电动汽车中的应用经历了三代技术的发展。

第一代是以钴酸锂为正极材料的电池,第二代则是以锰酸锂和磷酸铁锂为正极材料的电池,而第三代则是以三元材料为正极的电池。

随着正负极材料向着更高克容量的方向发展和安全性技术的日渐成熟,更高能量密度的电芯技术正在从实验室走向产业化。

从产学研结合的角度来看,动力电池行业在正负极材料、电池设计和生产工艺等方面取得了许多最新动态和科学研究的前沿成果。

这些成果为锂离子电池在电动汽车中的应用提供了技术支持,同时也为解决电池安全性、寿命和成本等问题提供了新的思路和方法。

市场需求与政策导向也是推动锂离子电池在电动汽车中应用的重要因素。

随着电动汽车市场的不断扩大,对锂离子电池的需求也在不断增加。

同时,政府对电动汽车的补贴和支持政策也为锂离子电池的发展提供了有利条件。

纯电动车用锂离子电池的发展现状与研究进展是一个多方面、多层次的问题。

通过不断的技术创新和产业升级,锂离子电池有望在未来的电动汽车市场中发挥更加重要的作用。

1. 纯电动车与锂离子电池的关联锂离子电池作为电动汽车最重要的动力源,与纯电动车的发展密切相关。

随着科技的进步和创新,锂离子电池技术经历了三代发展:第一代以钴酸锂正极材料为主,第二代包括锰酸锂和磷酸铁锂,而第三代则是三元技术。

这些技术的发展使得锂离子电池在能量密度、安全性和成本等方面不断改进,从而推动了纯电动车的市场化和普及化。

锂离子电池的高能量密度使其成为纯电动车的理想选择。

相比于传统的铅酸电池和镍氢电池,锂离子电池能够存储更多的电能,从而延长了纯电动车的行驶里程。

这使得纯电动车能够满足日常出行需求,减少了对传统燃油车的依赖。

锂离子电池在新能源汽车中的应用与发展探讨

锂离子电池在新能源汽车中的应用与发展探讨

·
锂离子电池在新能源汽车中的应用与发展探讨
锂离子电池在新能源汽车中的应用可以从以下几个方面进行探讨。

首先,锂离子电池作为新能源汽车中的主要动力源,被广泛应用于纯电动汽车和插电式混合动力汽车中。

相比于传统的铅酸电池和镍氢电池,锂离子电池具有更高的能量密度和更长的寿命,能够满足新能源汽车的行驶需求。

其次,随着技术的不断创新和优化,锂离子电池的能量密度得到了大幅提升,从而为电动汽车的续航里程带来了明显提高。

此外,锂离子电池还具有环保、低噪音、低成本等优点,使其成为新能源汽车领域的理想选择。

在锂离子电池的发展方面,目前仍存在一些技术挑战。

例如,电池组的管理系统仍需要进一步完善,以确保电池的可靠性和安全性。

同时,随着新能源汽车市场的不断扩大,对锂离子电池的需求也在不断增加,如何提高生产效率和降低成本也是需要解决的问题。

此外,随着新型材料和工艺的不断涌现,锂离子电池的研究和发展也在不断推进,未来可能会出现更加高效和环保的电池技术。

总之,锂离子电池作为新能源汽车领域的主流动力电池之一,具有广阔的应用前景和发展空间。

随着技术的不断提升和创新,锂离子电池将会在新能源汽车行业中发挥更加重要的作用。

锂离子电池在新能源汽车中的应用

锂离子电池在新能源汽车中的应用

锂离子电池在新能源汽车中的应用一、前言新能源汽车在现代社会中扮演着越来越重要的角色,而对于新能源汽车来说,锂离子电池则是不可或缺的关键元件。

本篇文章将重点讲解锂离子电池在新能源汽车中的应用及其优缺点。

二、锂离子电池的基本原理锂离子电池是一种在大量电子设备中使用的高性能电池,它的发明可追溯到上世纪70年代。

锂离子电池的基本构成包括正极、负极、隔膜和电解液等组成部分。

其工作原理是在正极和负极之间形成一定的电位差,通过电解质使得离子在两极之间移动,从而实现电池的充放电过程。

三、锂离子电池在新能源汽车中的应用1.提高车辆续航里程锂离子电池具有轻质高能量密度和长寿命等特点,因此可以为新能源汽车提供足够的储能量,从而提高车辆的续航里程。

2.减少环境污染相较于传统燃油汽车,新能源汽车运行时不会产生有害气体,可以有效降低环境污染。

而锂离子电池也是一种绿色环保的电池,其废弃后可以进行回收利用,降低了对环境的影响。

3.优化动力系统新能源汽车的开发离不开先进的动力系统,而锂离子电池作为储能装置则是这一系统中不可或缺的关键部分。

同时,其可以保证汽车的安全性能和稳定性能,为车辆的使用提供保障。

4.促进汽车产业升级锂离子电池在新能源汽车领域的应用对汽车产业产生了重大的影响。

它不仅可以推动汽车产业的创新发展,而且为经济的可持续发展和环保事业的推进做出了贡献。

四、锂离子电池在新能源汽车中的优缺点1.优点(1)更高效的能量储存锂离子电池相较于传统燃油储存方式,能够更加高效地储存能量,大大提升了新能源汽车的续航里程和运行效率。

(2)更加清洁的绿色环保新能源汽车在给人们带来方便的同时,也为环境保护作出了贡献,锂离子电池的应用让新能源汽车更加环保。

(3)易于维护保养锂离子电池相较于其他常见的储能方式,无需一直进行保养与更换,减少了车主的费用和时间成本。

2.缺点(1)高成本维护锂离子电池的成本相较于其他常见的储能方式上升了很多,这就导致了新能源汽车的购买成本贵于传统汽车。

锂离子电池的应用

锂离子电池的应用

锂离子电池应用一.便携式电子产品1.MP3/MP4/MP5产品简介:便携式音乐播放器、视频播放器等2.笔记本产品简介:手提电脑、掌上电脑、一体式平板电脑等。

3.手机产品简介:手机等便携式设备4.数码相机产品简介:便携式数码相机、单反相机、卡式数码相机等产品二.电动交通工具1.电动车产品简介:电动自行车、电动摩托、电动助力车、电动汽车等代步动力型产品2.混合动力大巴和轿车产品简介:新型混合动力大巴车以及其它利用混合动力轿车车的各种车型3.通用汽车产品简介:通用型汽车:包括轿车、小客车、商务车、面包车、吉普车、跑车等汽车型号4.新能源汽车产品简介:新兴能源动力车辆所使用动力电源三.大型动力电源1.舰船动力产品简介:大型舰船类动力电源,如:航线、战船、大型邮轮、货轮等等2.航空动力产品简介:各种航空飞行器所用动力电源,如:大型民航客机、商务飞机、直升机、战斗机等等飞行器具所用动力电源3.航天动力产品简介:各种航天载具所用的动力电源系统,如:航天飞机、卫星、火箭、导弹等等4.装甲动力产品简介:军用装甲,民用大型挖掘器械所用动力电源,如:坦克、装甲车、军用大型装甲车辆、民用大型挖掘器械、大型吊车等等四.二次充电及储能领域1.电动玩具产品简介:各种电动类玩具2.风能、太阳能储能电源产品简介:各类太阳能电池,风能储能电池等3.电动工具产品简介:各类电动工具,如:电钻,碾磨器,电动螺母等等4.手电筒产品简介:各类充能类手电筒,强光灯,照明灯等等5.电动航模产品简介:各类电动型航模产品,主要为电力驱动类飞机、船舶、车辆等模型电源动力。

锂离子电池在新能源汽车中的应用与发展探讨

锂离子电池在新能源汽车中的应用与发展探讨

NEW ENERGY AUTOMOBILE | 新能源汽车时代汽车 锂离子电池在新能源汽车中的应用与发展探讨顾磊宿迁泽达职业技术学院 江苏省宿迁市 223854摘 要: 在当今汽车产业发展技术的革新和能源紧张已经成为世界车企共同面对的问题,各个国家在替代传统燃料汽车的新能源汽车的开发都取得一定的成绩,在应用范围最广的就是锂离子电池。

随着我国新能源汽车政策的发展支持,汽车新能源得到了前所未有的发展前景,而随之而来的新能源汽车行业的上游材料也在这种政策利好形势下迎来了发展的最好机遇,世界知名的电池生产企业纷纷在中国设厂。

持续增长的新能源汽车市场带动了电池产业发展,但是同时存在无论是纯电动的动力电池,还是以氢材料等燃料电池都存在续航里程和成本控制的挑战。

在此形势下,锂离子电池的需求以每年15.7%的速度增长。

中国科学院深圳先进技术研究所材料研究中心团队在传统的双碳结构的双离子电池基础上研制出一体化电极锂离子电池,在此基础上得到了研发制造。

锂离子电池具有高工作电压、低成本、环保且便于回收等优势很快得到新能源汽车生产厂家的青睐并被应用到车辆中。

关键词:新能源汽车 锂离子电池 研发制造 车辆应用1 锂离子电池的技术应用现状与新能源汽车中其他新能源相比较,锂离子电池经过近10年的研发和投入使用,在其性能和质量等方面有一定的优势。

技术研发人员通过对锂离子电池应用技术的完善,推动了新能源汽车的发展。

我国在研发锂离子电池过程中也遇到了一些困难,汽车新能源使用的锂离子电池的关键技术上的材料目前还需要从国外进口,专业也就使锂离子电池在研发和制造工艺和制造水平上受到一些限制,我国科学技术研发人员在锂离子电池的研发中仍然需要投入大量的时间和精力去完善锂离子电子的应用技术。

在电池材料中仍处于技术顶端的是正极材料,目前电池正极材料还存在低温性能差,压实密度低,电荷反映不一致,制造材料成本高等影响锂离子电池量产的缺陷,如何突破技术,找到更好嵌锂容量和良好锂脱嵌可逆性的正极材料是科研有人员急需解决的困局,解决了这些技术堡垒也就会促使在锂离子电池的制造生产环节中保证锂离子电池的高电荷电压、储能大容量、充放电长循环周期和量产成本下降等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子动力电池的性能
1.充放电特性 锂离子电池充电从安全、可靠及兼顾充电效率等 方面考虑,通常采用两段式充电方法。第一阶段 为恒流限压,第二阶段为恒压限流。锂离子电池 充电的最高限压值根据正极材料不同而有一定的 差别。锂离子电池基本充放电电压曲线如图5-7 所示。图中曲线采用的充放电电流均为0.3C。
图5-2层状LiCoO2的结构示意图
Mn元素含量丰富,价格便宜,毒性远小于过渡 金属Co、Ni等。主要缺点是电极的循环容量容 易迅速衰减,原因主要有:
①LiMn2O4的正八面体空 隙发生变化产生四方畸变 ②LiMn204中的锰易溶解于 电解液中而造成流失 ③电极极化引起内阻增大
图5-3尖晶石型结构与层状结构对比示意图
(1)充电特性的影响因素 1)充电电流对充电特性的影响。
额定容量100A· h,SOC=40%,恒温20℃ 不同充电率充电,参数结果:
电流/A h 充 入 30A · h 恒流 充入容 充 入 能 充入 30A· 时间/s 量/A· h 量W/h 时间/s 电流/A 20/(0.2C) 3900 21.67 90.85 5763 14.24 30/(0.3C) 2420 40/(0.4C) 729 50/(0.5C) 700 60/(0.6C) 237 80/(0.8C) 32 20.17 8.11 9.8 3.97 0.74 84.93 34.482 41.68 16.96 3.133 4754 4528 3940 3212 3129 15.53 13.87 14.94 16.16 14.15
3)充电温度对充电特性的影响 不同环境温度,额定容量200Ah,恒流限压充 电,充电电流下限为1A的充电结果:
随环境温度降低,电池的可充入容量明显降低, 而充电时间明显增加。
(2)放电特性影响因素 在放电特性方面,主要讨论不同环境温度下,不 同放电率对锂离子电池放电特性的影响。
2)放电深度对充电特性的影响。
恒温20℃,额定容量100A· h,不同SOC,0.3C恒流限压充电结果:
放 电 容 量 /A· h 10 20 30 40 50 60 80 能 量 /W· h 32.85 65.12 95.86 122.03 159.07 188.33 249.76 充电 容 量 /A· h 13.32 22.78 30.91 40.12 50.32 60.08 80.35 能 量 /W· h 57.40 98.32 133.10 169.60 220.52 263.39 344.4 等容量 充入能 量/W· h 43.10 86.32 129.20 164.98 214.47 260.99 342.90 充 电 时 恒流 恒 流 充 间/min 时间 电 容 量 /min /A· h 58 3 1.5 119 6 3.0 151 12 6.0 171 18 9.0 218 34 17.0 252 45 22.5 318 72 35.67 单位容量 平均充电 时间/min 5.8 5.95 5.03 4.28 4.36 4.20 3.98 等容量 充电放 电效率 0.762 0.754 0.742 0.740 0.742 0.722 0.728源自图5-6锂离子电池的负极材料
石墨是锂离子电池碳材料中应用最早、研究最多 的一种,其具有完整的层状晶体结构。石墨的层 状结构,有利于锂离子的脱嵌,能与锂形成锂一 石墨层间化合物,其理论最大放电容量为 372mA· h/g,充放电效率通常在90%以上。 锂在石墨中的脱/嵌反应主要发生在0~0 .25V 之间(相对于Li+/Li),具有良好的充放电电压平 台,与提供锂源的正极材料匹配性较好,所组成 的电池平均输出电压高,是一种性能较好的锂离 子电池负极材料。
锂离子电池正极材料
锂离子二次电池正极材料是具有能使锂离子较为 容易地嵌入和脱出,并能同时保持结构稳定的一 类化合物——嵌入式化合物。 被用来作为电极材料的嵌入式化合物均为过渡金 属氧化物。 充放电循环过程中,锂离子会在金属氧化物的电 极上进行反复的嵌入和脱出反应,因此,金属氧 化物结构内氧的排列和其稳定性是电极材料的一 个重要指标。
锂离子动力电池的类型
根据锂离子电池所用电解质材料不同,锂离子电 池可以分为液态锂离子电池(Lithium Ion Battery,LIB)和聚合物锂离子电池 (Polymer Lithium Ion Battery,LIP)两 大类。它们的主要区别在于电解质不同,液态锂 离子电池使用的是液体电解质,而聚合物锂离子 电池则以聚合物电解质来代替。不论是液态锂离 子电池还是聚合物锂离子电池,它们所用的正负 极材料都是相同的,工作原理也基本一致。
图5-8 锂离子电池充电曲线
在实际电池组应用中,可以以锂离子电池允许的 最大充电电流充电,达到限压后,进行恒压充电 ,这样在减少充电时间的基础上,也保证了充电 的安全性。 对充电过程进行综合考虑,由于充电电流与内阻 能耗成平方关系,是影响内阻能耗的主要因素, 所以充电电流大的内阻能耗大。在实际电池应用 中,应综合考虑充电时间和效率,选择适中的充 电电流。
金属锂是最先采用的负极材料,理论比容量为 3860mA· h/g。20世纪70年代中期,金属锂 在商业化电池中得到应用。但因充电时,负极表 面会形成枝晶,导致电池短路,于是人们开始寻 找一种能替代金属锂的负极材料。 金属合金最大的优势就是能够形成含锂很高的锂 合金,具有很高的比容量,相比碳材料,合金较 大的密度使得其理论体积比容量也较大。同时, 合金材料由于加工性能好、导电性好等优点,被 认为是极有发展潜力的一种负极材料。
3.热特性 (1)生热机制 锂离子电池内部产生的热量主要由四部分组成: 反应热Qr、极化热Qp、焦耳热QJ和分解热Qs。 反应热Qr :充电时为负值,在放电时为正值 极化热Qp :在充放电的时候都为正值 焦耳热QJ :由内阻产生,充放电过程中都为正值 分解热Qs :自放电导致电极的分解而产生的热 量,在充放电的时候都很小,因而可以忽略不计
提高锂离子电池安全性的措施: 1)使用安全型锂离子电池电解质。
采用阻燃电解液。 使用固体电解质,代替有机液态电解质。
2)提高电极材料热稳定性。
负极材料的表面包覆,如在石墨表面包覆无定形碳或 金属层; 在电解液中添加成膜添加剂,在电极材料表面形成稳 定性较高的SEI膜,有利于获得更好的热稳定性。 通过体相掺杂、表面处理等手段提高正极材料热稳定 性。
氧化物是当前人们研究的另一种负极材料体系, 包括金属氧化物、金属基复合氧化物和其他氧化 物。前两者虽具有较高理论比容量,但因从氧化 物中置换金属单质消耗了大量锂而导致巨大容量 损失,抵消了高容量的优点;Li4Ti5O12具有尖 晶石结构,充放电曲线平坦,放电容量为 150mA· h/g,具有非常好的耐过充、过放特 征,充放电过程中晶体结构几乎无变化(零应变材 料),循环寿命长,充放电效率近100%,目前 在储能型锂离子电池中有所应用。
(2)放电时温升特性 为常温下以0.3C倍率电流充满电,再在常温下分 别以0 .3C、0.5C和1C倍率放电时,某磷酸铁 锂锂离子电池正极耳处的温升曲线如下图所示, 放电截止电压为2.5V。
不同放电倍率正极柱处的温升曲线
电池放电电流越大时,正极耳处的温度 上升越快,并且温度极值越高。这说明 放电电流越大时,损耗的热能就越多, 降低了放电效率。0.3C与1C倍率放电 峰值温度相差18.9℃,在环境温度不变 并且采用没有散热措施的情况下,要减 小温度升高的幅度,必须减少放电电流。 因此,如果在环境温度较高,并且电池 大功率放电的情况下,必须采用散热措 施,以避免安全问题。
正极反应式: LiMO2 Li1 x MO2 xLi xe
nC xLi xe Lix Cn 负极反应式:
电池反应式:
LiMO2 nC Li1 x MO2 Lix Cn
式中 M—Co、Ni、W、Mn等金属元素。
图5-1钴酸锂离子电池工作原理
锂离子动力电池的工作原理
锂离子电池在原理上实际是一种锂离子浓差电池,正、负 电极由两种不同的锂离子嵌入化合物组成,正极采用锂化 合物LiCoO2,LiNiO2或LiMn2O4,负极采用锂碳层间 化合物LiC6,电解质为LiPF6和LiAsF6等有机溶液。经 过Li+在正负电极间的往返嵌入和脱嵌形成电池的充电和 放电过程。充电时,Li+从正极脱嵌经过电解质嵌人负极 ,负极处于富锂态,正极处于贫锂态,同时电子的补偿电 荷从外电路供给到碳负极,保持负极的电平衡。放电时则 相反,Li+从负极脱嵌,经过电解质嵌入到正极,正极处 于富锂态,负极处于贫锂态。正常充放电情况下,锂离子 在层状结构的碳材料和层状结构氧化物的层间嵌入和脱出 ,一般只引起层面间距的变化,不破坏晶体结构;在放电 过程中,负极材料的化学结构基本不变。因此,从充放电 的可逆性看,锂离子电池反应是一种理想的可逆反应。
表5-2不同放 电深度充电 试验参数
图5-9 锂离子20℃,0.3C 恒流锂离子电池充电曲线
结论: ①随放电深度增加,充电所需时间增加,但平均 每单位容量所需的充电时间减少,即充电时间的 增加同放电深度不成正比增加。 ②随放电深度增加,恒流充电时间所占总充电时 间比例增加,恒流充电容量占所需充人容量的比 重增加。 ③随放电深度增加,等安时充放电效率有所降低 ,但降低幅度不大。
作为嵌入式电极材料的金属氧化物,依其空间结 构的不同主要可分为以下三种类型。 1.层状化合物
LiCoO2 LiNiO2
2.尖晶石型结构
LiMn2O4
3.橄榄石型结构
LiFePO4
LiCoO2具有放电电压高、性能稳定、易于合成 等优点。但钴资源稀少,价格较高,并且有毒, 污染环境。目前主要应用在手机、笔记本等中小 容量消费类电子产品中。 镍与钴的性质非 常相近,而价格 却比钴低很多, 井且对环境污染 较小。
相关文档
最新文档