永磁同步电机的振动与噪音共31页文档

合集下载

永磁同步电机电磁振动噪声抑制方法综述

永磁同步电机电磁振动噪声抑制方法综述
Key words:magnetostrictive force, noise suppression, electromagnetic noise, permanent magnet synchronous motor
0摇 引摇 言
随着电气设备在各行各业的应用,电机噪声问
题越来越引起人们的关注,因此研究低噪声、高效率
噪方面近年来的研究进行梳理和分析,通过如何有
综 述
效地优化电机本体结构和减小磁致伸缩力对电机的
影响,为进一步开展抑制永磁同步电机的振动噪声
摇 72
收稿日期:2019 -01 -02 基金项目:国家自然科学基金项目(51577131) ;天津市高等学校 创新团队培养计划( TD13-5040) 资助
的相关研究工作,提供部分参考。
综摇 echnical
述 review
摇詪詪摇
詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪詪
摇 张
的节能电机是非常迫切和必要的。 永磁同步电机的
摇 噪声一般由三部分组成:空气动力性噪声、机械性噪
欣 声和电磁噪声[1-2] 。 永磁同步电机在高速运行过程

摇 中,空气动力学和机械噪声占主导地位;在中低速度
永 磁
运行下,电机发出的振动噪声的主要来源是电磁噪
同 步
声。 电磁噪声的大小与定子绕组磁势空间谐波,电
对引起电机振动噪声的径向力进行研究,通过 实验测得径向力波的阶次数越低,电机铁心的弯曲 形变程度就越大,振动噪声越大;并且电机定转子极 数越多,产生的噪声振动就越小。 此外,实验中发现 在同步电机运行期间,当所给激励频率与永磁同步电 机的转子和定子固有频率出现重合时,就会产生比较 大的振动噪声。 因此,要有效抑制电机的振动噪声, 可以采用降低激振力和改变固有频率两种方法[7] 。

永磁同步电动机振动与噪声特性研究

永磁同步电动机振动与噪声特性研究

永磁同步电动机振动与噪声特性研究一、本文概述随着科技的不断进步和环保理念的日益深入人心,永磁同步电动机(PMSM)作为一种高效、环保的驱动方式,已在诸多领域得到了广泛应用。

然而,随着其使用范围的扩大,其振动与噪声问题也逐渐显现,成为了制约其进一步发展的关键因素。

因此,本文旨在深入研究永磁同步电动机的振动与噪声特性,以期为降低其振动与噪声、提高其运行稳定性和可靠性提供理论依据和技术支持。

本文将首先介绍永磁同步电动机的基本原理和结构特点,阐述其振动与噪声产生的机理。

在此基础上,通过理论分析和实验研究相结合的方法,研究永磁同步电动机在不同工况下的振动与噪声特性,探讨其影响因素和变化规律。

本文还将对永磁同步电动机的振动与噪声抑制技术进行研究,提出有效的抑制方法和措施。

本文的研究内容不仅对于提高永磁同步电动机的性能和可靠性具有重要意义,而且对于推动永磁同步电动机的广泛应用和产业发展也具有积极的促进作用。

因此,本文的研究具有重要的理论价值和实践意义。

二、永磁同步电动机的基本原理与结构永磁同步电动机(PMSM)是一种高效、高性能的电动机,广泛应用于电动汽车、风力发电、工业机器人和精密机床等领域。

其基本原理和结构决定了其在振动和噪声特性上的表现。

永磁同步电动机的基本原理基于电磁感应和磁场相互作用。

它利用永磁体产生恒定磁场,作为励磁源,通过控制定子电流的相位和幅值,使定子磁场与转子磁场保持同步旋转。

当定子电流产生的旋转磁场与转子永磁体磁场相互作用时,会产生电磁转矩,驱动电动机旋转。

永磁同步电动机的结构主要由定子、转子和端盖等部件组成。

定子由铁心和绕组组成,铁心用于固定绕组并提供磁路,绕组则通过电流产生旋转磁场。

转子则主要由永磁体和铁心组成,永磁体提供恒定磁场,铁心则用于增强磁场强度。

端盖则用于固定定子和转子,并提供机械支撑。

在PMSM中,永磁体的使用是关键。

永磁体具有高矫顽力、高剩磁和高磁能积等特点,能够提供稳定的磁场,从而提高电动机的效率和性能。

永磁同步电机高频振动与噪声研究

永磁同步电机高频振动与噪声研究

永磁同步电机高频振动与噪声研究一、概述永磁同步电机以其高效率、高功率密度及优秀的控制性能,在电动汽车、风力发电、工业驱动等领域得到了广泛应用。

随着电机运行频率的提高,高频振动与噪声问题日益凸显,成为制约永磁同步电机进一步发展的关键因素。

对永磁同步电机高频振动与噪声的研究具有重要的理论价值和实际意义。

高频振动主要来源于电机内部的电磁力波动、机械结构共振以及材料特性等因素。

这些振动不仅影响电机的稳定运行,还可能导致电机部件的疲劳损坏,降低电机的使用寿命。

同时,高频振动还会引发噪声污染,对人们的生产和生活环境造成不良影响。

针对永磁同步电机高频振动与噪声问题,国内外学者进行了大量的研究。

研究内容包括但不限于电机电磁设计优化、结构动力学分析、振动噪声测试与评估等方面。

通过改进电机电磁设计,优化绕组分布和磁极形状,可以有效降低电磁力波动,从而减少高频振动。

通过结构动力学分析,可以识别出电机的共振频率,进而采取相应的措施避免共振现象的发生。

目前对于永磁同步电机高频振动与噪声的研究仍面临一些挑战。

一方面,电机内部的电磁场和机械结构相互耦合,使得振动与噪声的产生机制复杂多样,难以准确描述和预测。

另一方面,随着电机技术的不断发展,新型材料和先进制造工艺的应用使得电机的振动噪声特性也发生了变化,需要不断更新和完善研究方法和手段。

本文旨在深入研究永磁同步电机高频振动与噪声的产生机理和影响因素,提出有效的抑制措施和优化方案,为永磁同步电机的设计、制造和运行提供理论支持和实践指导。

1. 永磁同步电机概述永磁同步电机,作为电动机和发电机的一种重要类型,以其独特的优势在现代工业中占据着举足轻重的地位。

其核心特点在于利用永磁体来建立励磁磁场,从而实现能量的高效转换。

定子产生旋转磁场,而转子则采用永磁材料制成,这种结构使得永磁同步电机在运行时能够保持稳定的磁场分布,进而实现平稳且高效的能量转换。

永磁同步电机可以分为他励电机和自励电机两种类型,前者从其他电源获得励磁电流,后者则从电机本身获取。

永磁同步电机的振动控制研究

永磁同步电机的振动控制研究

永磁同步电机的振动控制研究摘要:随着科学技术的发展,永磁同步电机出现,其具有经济效益好、无噪声、容易控制的优势,被广泛应用在各个领域,并且取得了显著成效。

永磁同步电机在运行过程中会产生较大噪声,因此要进行控制,改善实际效果。

本文对加强振动噪声控制策略的研究,了解振动噪声产生原因,并采取行之有效的措施,保证系统稳定、高效地运行。

关键词:永磁同步电机;振动控制;研究1、永磁同步电机概述永磁同步电机的工作原理是能量之间转化,满足人们对电能的需求,而励磁电流是永磁同步电机运行的动力来源。

一是直流发电机供电的励磁方式,从本质上来看,借助滑环生成直流电流,比较简单。

二是交流励磁机供电的励磁方式,主要发挥交流励磁的作用,确保电流供应的连续性、稳定性,操作比较简单,具有较强的适用性。

三是无励磁的励磁方式,在励磁电流的基础上进行整流才能获得电能,一旦出现问题,电流互感器就会产生励磁电流,解决了变压器输出不足的问题,保证系统正常运行。

永磁同步电机是由永磁体产生同步旋转磁场的同步电机,永磁体是转子产生的来源,三相定子绕组会受到旋转磁场的影响,进而发生电枢反应,感应三相对称电流。

永磁同步电机在发展中不断完善,功能更加强大,可以满足实际需求。

随着科学技术的发展,永磁同步电机逐渐完善,有着广阔市场空间。

2、永磁同步电机的特点永磁同步电机可以将电机整体安装在轮轴上,形成整体直驱系统,一个轮轴就是一个驱动单元,不需要用齿轮箱。

永磁同步电机具有功率高、效率高的特点;永磁同步电机产生热量比较少,电机冷却系统在运行时不会产生较大噪声;系统结构是全封闭的,构建出一个整体,出现故障的概率非常小,所以基本不用维护,减少了人员工作量;永磁同步电机可以承载较大的电流,稳定可靠;整个传动系统质量轻,簧下重量较轻,在单位质量内,功率较大;在没有齿轮箱的情况下,转向架系统设计是很灵活的,如柔式转向架、单轴转向架,可以有效提升列车性能。

自动调节励磁的核心是电压,通过调节电压来实现有效控制。

永磁同步电机振动噪声的分析与结构优化

永磁同步电机振动噪声的分析与结构优化

摘要永磁同步电机具有结构简单、功率密度大、效率高等优势,在空间和能源有限的自主式水下航行器中得到了广泛应用。

永磁同步电机在运行过程中会产生径向电磁力和齿槽转矩,这些激励作用于电机结构,将引起电机的振动,向外辐射噪声,影响电机稳定运行和航行器的隐身性能。

本文以某自主式水下航行器配备的推进用永磁同步电机为研究对象,围绕电机振动分析和优化,分别建立了永磁同步电机的电磁场模型、结构模型以及瞬态动力学耦合模型,从解析、仿真和实验的层面,对电机进行了如下研究:首先,分析了永磁同步电机电磁激励的分布规律。

通过解析,推导出电磁力波的阶数与频率;建立了永磁同步电机的电磁有限元仿真模型,计算得到了电磁场的时空分布,经过傅里叶分解,得到了电磁力的频域特征。

给出了齿槽转矩的解析式,并进行了数值仿真,分析了齿槽转矩的分布规律。

其次,研究了永磁同步电机定子系统的模态特性。

通过机电类比法,推导出电机定子系统固有频率的解析式;建立了电机定子系统的有限元模型,对其固有频率和振型进行了仿真分析。

采用运行模态试验方法,搭建实验平台,完成了永磁同步电机的模态测试,辨识出电机定子系统的固有频率。

再次,研究了永磁同步电机的振动响应。

关联电磁场与结构场,建立耦合模型,把电磁激励加载至定子系统,得到了电机壳体上一点振动的响应特性,对其进行傅里叶分解,得到了振动的频域分布。

搭建实验平台,测取了两种工况下电机壳体表面的振动响应,验证了上述分析方法的正确性。

最后,开展了永磁同步电机的减振优化设计。

分别从降低电磁激励和调整结构模态的角度出发,选取了若干结构参数,分析了它们对于振动的影响,以此为基础对电机进行了优化。

优化后,经仿真计算,电机的振动幅值得到了降低。

关键词:永磁同步电机;电磁激励;模态;振动响应;AUVVibration Analysis and Structure Optimization ofPermanent Magnet Synchronous MotorAbstractPMSM(Permanent magnetic synchronous motor )has a simple structure with high power density and efficiency. Due to these advantages, PMSM has been applied to AUV, which has limited space and energy supply. However, its inherent characteristic would introduce radial electromagnetic force and cogging torque. The vibration caused by these stimulations becomes the origin of noise, which will do harm to the stability of the motor and AUV’s stealth performance.This dissertation studies onthe vibration and optimization of a PMSM equipped on an AUV. Focusing on vibration and optimization of the PMSM, multiphysics fields are built, including electromagnetic field, structure field andcoupled transient-structure field, from the perspective of analysis, simulation and experiment. The main content of the paper is shown as follows:Firstly, the electromagnetic stimulation which causes vibration of the PMSM is analyzed. Orders and frequencies of theelectromagnetic force are calculated using analytical method. FEAmodel is established to obtain further information about the magnetic field’s distribution spanning in time and space. FFT is performed to acquire the magnetic field’s distribution in frequency domain. The cogging torque is also analyzed and simulated.Then, the dissertation focuses on the modal analysis of the stator from the mechanism perspective. Electromechanical analogy is utilized to acquire the analysis formula for the natural frequencies of the stator system. Simulation is then conducted to obtain the accurate value of the natural frequencies and modal shapes. OMA is performed to identify modal parameters experimentally.Thirdly, vibration response is studied. The coupledmodel between the electromagnetic field and the structure field is established. The electromagnetic stimulation is loaded onto the stator system to get time-domain response of a point. The result is then transferred by FFT to frequency domain. Vibration amplitudes under different working conditionsare measured by experiment to validate the previous methodology.At last, a method intended to reduce vibration is performed. In order to reduce the stimulation amplitudes and adjust the natural frequency, effects of several structural parametersare studied. Based on the previous analysis, the simulation result shows that the motor after optimization has lower vibration level.Key words: PMSM; Electromagnetic Stimulation; Modal; Vibration Response; AUV目 录摘要 (I)Abstract (I)第一章绪论................................................................................................................. - 1 -1.1研究背景......................................................................................................... - 1 -1.2国内外研究现状............................................................................................. - 2 -1.2.1电磁激励的研究.................................................................................. - 2 -1.2.2结构模态特性的研究.......................................................................... - 3 -1.2.3电磁激励下振动响应的研究.............................................................. - 4 -1.3研究内容......................................................................................................... - 5 -第二章永磁同步电机电磁激励分析......................................................................... - 7 -2.1引言................................................................................................................. - 7 -2.2径向电磁力..................................................................................................... - 7 -2.2.1径向电磁力的解析计算...................................................................... - 7 -2.2.2磁场分布及径向电磁力的仿真分析................................................ - 10 -2.2.3变频供电下的振动激励.................................................................... - 15 -2.3齿槽转矩....................................................................................................... - 17 -2.3.1齿槽转矩的解析计算........................................................................ - 17 -2.3.2齿槽转矩的仿真计算........................................................................ - 19 -2.4本章小结....................................................................................................... - 20 -第三章永磁同步电机定子结构模态分析............................................................... - 21 -3.1引言............................................................................................................... - 21 -3.2定子系统的双环模型................................................................................... - 21 -3.2.1机电类比法........................................................................................ - 21 -3.2.2双环模型............................................................................................ - 22 -3.3结构模态的有限元仿真............................................................................... - 25 -3.3.1定子铁芯的模态分析........................................................................ - 25 -3.3.2绕组对定子铁心模态的影响............................................................ - 27 -3.3.3定子系统的模态................................................................................ - 29 -3.4永磁同步电机的模态实验........................................................................... - 31 -3.4.1自互谱法的基本原理........................................................................ - 32 -3.4.2永磁同步电机的运行模态实验........................................................ - 33 -3.5本章小结....................................................................................................... - 36 -第四章电磁激励作用下的振动响应....................................................................... - 37 -4.1振动响应的解析计算................................................................................... - 37 -4.2电磁力作用下的振动响应........................................................................... - 37 -4.3齿槽转矩作用下的振动响应....................................................................... - 39 -4.4 永磁同步电机振动响应的实验验证.......................................................... - 40 -4.4.1 两种电磁激励下的振动响应........................................................... - 40 -4.4.2 齿槽转矩作用下的振动响应........................................................... - 43 -4.5本章小结....................................................................................................... - 44 -第五章永磁同步电机减振优化设计....................................................................... - 45 -5.1引言............................................................................................................... - 45 -5.2电磁激励的优化........................................................................................... - 45 -5.2.1设计变量的确立................................................................................ - 45 -5.2.2齿顶弧偏移对于电磁激励的影响.................................................... - 46 -5.3定子模态优化............................................................................................... - 47 -5.3.1优化目标的确立................................................................................ - 47 -5.3.2设计变量的选择................................................................................ - 48 -5.3.3基于响应面法的定子模态优化........................................................ - 49 -5.4优化后的振动响应....................................................................................... - 52 -5.5本章小结....................................................................................................... - 53 -第六章总结与展望................................................................................................... - 54 -6.1总结............................................................................................................... - 54 -6.2展望............................................................................................................... - 54 -参考文献............................................................................................................... - 56 -攻读学位期间发表学术论文情况............................................................................. - 58 -致谢..................................................................................................................... - 59 -中国运载火箭技术研究院学位论文版权使用授权书............................................. - 60 -第一章绪论1.1研究背景本课题来源于某自主式水下航行器电推进装置项目。

永磁同步电机的振动与噪音解析

永磁同步电机的振动与噪音解析

理想次数
二、定位力矩
啸叫
大电机噪音与电流波形 噪音频率为电流频率的18倍 机械转速的180次
第16页/共31页
理想次数
三、方波无刷直流电机力矩波动与噪音
波动力矩 波动力矩—指令一定下不同转角对应的电磁力矩波动分量 引起的原因:电动势e和电流 i 的波形偏离了理想波形
Tr
1
ei
T
第17页/共31页
❖存在幅值偏差Δi
Tr
2 i sin 2
3
--υ=2P
❖ 存在相位偏差Δθ
Tr
2 i cos 2
3
--υ=2P
❖ 存在恒定成分ΔI
Tr I sin --υ=P
存在 次谐波成分i
Tr icos( 1)
第23页/共31页
五、抑制措施
电机本体
定位力矩 优化电机系统固有频率
控制器
力矩波动
方波驱动器 正弦波驱动器
第6页/共31页
一、振动与噪音机理
合成磁动势:
F (,t) Fs cos[p(1 ) 1t] Frk cos[kp(0 t)]
k
气隙磁密: B (,t) F / S
单位面积力: B2 (,t) 20
N, cos( t) ,
第7页/共31页
一、振动与噪音机理
一、不随时间变化的恒定力波,即零次力波。恒定力波只是对定 子铁心产生静压力时铁心产生静变形,不产生振动和噪音; 二、定子磁动势同次谐波,力波角频率为2ηω1; 三、转子磁动势同次谐波,力波角频率为2kω1; 四、定子磁动势不同次谐波,力波角频率为(ηi±ηj)ω1 ; 五、转子磁动势不同次谐波力波,角频率为(ki±kj)ω1 ; 六、定、转子磁动势不同次谐波力波,角频率为(ηi±kj)ω1; 七、定、转子磁动势同次谐波力波,角频率为2ηiω1;

永磁同步电机振动 书

永磁同步电机振动 书

永磁同步电机振动书1. 引言1.1 研究背景现代永磁同步电机在工业领域得到了广泛应用,其高效、节能、性能稳定的特点受到了市场的认可。

随着永磁同步电机功率不断增加和应用环境条件的复杂化,振动问题逐渐凸显出来。

永磁同步电机振动不仅会影响其性能和寿命,还可能对周围设备和操作人员造成影响。

目前,针对永磁同步电机振动问题的研究已经引起了学术界和工业界的关注。

通过对永磁同步电机振动特点、振动机理、振动抑制方法等方面的分析研究,可以为解决永磁同步电机振动问题提供理论支持和实践指导。

开展对永磁同步电机振动问题的深入研究具有重要的理论和应用意义。

本文旨在系统地探讨永磁同步电机振动问题,分析其振动特点和机理,总结振动抑制方法,并通过实验研究和仿真分析进行验证。

希望通过本文的研究,能够全面了解永磁同步电机振动问题的影响及解决方法,为相关领域的研究和应用提供参考和借鉴。

1.2 研究目的所要讨论的《永磁同步电机振动》是一个热门话题。

这本书旨在探讨永磁同步电机振动的特点、机理、抑制方法,并通过实验研究及仿真分析来深入剖析这一现象。

本书的研究目的主要包括:解析永磁同步电机振动的成因,探讨振动对永磁同步电机性能的影响,探讨振动抑制方法的有效性,为今后永磁同步电机振动问题的解决提供理论基础和实践指导。

研究目的非常明确,即通过对永磁同步电机振动进行深入研究,揭示其本质机理,探讨振动抑制方法的有效性,并最终评价振动对永磁同步电机性能的影响。

通过系统的分析和实验验证,期望为永磁同步电机振动问题的解决提供全面的解决方案。

2. 正文2.1 永磁同步电机振动特点永磁同步电机是一种性能优异的电机,在许多领域得到广泛应用。

由于永磁同步电机的结构特点和电磁特性,会出现振动现象。

永磁同步电机振动有以下几个特点:1. 高频振动:永磁同步电机由于磁铁和铁芯的特性,在工作过程中会出现高频振动。

这种振动频率通常在几千赫兹以上,对电机的整体性能和稳定性产生影响。

永磁同步电机的振动与噪音

永磁同步电机的振动与噪音
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
正弦波驱动
五、抑制措施
空载
9Nm
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
五、抑制措施 正弦波驱动器的抑制措施
磁场正弦化设计(不均匀气隙) 保证位置传感正弦化精度 电流反馈 提高电路的线性
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
6 8 1.0 1.2
Tem/(N.m)
0 24
0
72
144
216
288
360
电角度/(°)
力矩波动仿真图
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
三、方波无刷直流电机力矩波动与噪音
振动
大电机噪音与电流波形 –120rpm,10Nm 噪音频率为电流频率的6倍
f=120Hz
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
式中 T e0 m 2 3 m [E m 1 Im 1 E m 5 Im 5 E m 7 Im 7 E m 1Im 1 1 1 ]
T e6 m 2 3 m [ I m 1 ( E m 7 E m 5 ) I m 5 ( E m 1 1 E m 1 ) I m 7 ( E m 1 3 E m 1 ) ]
三、方波无刷直流电机力矩波动与噪音
波动力矩 波动力矩—指令一定下不同转角对应的电磁力矩波动分量 引起的原因:电动势e和电流 i 的波形偏离了理想波形
Tr 1 eiT
交流永磁同步电机理论-§9 永磁同步电机的振动与噪音
三、方波无刷直流电机力矩波动与噪音
e a ( t ) ~ E m 1 s t i E m 3 s n 3 t i E m 5 s n 5 t i E m 7 s n 7 t i n

有关电机噪音和振动

有关电机噪音和振动

第一章电机振动的产生以及控制低频测振1.1 电机产生振动的原因1)电机所用的绝缘材料、叠片铁心、线圈嵌线等零部件的组成方式,使其结构刚度和运行时的热胀冷缩条件比较复杂2)电机转子存在的不平衡量3)电机内的电磁力4)输入端受到的扭转冲击,以及输出端受到的电网冲击1.2 电机振动产生的危害1)电机转子弯曲、断裂.2)转子磁极松动,造成定子和转子相互擦碰3)加速电机轴承的磨损,使轴承的正常寿命大大缩短•4)电机端部绑线松动,造成端部绕组相互摩擦,绝缘电阻降低,绝缘寿命缩短,严重时造成绝缘击穿1.3 需要明确的几个基本概念固有频率和振型振动响应(幅值和相位)1.4 电机振动的形式及其控制1.4.1 电机定子铁心的振动定子铁心的振动主要是由电磁力造成的,产生椭圆形、三角形、四边形等振型。

(齿部高频分量较多)•当定子叠片铁心内有交变磁场通过时,会产生轴向振动,若铁心未压紧,铁心就会产生剧烈的振动,严重时造成断齿。

为了防止此类振动的发生,定子铁心一般采用压板及螺杆压紧结构,但同时应注意防止因铁心局部压力过大而造成的损伤。

1.4.2 电机定子绕组的振动在电机运行过程中,定子绕组经常受到以下几种力的影响,引起绕组的系统频率或者倍频率振动:绕组中的电流与漏磁通的作用力,转子磁拉力,绕组热胀冷缩力。

在电机设计时,特别值得考虑的是由电磁力引起的定子绕组的槽部和顶部振动。

为了防止这两类振动,经常要采取槽部线棒固紧结构以及端部轴向刚性支架措施。

1.4.3 电机机座的振动机座的振动源:1)由定子铁心的电磁振动通过铁心与机座的连接传来,引起机座的倍频振动,且随着单机容量的增大而增大;2)转子振动的激振力实践证明:落地轴承形式的转子激振力对机座的影响要比轴承座设置在定子机座端盖上的轴承形式的影响要小得多。

为了减小机座的振动,经常采取的措施是:1)铁心与机座之间的连接采用弹性结构,以减少铁心振动对机座和基础的影响;2)对机座的自振频率进行控制,使其避开铁心的倍频振动频率和转子的振动频率。

某款电动汽车驱动用永磁同步电机噪声分析

某款电动汽车驱动用永磁同步电机噪声分析

某款电动汽车驱动用永磁同步电机噪声分析Noise analysis of a permanent magnet synchronous motor driven by an electric vehicle姚学松,陶文勇(奇瑞新能源汽车股份有限公司,安徽 芜湖 241002)摘 要:通过对某款电动汽车驱动用永磁同步电机的噪声进行分析,发现其存在48阶次噪声大的问题。

为了削弱电机的48阶次噪声,本文提出了4种优化方案,通过对4种优化方案分别进行验证和测试,结果显示,转子磁钢结构优化和转子铁心外圆增加辅助沟槽2个方案对电机48阶次噪声有较大的改善。

最终实施上述2个方案,原车尖锐、刺耳的电磁声及啸叫声明显削弱,提升了整车的驾驶舒适性。

关键词:电动汽车;永磁同步电机;噪声;磁钢;转子铁心作者简介姚学松(1987.—),男,工程师,硕士研究生,主要从事新能源汽车电驱动系统相关工作,0 引言永磁同步电机所具有的高效率、高功率密度等特性使其广泛应用于纯电动汽车的驱动电机。

对纯电动汽车而言,驱动电机作为整车的动力总成部分,其所产生的噪声也是整车的主要噪声来源。

噪声作为电机的主要质量指标之一[1],其水平也决定了整车的驾驶舒适性。

因此,电机噪声的控制也成为了当前电机性能优化的重要课题。

本文基于某款纯电动汽车驱动用永磁同步电机的噪声分析,发现当电机转速运行在(1 500 ~6 000)r/min时,其48阶次噪声明显。

因电机的总体磁路结构重新设计的成本高、周期长,本文在不改变电机主要磁路结构的前提下,通过对电机转子磁钢结构优化、转子铁心增加沟槽、电机定子绕组树脂浇注、电机壳体强度提升等措施的对比分析,来评估各措施对电机噪声的贡献,通过测试结果表明,上述方案对电机噪声有一定的改善,具有实际应用价值,为电动汽车驱动用永磁同步电机噪声的优化提供了相关的依据和经验。

1 纯电动汽车驱动电机噪声分析如图1所示,根据整车噪声测试数据,结合驱动电机所采用的48槽设计方案,可判断其中48阶次噪声主要来源于驱动电机,此时的电机转速在(1 500~6 000)r·min-1,对应整车的车速在图1 整车车内噪声阶次彩图(25~75)km/h。

211104886_Halbach结构永磁电机的电磁振动与噪声分析

211104886_Halbach结构永磁电机的电磁振动与噪声分析

电气传动2023年第53卷第4期ELECTRIC DRIVE 2023Vol.53No.4摘要:针对转子为Halbach 结构的永磁电机进行额定功率下的电磁振动和噪声分析,建立了永磁电机径向力波的解析表达式,并分析了引起振动和噪声的两类主要力波,通过解析法确定了电机的主要噪声源。

为了表征Halbach 结构电机的电机特点及其振动噪声性能,比较了Halbach 结构和普通径向充磁结构的两台电机,针对这两台电机分别进行气隙磁密的分析,以及振动和噪声的比较。

对比分析结果表明,Halbach 结构的永磁电机转子轭部更薄,重量更轻,气隙磁密正弦度更高。

但由于径向气隙磁密3次谐波含量的不同,Halbach 结构永磁电机的主要激振频率下的振动加速度幅值相比传统径向充磁结构的永磁电机高出9.56%,总声压级高出0.65dB 。

分析结果为机泵一体化装备的电机选择和设计提供了研究基础。

关键词:Halbach 结构充磁;传统径向充磁;永磁同步电机;振动;噪声中图分类号:TM351文献标识码:ADOI :10.19457/j.1001-2095.dqcd23510Electromagnetic Vibration and Noise Analysis of Halbach Permanent Magnet MotorLU Xihao ,QIAO Mingzhong ,ZHANG Chi(College of Electrical Engineering ,Naval Engineering University ,Wuhan 430000,Hubei ,China )Abstract:In view of the electromagnetic vibration and noise analysis of permanent magnet motor with Halbach structure at rated power ,the analytical expression of radial force wave of permanent magnet motor was established ,and two kinds of main force waves which cause vibration and noise were analyzed.The main noise sources of the motor were determined by analytic method.In order to characterize the motor characteristics of the Halbach structure motor and its vibration and noise performance ,two motors of Halbach structure and common radial magnetization structure were compared.For these two motors ,the analysis of the air gap flux density and the comparison of vibration and noise were carried out.The comparative analysis results show that the permanent magnet motor rotor yoke of Halbach structure is thinner ,lighter ,and the air gap flux density is more sinusoidal.However ,due to the different third harmonic content of radial air gap flux density ,the vibration acceleration amplitude under main excitation frequency of Halbach permanent magnet motor are 9.56%higher than those of traditional radial magnetization permanent magnet motor ,and the total sound pressure level is 0.65dB higher.The analysis results provide a research foundation for the selection and design of the motor of the integrated pump-mechanical equipment.Key words:Halbach structure magnetization ;traditional radial magnetization ;permanent magnet synchronous motor ;vibration ;noise基金项目:国家自然科学基金(51877212)作者简介:卢希浩(1997—),男,硕士,Email :*****************通讯作者:乔鸣忠(1971—),男,博士,教授,Email :*********************Halbach 结构永磁电机的电磁振动与噪声分析卢希浩,乔鸣忠,张弛(海军工程大学电气工程学院,湖北武汉430000)液体泵是舰艇上的重要设备,现有的液体泵都是采用传统结构,电机通过传动轴带动泵叶转动,将液体输送出去。

电机质量特性之——振动和噪声

电机质量特性之——振动和噪声

电机质量特性之——振动和噪声从声音产生的机理分析,我们可肯定地讲,振动和噪声是相伴相随的一对难兄难弟,要解决噪声问题,首要先解决好振动问题。

振动和噪声,是电机产品非常关键的两个性能指标,也是电机使用客户可以直接感知的质量性能,如果电机的振动性能不符合要求,会导致电机及被拖动设备发生运行的不平稳,乃至过早地发生机械故障;噪声,主要是对于环境的一种声音污染,是对于听觉的不良刺激。

噪声大的电机会引发人的一种不适感,比如烦躁、恶心等不良反应,特别是对于在人员密集的环境中,对于电机噪声和要求更高一些,有的甚至有些苛刻,比如说供热泵电机、电梯电机等,与人们的生活直接相关,是电机生产厂家应攻克的难题,但同样是一种挑战和机会。

01关于电机的噪声电机的噪声分为机械噪声、电磁噪声和通风噪声,按照振动和噪声的产生机理,我们也可以将电机的振动进行相对应的分类,但大多数情况下,噪声和振动是一种综合性的表现。

电磁噪声为电机空隙中的磁场脉动,引起定子、转子和整个电机结构的振动所产生的一种噪声。

其数值大小决定于电磁负荷与电机的设计参数。

电磁噪声主要是结构噪声,分为恒定电磁噪声、与负载有关的磁噪声等,主要原因是由于定、转子槽的配合不当,定、转子偏心或气隙过小以及长度不一致等;最为常见的电磁噪声有高频的尖叫声音和低频的轰隆声音。

机械噪声是电机运转部分的摩擦、撞击、不平衡以及结构共振形成的噪声。

机械原因引起的噪声种类很多,也很复杂。

噪声源主要有自身噪声源,负载感应噪声源,辅助零部件的机械噪声源。

归结为加工工艺、加工精度、装配质量等问题产生。

一般是由电刷与换向器、轴承、转子、通风系统等产生。

机械噪声一般可以归纳为绕电刷噪声(仅对有刷电机)、轴承噪声、风扇噪声、负载噪声等。

判断噪音种类采用切断电源法,利用电磁噪声随磁场强弱、负载电流大小及转速高低而变的特征,对空载运行的电机静听一段时间后突然切断电源。

随着电源的切断,部分噪声会立即消失,此为电磁噪声。

永磁同步电动机振动和噪声抑制的研究

永磁同步电动机振动和噪声抑制的研究
ha s r e f e r e n c e v a l u e t o i mp r o v e c h a r a c t e is r t i c s o f mo t o r .
Ke y wo r d s :P MS M ;v i b r a t i o n;n o i s e ;f i n i t e e l e me n t a n a l y s i s
T h i s me t h o d c a n s u p p r e s s t h e v i b r a t i o n a n d n o i s e o f P MS M e f f e c t i v e l y b y e x p e r i me n t l a a n a l y s i s o n n o i s e,a n d
关键词 :永磁同步电机 ;振动 ;噪声 ;有限元分析
中 图 分 类 号 :T M 3 5 1 ;T M 3 4 1 文献 标 志 码 :A 文 章 编 号 :1 0 0 1 — 6 8 4 8 ( 2 0 1 4) 0 3 — 0 0 2 0 — 0 4
Re s e a r c h f o r S up pr e s s i ng Vi br a t i o n a nd No i s e o f Pe r ma ne n t Ma g ne t Sy n c hr o n o us Mo t o r
第4 7卷 第 3期
2 0 1 4年 3月
Vo 1 . 4 7 . No . 3
Ma r . 2 01 4
永 磁 同步 电 动 机 振 动 和 噪 声 抑 制 的 研 究
陈治宇,黄 开胜 ,田燕飞 ,陈风凯
( 广东工业大学 ,广州 5 1 0 0 0 6 )

电机振动与噪声

电机振动与噪声

电动机振动和噪声是一个比较老的但又是一个仍然存在和难以解决的问题。

引起电动机振动和噪声的原因很多,大致可归结为两个方面:(1)电磁因素:如电路中电参数不平衡、磁拉力不平衡等;(2)机械因素:如转子动平衡不好而引起的噪声等。

永磁电动机与普通电动机相比有许多优点,磁钢代替普通电动机中的励磁,提高了电动机效率,节省了材料并减小了电动机体积。

但在永磁材料应用中还存在一些问题,如电动机噪声、振动增大等,因此,解决这些关键问题尤为重要。

我们首先要判别电动机的振动由何原因引起的,即电磁和机械原因判定。

区分是电磁原因还是机械原因产生的方法是将电动机运转至最高转速,突然切断电源,若振动随之突然减小,振动则是电磁原因引起的;若振动变化不大,则主要是机械原因引起的。

根据电动机振动噪声源的强弱程度,应首先治理电动机中最突出的振动噪声源,找出相应的减振降噪的具体措施,才能起到事半功倍效果。

1 电磁因素电磁原因:(1)电磁力。

这种电磁力主要是由极靴下磁通的纵振荡产生的,通常具有齿频率。

由于直流电动机固定在机座上的主极是集中质量,在交变磁拉力和主极集中力的作用下,使机座产生挠曲和横向振动。

设计上采用非均匀气隙、电枢斜槽等,都是减少磁通振荡和振动电磁力的有效措施。

(2)气隙的不均匀。

由于装配气隙不均匀,电动机运行时产生单边磁拉力,其作用相当于电动机转轴挠度增加。

因此保证气隙装配均匀是防止振动的必要措施。

(3)转子线圈损坏。

由于转子线圈损坏使电动机运行时转子径向受力不均匀,其结果与转子不平衡类似。

不过,转子线圈损坏可用电枢检验仪测出。

根据以上产生电磁振动噪声的原因,可采取以下对策:(1)合理的工艺结构和严格的工艺偏差在普通直流电动机中,负载时电枢反应使气隙磁场畸变,磁极下一边的磁密比另一边的磁密大,造成气隙磁密不均、换向恶化。

因此在主磁极间加装换向极,使换向极产生的磁场与交轴电枢反应磁场抵消,以改善换向条件,并可适当降低由换向不利引起的噪声。

永磁同步电机的振动与噪音33页PPT

永磁同步电机的振动与噪音33页PPT
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为的振动与噪音
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒

电动车永磁同步电机电磁噪声测试分析3

电动车永磁同步电机电磁噪声测试分析3

电动车永磁同步电机电磁噪声测试分析康强2019.09内容1.引言:电驱噪音的现状和目标2.电机噪音的测试和分析3.电磁激励源的分析4.改善方案和建议⏹车身+底盘:●车身结构分布变化、声学包分布变化●底盘刚度增加、轮胎抗冲击要求增加●风噪/路噪问题凸显⏹动力总成:●动力总成从传统内燃机更换为电驱动系统,总噪声值变小●电机表现出高频尖叫声●减速器齿轮啸叫明显●动总悬置高频隔振能力差⏹附件电动化:●发动机掩蔽效应消失●电动空调压缩机噪声显现●继电器异响●水泵/真空泵等子系统噪声突出电动车由于动力总成改变,进排气取消,新增动力电池模块……,NVH 有了明显变化:电动车车内噪声变小,是否NVH 得到了改善?—Traditional vehicle —Electric vehicle4dB A⏹500-4000Hz的啸叫噪音主要由减速器齿轮阶次贡献⏹5000Hz以上的啸叫噪音主要由电机极数的阶次贡献Feature①Feature③Feature②⏹特征①:电磁激励噪声,其噪声主阶次成分为电机的极数和槽数有关。

+=⏹特征②:PWM载波频率,与逆变器开关频率的控制策略有关,逆变器将高压直流电转变为交流电时产生该噪声成分。

⏹特征③:电机结构共振产生的噪声。

电机的电磁激励噪声(包括开关频率噪声)频率高达4kHz以上,而人耳对1k-6kHz噪声非常敏感,即使电机噪声幅值降低到35dB(A),仍然能被人耳感知到,从而引起抱怨。

更安静的电动车,对减速器NVH 有了更苛刻的要求:瞬间提速,瞬间大载荷NVH 重要度前移,更高的NVH 要求1st gear order2nd gear order大速比,高转速→ 齿轮阶次频率增大→ 齿轮变形风险增大相对于传统车,电动车的减速器齿轮传递更大的扭矩,更宽的工作转速范围,使得齿轮啮合啸叫噪声异常突出,并且更高的频率阶次也不容易被掩蔽。

8000.000.00HzDerived Frequency40.000.00d B (A )P a 1.000.00A m p l i t u d e30.0025.00F car1F car2F car3F car4F car5Fcar6☐最高频率至8000Hz ,车内电机阶次目标为低于30dB(A),人很难感觉到;☐全负荷工况电机本体噪音在额定转速处有一个拐点。

一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法

一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法

一种优化齿槽转矩抑制永磁同步电机振动和噪声的方法近些年来,随着科技的不断进步,永磁同步电机的出现给各行各业带来了崭新的发展机遇。

永磁同步电机具有较强的精度、机械稳定性和可靠性等优势,被广泛用于各种固定转子应用领域。

但是,在大多数电机运行过程中,可能发生振动和噪声问题,这对精密设备和机械系统的安全性和可靠性构成了较大的威胁。

因此,如何有效抑制永磁同步电机的振动和噪声成为当前技术研究的热点之一。

在此背景下,为了抑制永磁同步电机的振动和噪声,我们引入了一种新型的齿槽优化方法。

首先,在动态特性分析和转矩特性测试的基础上,通过研究齿槽参数,确定永磁同步电机的最优齿槽设计。

其次,结合电机动态特性分析和振动噪声测试,利用转矩分析和时间域信号分析技术,对电机运行振动和噪声进行详细测试分析。

综上所述,通过综合分析测试结果,最终获得最佳齿槽设计,以有效抑制电机的振动和噪声。

首先,通过分析电机的动态特性,使用转矩分析技术确定最优齿槽设计。

在这个分析过程中,首先分析每一条齿槽的转矩特性,然后综合分析每条齿槽的转矩特性,选取最优齿槽参数,最终得到最佳齿槽设计。

其实,转矩分析技术对转矩特性和振动噪声特性具有较强的精确性,能够大大满足永磁同步电机抑制振动和噪声的要求。

接下来,在确定最优齿槽参数的基础上,进行时间域信号分析,有效测试振动和噪声特性。

在此过程中,采用快速傅里叶变换和短期傅里叶变换技术对电机运行时的时间域信号进行分析,有效测试电机振动和噪声特性。

其实,利用时域信号分析,能够更加深入地研究电机运行过程中发生的振动和噪声。

最后,在动态特性分析、转矩特性测试和时间域信号分析的基础上,综合分析测试结果,获得最优齿槽设计,以最有效的方式抑制永磁同步电机的振动和噪声。

经过多次实验,本文提出的齿槽优化方法不仅有效抑制了永磁同步电机的振动和噪声,而且具有较高的可重复性,能够满足各种特殊要求,实现高效可靠的运行。

总之,本文提出的齿槽优化方法可有效抑制永磁同步电机的振动和噪声,具有较高的精度、可靠性和可重复性,为固定转子的各种应用提供了较强的技术支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档