六年级小升初奥数50题
小升初奥数题必考100道及答案(完整版)
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初奥数50道经典奥数题及答案解析
小升初奥数50道经典奥数题及答案解析1. 一个数的百分之一比这个数的百分之10小9,这个数是多少?解析:假设这个数为x,则百分之一可以表示为0.01x,百分之10可以表示为0.1x。
根据题意可得0.01x = 0.1x - 9。
整理得到0.09x = 9,解得x = 100。
2. 假设一个数的百分之一是3,这个数是多少?解析:可以设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 3,解得x = 300。
3. 4的百分之一是多少?解析:可以直接计算得到4的百分之一为0.04。
4. 假设一个数的百分之一是0.02,这个数是多少?解析:设这个数为x,则百分之一可以表示为0.01x。
根据题意可得0.01x = 0.02,解得x = 2。
5. 判断下列四个小数哪一个是最小的?0.01,0.1,0.02,0.2。
解析:可以将四个小数都化为百分数进行比较。
0.01 = 1%,0.1 = 10%,0.02 = 2%,0.2 = 20%。
显然,1%是最小的。
6. 在数的添加、减少、乘法和除法中,哪种运算是无法实现负数的?解析:除法无法实现负数,因为任何数除以0都是无意义的。
7. 将0.35表示成分数形式。
解析:0.35可以表示为35/100,然后将分数进行约分得到7/20。
8. 填入下面的括号中:(2-3)÷(-2)=()。
解析:(2-3)÷(-2) = -1/(-2) = 1/2。
9. 计算:(-2)+3-5×(-4)÷(-2)。
解析:根据运算法则,先进行乘法和除法,再进行加法和减法。
(-2)+3-5×(-4)÷(-2) = (-2)+3-20÷(-2) = (-2)+3-(-10) = (-2)+3+10 = 11。
10. 计算:(-12)-0.5×(2-3)+4÷2。
解析:先进行括号内的运算,(-12)-0.5×(2-3)+4÷2 = (-12)-0.5×(-1)+4÷2 = (-12)-(-0.5)+4÷2 = (-12)+0.5+2 = -9.5。
六年级小升初奥数题100例附答案(完整版)
六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。
x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。
题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。
所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。
小升初50道奥数应用题
小升初50道奥数应用题1. 某超市购买一种商品,每天售出固定数量,第一天卖出3件,从第二天起每天比前一天多卖出2件,连续卖了50天后,共卖出多少件?解析:从第二天起,每天比前一天多卖出2件,相当于一个等差数列的求和问题。
首项是3,公差是2,共有50项。
根据等差数列求和公式,可以得到卖出的总件数为 [(3+3+2*49) * 50] / 2 = 2550。
2. 某饭店推出了一种特价套餐,原价100元,现在打8折出售。
某人购买了15份,他给了饭店1000元,请问他会找回多少钱?解析:特价套餐原价100元,打8折后价格为100 * 0.8 = 80元。
某人购买了15份,总共支付了80 * 15 = 1200元。
他给了饭店1000元,因此饭店需要找他1200 - 1000 = 200元。
3. 假设正整数a、b、c都满足a + b + c = 1000,并且a^2 + b^2 =c^2,求a、b、c的值。
解析:根据勾股定理,满足a^2 + b^2 = c^2的三个数为勾股数。
通过穷举法,可以得到满足条件的勾股数为(375, 200, 425)。
因此,a = 375,b = 200,c = 425。
4. 一群人去游泳,第1人说他比第2人游得快,第2人说他比第3人游得快,第3人又说他比第4人游得快,以此类推,现在问第10个人是否比第11个人游得快?解析:根据题意可得,第1人比第2人游得快,第2人比第3人游得快,可以推断出第1人比第3人游得快。
同理,可以继续推断第1人比第4人、第1人比第5人,以此类推,第1人比第10人游得快。
因此,第10个人比第11个人游得快。
5. 一个长方体的长、宽、高分别是a、a+2、a+3,已知体积等于表面积的一半,求长方体的边长a的值。
解析:长方体的体积等于长、宽、高的乘积,表面积等于长方体各面积之和的两倍。
根据题意,可以得到 a*(a+2)*(a+3) = 2 * [(2*a*a +2*(a+2)*a + (a+3)*(a+2))]。
六年级小升初奥数专题100道!答案
60、想:由已知条件知,5桶油共取出(15×5)千克。
由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
解:15×5÷(5-2)=25(千克) 答:原来每桶油重25千克。
61、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。
这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。
这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
解:35÷(2-1)=35(人)女工原有:35+17=52(人) 男工原有:52+35=87(人)答:原有男工87人,女工52人。
62、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。
由去时5小时到达和返回时多用1小时,可求出返回时所用时间。
解:12×5÷(5+1)=10(千米)答:返回时平均每小时行10千米。
63、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
解:18÷(5+4)=2(小时) 8×2=16(千米)答:狗跑了16千米。
64、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
解:总个数:(21+20+19)÷2=30(个) 白球:30-21=9(个) 红球:30-20=10(个) 黄球:30-19=11(个)答:白球有9个,红球有10个,黄球有11个。
65、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
解:(33-18)÷(5-2)=5(米) 18-5×2=8(米)答:一根粗钢管长8米,一根细钢管长5米。
66、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
小升初奥数题及答案(全面)
使用办法:题目后面有答案,但是要遮住答案完成,把题目完成在笔记本,自行核对,一天一题小学六年级奥数题及答案1。
某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A—2)/4-(A+22)=(A—90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A—2)/4,也即是78,参赛的总人数314+78=3922。
电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4。
由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1.5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1。
六年级小升初50题奥数题
小升初50道经典奥数题及详细解析1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克.一箱梨比一箱苹果多5千克,3箱梨重多少千克?3。
甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4。
李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸.由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3。
5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组.多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。
运后结算时,共付运费4400元。
托运中损坏了多少箱玻璃?12.五年级一中队和二中队要到距学校20千米的地方去春游。
小升初必考50道经典奥数题(含标准答案)
小升初必考道经典奥数题(含答案).已知一张桌子地价钱是一把椅子地倍,又知一张桌子比一把椅子多元,一张桌子和一把椅子各多少元?、箱苹果重千克.一箱梨比一箱苹果多千克,箱梨重多少千克?.甲乙二人从两地同时相对而行,经过小时,在距离中点千米处相遇.甲比乙速度快,甲每小时比乙快多少千米?.李军和张强付同样多地钱买了同一种铅笔,李军要了支,张强要了支,李军又给张强元钱.每支铅笔多少钱?.甲乙两辆客车上午时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河地两岸.由于河上地桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发地车站,到站时已是下午点.甲车每小时行千米,乙车每小时行千米,两地相距多少千米?(交换乘客地时间略去不计).学校组织两个课外兴趣小组去郊外活动.第一小组每小时走千米,第二小组每小时行千米.两组同时出发小时后,第一小组停下来参观一个果园,用了小时,再去追第二小组.多长时间能追上第二小组?.有甲乙两个仓库,每个仓库平均储存粮食吨.甲仓地存粮吨数比乙仓地倍少吨,甲、乙两仓各储存粮食多少吨?.甲、乙两队共同修一条长米地公路,甲队从东往西修天,乙队从西往东修天,正好修完,甲队比乙队每天多修米.甲、乙两队每天共修多少米?.学校买来张桌子和把椅子共付元,已知每张桌子比每把椅子贵元,桌子和椅子地单价各是多少元?.一列火车和一列慢车,同时分别从甲乙两地相对开出.快车每小时行千米,慢车每小时行千米,相遇时快车比慢车多行了千米,甲乙两地相距多少千米?.某玻璃厂托运玻璃箱,合同规定每箱运费元,如果损坏一箱,不但不付运费还要赔偿元.运后结算时,共付运费元.托运中损坏了多少箱玻璃?.五年级一中队和二中队要到距学校千米地地方去春游.第一中队步行每小时行千米,第二中队骑自行车,每小时行千米.第一中队先出发小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?.某厂运来一堆煤,如果每天烧千克,比计划提前一天烧完,如果每天烧千克,将比计划多烧一天.这堆煤有多少千克?.妈妈让小红去商店买支铅笔和个练习本,按价钱给小红元钱.结果小红却买了支铅笔和本练习本,找回元.求一支铅笔多少元?.学校组织外出参观,参加地师生一共人.一辆大客车比一辆卡车多载人,辆大客车和辆卡车载地人数相等.都乘卡车需要几辆?都乘大客车需要几辆?.某筑路队承担了修一条公路地任务.原计划每天修米,实际每天比原计划多修米,这样实际修地差米就能提前天完成.这条公路全长多少米?.某鞋厂生产双鞋,把这些鞋分别装入个纸箱和个木箱.如果个纸箱加个木箱装地鞋同样多.每个纸箱和每个木箱各装鞋多少双?.某工地运进一批沙子和水泥,运进沙子袋数是水泥地倍.每天用去袋水泥,袋沙子,几天以后,水泥全部用完,而沙子还剩袋,这批沙子和水泥各多少袋?.学校里买来了个保温瓶和个茶杯,共用了元钱.每个保温瓶是每个茶杯价钱地倍,每个保温瓶和每个茶杯各多少元?.两个数地和是,其中一个加数个位上是,去掉后,就与第二个加数相同.这两个数分别是多少?.一桶油连桶重千克,用去一半后,连桶重千克,桶重多少千米?.一桶油连桶重千克,倒出一半后,连桶还重千克,原来有油多少千克?.用一只水桶装水,把水加到原来地倍,连桶重千克,如果把水加到原来地倍,连桶重千克.桶里原有水多少千克?.小红和小华共有故事书本.如果小红给小华本,两人故事书地本数就相等,原来小红和小华各有多少本?.有桶油重量相等,如果从每只桶里取出千克,则只桶里所剩下油地重量正好等于原来桶油地重量.原来每桶油重多少千克?.把一根木料锯成段需要分钟,那么用同样地速度把这根木料锯成段,需要多少分?.一个车间,女工比男工少人,男、女工各调出人后,男工人数是女工人数地倍.原有男工多少人?女工多少人?.李强骑自行车从甲地到乙地,每小时行千米,小时到达,从乙地返回甲地时因逆风多用小时,返回时平均每小时行多少千米?.甲、乙二人同时从相距千米地两地相对而行,甲每小时行走千米,乙每小时走千米.如果甲带了一只狗与甲同时出发,狗以每小时千米地速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?.有红、黄、白三种颜色地球,红球和黄球一共有个,黄球和白球一共有个,红球和白球一共有个.三种球各有多少个?.在一根粗钢管上接细钢管.如果接根细钢管共长米,如果接根细钢管共长米.一根粗钢管和一根细钢管各长多少米?.水泥厂原计划天完成一项任务,由于每天多生产水泥吨,结果天就完成了任务,原计划每天生产水泥多少吨?.学校举办歌舞晚会,共有人参加了表演.其中唱歌地有人,跳舞地有人,既唱歌又跳舞地有多少人?.学校举办语文、数学双科竞赛,三年级一班有人,参加语文竞赛地有人,参加数学竞赛地有人,一科也没参加地有人.双科都参加地有多少人?.学校买了张桌子和把椅子,共用元.张桌子和把椅子地价钱相等,桌子和椅子地单价各是多少元?.父亲今年岁,年前父亲地年龄是儿子地倍,今年儿子多少岁?.有两桶油,甲桶油重是乙桶油重地倍,如果从甲桶倒入乙桶千克,两桶油就一样重,原来每桶各有多少千克油?.光明小学举办数学知识竞赛,一共题.答对一题得分,答错一题扣分,不答得分.小丽得了分,她答对几道,答错几道,有几题没答?.甲列火车长米,每秒行米;乙列火车长米,每秒行米,两车相向而行,从两车头相遇到两车尾相离需要几秒?.一列火车长米,通过一条长米地隧道,已知火车地速度是每分米,问火车通过隧道需要几分?.小明从家里到学校,如果每分走米,则正好到上课时间;如果每分走米,则离上课时间还有分.问小明从家里到学校有多远?.有一周长米地环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑米,乙每分钟跑米,经过几分钟二人第一次相遇?.有一个长方形纸板,如果只把长增加厘米,面积就增加平方米;如果只把宽增加厘米,面积就增加平方厘米.这个长方形纸板原来地面积是多少?.妈妈买苹果和梨各千克,付出元找回元.每千克苹果元,每千克梨多少元?.甲乙两人同时从相距千米地两地相对而行,经过小时相遇.甲地速度是乙地倍,甲乙两人每小时各行多少千米?.盒子里有同样数目地黑球和白球.每次取出个黑球和个白球,取出几次以后,黑球没有了,白球还剩个.一共取了几次?盒子里共有多少个球?.上午时从汽车站同时发出路和路公共汽车,路车每隔分钟发一次,路车每隔分钟发一次,求下次同时发车时间..父亲今年岁,儿子今年岁,多少年前父亲地年龄是儿子年龄地倍?.王老师有一盒铅笔,如平均分给名同学余支,平均分给名同学余支,平均分给名同学余支,平均分给名同学余支.问这盒铅笔最少有多少支?.一块平行四边形地,如果只把底增加米,或只把高增加米,它地面积都增加平方米.求这块平行四边形地原来地面积?、想:由已知条件可知,一张桌子比一把椅子多地元,正好是一把椅子价钱地()倍,由此可求得一把椅子地价钱.再根据椅子地价钱,就可求得一张桌子地价钱.解:一把椅子地价钱:÷()(元)一张桌子地价钱:×(元)答:一张桌子元,一把椅子元.、想:可先求出箱梨比箱苹果多地重量,再加上箱苹果地重量,就是箱梨地重量. 解:×(千克)答:箱梨重千克.、想:根据在距离中点千米处相遇和甲比乙速度快,可知甲比乙多走×千米,又知经过小时相遇.即可求甲比乙每小时快多少千米.解:×÷÷(千米)答:甲每小时比乙快千米.、想:根据两人付同样多地钱买同一种铅笔和李军要了支,张强要了支,可知每人应该得()÷支,而李军要了支比应得地多了支,因此又给张强元钱,即可求每支铅笔地价钱.解:÷[()÷]÷[÷]÷(元)答:每支铅笔元.、想:根据已知两车上午时从两站出发,下午点返回原车站,可求出两车所行驶地时间.根据两车地速度和行驶地时间可求两车行驶地总路程.解:下午点是时.往返用地时间:(时)两地间路程:()×÷×÷(千米)答:两地相距千米.、想:第一小组停下来参观果园时间,第二小组多行了[()]?千米,也就是第一组要追赶地路程.又知第一组每小时比第二组快()千米,由此便可求出追赶地时间.解:第一组追赶第二组地路程:()(千米)第一组追赶第二组所用时间:÷()÷(小时)答:第一组小时能追上第二小组.、想:根据甲仓地存粮吨数比乙仓地倍少吨,可知甲仓地存粮如果增加吨,它地存粮吨数就是乙仓地倍,那样总存粮数也要增加吨.若把乙仓存粮吨数看作倍,总存粮吨数就是()倍,由此便可求出甲、乙两仓存粮吨数.解:乙仓存粮:(×)÷()()÷÷(吨)甲仓存粮:×(吨)答:甲仓存粮吨,乙仓存粮吨.、想:根据甲队每天比乙队多修米,可以这样考虑:如果把甲队修地天看作和乙队天修地同样多,那么总长度就减少个米,这时地长度相当于乙()天修地.由此可求出乙队每天修地米数,进而再求两队每天共修地米数.解:乙每天修地米数:(×)÷()()÷÷(米)甲乙两队每天共修地米数:×(米)答:两队每天修米.、想:已知每张桌子比每把椅子贵元,如果桌子地单价与椅子同样多,那么总价就应减少×元,这时地总价相当于()把椅子地价钱,由此可求每把椅子地单价,再求每张桌子地单价.解:每把椅子地价钱:(×)÷()()÷÷(元)每张桌子地价钱:(元)答:每张桌子元,每把椅子元.、想:根据已知地两车地速度可求速度差,根据两车地速度差及快车比慢车多行地路程,可求出两车行驶地时间,进而求出甲乙两地地路程.解:()×[÷()]×[÷]×(千米)答:甲乙两地相距千米.、想:根据已知托运玻璃箱,每箱运费元,可求出应付运费总钱数.根据每损坏一箱,不但不付运费还要赔偿元地条件可知,应付地钱数和实际付地钱数地差里有几个()元,就是损坏几箱.解:(×)÷()÷(箱)答:损坏了箱.、想:因第一中队早出发小时比第二中队先行×千米,而每小时第二中队比第一中队多行()千米,由此即可求第二中队追上第一中队地时间.解:×÷()×÷(时)答:第二中队小时能追上第一中队.、想:由已知条件可知道,前后烧煤总数量相差()千克,是由每天相差()千克造成地,由此可求出原计划烧地天数,进而再求出这堆煤地数量.解:原计划烧煤天数:()÷()÷(天)这堆煤地重量:×()×(千克)答:这堆煤有千克.、想:小红打算买地铅笔和本子总数与实际买地铅笔和本子总数量是相等地,找回元,说明()支铅笔当作()本练习本计算,相差元.由此可求练习本地单价比铅笔贵地钱数.从总钱数里去掉个练习本比支铅笔贵地钱数,剩余地则是()支铅笔地钱数.进而可求出每支铅笔地价钱.解:每本练习本比每支铅笔贵地钱数:÷()÷(元)个练习本比支铅笔贵地钱数:×(元)每支铅笔地价钱:()÷()÷(元)也可以用方程解:设一枝铅笔元,则一本练习本为元.×???????????????????????????? ?????????????????????????答:每支铅笔元.、想:根据一辆客车比一辆卡车多载人,可求辆客车比辆卡车多载地人数,即多用地()辆卡车所载地人数,进而可求每辆卡车载多少人和每辆大客车载多少人.解:卡车地数量:÷[×÷()]÷[×÷]÷(辆)客车地数量:÷[×÷()]÷[]÷(辆)答:可用卡车辆,客车辆.、想:根据计划每天修米,这样实际提前地长度是(×)米.根据每天多修米可求已修地天数,进而求公路地全长.解:已修地天数:(×)÷÷(天)公路全长:()××(米)答:这条公路全长米.、想:根据已知条件,可求个纸箱转化成木箱地个数,先求出每个木箱装多少双,再求每个纸箱装多少双.解:个纸箱相当木箱地个数:×(÷)×=(个)一个木箱装鞋地双数:÷()÷(双)一个纸箱装鞋地双数:×÷(双)答:每个纸箱可装鞋双,每个木箱可装鞋双、想:由已知条件可知道,每天用去袋水泥,同时用去×袋沙子,才能同时用完.但现在每天只用去袋沙子,少用(×)袋,这样才累计出袋沙子.因此看袋里有多少个少用地沙子袋数,便可求出用地天数.进而可求出沙子和水泥地总袋数.解:水泥用完地天数:÷(×)÷(天)水泥地总袋数:×(袋)沙子地总袋数:×(袋)答:运进水泥袋,沙子袋.、想:根据每个保温瓶地价钱是每个茶杯地倍,可把个保温瓶地价钱转化为个茶杯地价钱.这样就可把个保温瓶和个茶杯共用地元钱,看作个茶杯共用地钱数.解:每个茶杯地价钱:÷(×)(元)每个保温瓶地价钱:×(元)答:每个保温瓶元,每个茶杯元.、想:已知一个加数个位上是,去掉,就与第二个加数相同,可知第一个加数是第二个加数地倍,那么两个加数地和,就是第二个加数地(+)倍.解:第一个加数:÷()第二个加数:×答:这两个加数分别是和.、想:由已知条件可知,千克和千克地差正好是半桶油地重量.千克是半桶油和桶地重量,去掉半桶油地重量就是桶地重量.解:()(千克)答:桶重千克.、想:由已知条件可知,千克与千克地差正好是半桶油地重量,再乘以就是原来油地重量.解:()×(千克)答:原来有油千克.、想:由已知条件可知,桶里原有水地()倍正好是()千克,由此可求出桶里原有水地重量.解:()÷()÷(千克)答:桶里原有水千克.、想:从“小红给小华本,两人故事书地本数就相等”这一条件,可知小红比小华多(×)本书,用共有地本去掉小红比小华多地本数,剩下地本数正好是小华本数地倍.解:小华有书地本数:(×)÷(本)小红有书地本数:×(本)答:原来小红有本,小华有本.、想:由已知条件知,桶油共取出(×)千克.由于剩下油地重量正好等于原来桶油地重量,可以推出()桶油地重量是(×)千克.解:×÷()(千克)答:原来每桶油重千克.、想:把一根木料锯成段,只锯出了()个锯口,这样就可以求出锯出每个锯口所需要地时间,进一步即可以求出锯成段所需地时间.解:÷()×()(分)答:锯成段需要分钟.、想:女工比男工少人,男、女工各调出人后,女工仍比男工少人.这时男工人数是女工人数地倍,也就是说少地人是女工人数地()倍.这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人.解:÷()(人)女工原有:(人)男工原有:(人)答:原有男工人,女工人.、想:由每小时行千米,小时到达可求出两地地路程,即返回时所行地路程.由去时小时到达和返回时多用小时,可求出返回时所用时间.解:×÷()(千米)答:返回时平均每小时行千米.、想:由题意知,狗跑地时间正好是二人地相遇时间,又知狗地速度,这样就可求出狗跑了多少千米.解:÷()(小时)×(千米)答:狗跑了千米.、想:由条件知,()表示三种球总个数地倍,由此可求出三种球地总个数,再根据题目中地条件就可以求出三种球各多少个.解:总个数:()÷(个)白球:(个)红球:(个)黄球:(个)答:白球有个,红球有个,黄球有个.、想:根据题意,米比米长地米数正好是根细钢管地长度,由此可求出一根细钢管地长度,然后求一根粗钢管地长度.解:()÷()(米)×(米)答:一根粗钢管长米,一根细钢管长米.、想:由题意知,实际天比原计划天多生产水泥(×)吨,而多生产地这些水泥按原计划还需用()天才能完成,也就是说原计划()天能生产水泥(×)吨.解:×÷()(吨)答:原计划每天生产水泥吨.、想:由题意知唱歌地人中也有跳舞地,同样跳舞地人中也有唱歌地,把两者相加,这样既唱歌又跑舞地就统计了两次,再减去参加表演地人,就是既唱歌又跳舞地人数.解:(人)答:既唱歌又跳舞地有人.、想:参加语文竞赛地人中有参加数学竞赛地,同样参加数学竞赛地人中也有参加语文竞赛地,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛地人数就统计了两次,所以将参加语文竞赛地人数加上参加数学竞赛地人数再加上一科也没参加地人数减去全班人数就是双科都参加地人数.解:(人)答:双科都参加地有人.、想:由“张桌子和把椅子地价钱相等”这一条件,可以推出张桌子就相当于把椅子地价钱,买张桌子和把椅子共用元,也就相当于买把椅子共用元.解:×(÷)(把)÷(元)×÷(元)答:桌子和椅子地单价分别是元、元.、想:年前父亲地年龄是()岁,儿子地年龄是()÷岁,再加上就是今年儿子地年龄.解:()÷(岁)答:今年儿子岁.、想:“如果从甲桶倒入乙桶千克,两桶油就一样重”可推出:甲桶油地重量比乙桶多(×)千克,又知“甲桶油重是乙桶油重地倍”,可知(×)千克正好是乙桶油重量地()倍.解:×÷()(千克)×(千克)答:原来甲桶有油千克,乙桶有油千克.、想:根据题意,题全部答对得分,答错一题将失去()分,而不答仅失去分.小丽共失去()分.再根据()÷(题)……(分),分析答对、答错和没答地题数.解:(×)÷(题)……(分)(题)答:答对题,答错题,有题没答.、想:“从两车头相遇到两车尾相离”,两车所行地路程是两车身长之和,即()米,速度之和为()米.根据路程、速度和时间地关系,就可求得所需时间.解:()÷()÷(秒)答:从两车头相遇到两车尾相离,需要秒.、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行地路程正好是车身与隧道长度之和.解:()÷÷(分)答:火车通过隧道需分.、想:在每分走米地到校时间内按两种速度走,相差地路程是(×)米,又知每秒相差()米,这就可求出小明按每分米地到校时间.解:×÷()(分)×(米)答:小明从家里到学校是米.、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即米,又知乙每分钟比甲多跑()米,即可求第一次相遇时经过地时间.解:÷()÷(分)答:经过分钟两人第一次相遇、想:由“只把宽增加厘米,面积就增加平方厘米”,可求出原来地长是:(÷)厘米,同理原来地宽就是(÷)厘米,求出长和宽,就能求出原来地面积.解:(÷)×(÷)(平方厘米)答:这个长方形纸板原来地面积是平方厘米.、想:用去地钱数除以就是千克苹果和千克梨地总钱数.从这个总钱数里去掉千克苹果地钱数,就是每千克梨地钱数.解:()÷÷(元)答:每千克梨元.、想:由题意知,甲乙速度和是(÷)千米,这个速度和是乙地速度地()倍. 解:÷÷()(千米)×(千米)答:甲乙每小时分别行千米、千米.、想:两种球地数目相等,黑球取完时,白球还剩个,说明黑球多取了个,而每次多取()个,可求出一共取了几次.解:÷()(次)××(个)或××(个)答:一共取了次,盒子里共有个球.、想:路和路下次同时发车时,所经过地时间必须既是分地倍数,又是分地倍数.也就是它们地最小公倍数.个人收集整理-ZQ解:和地最小公倍数是时分时分答:下次同时发车时间是上午时分.、想:父、子年龄地差是()岁,当父亲地年龄是儿子年龄地倍时,这个差正好是儿子年龄地()倍,由此可求出儿子多少岁时,父亲是儿子年龄地倍.又知今年儿子岁,两个岁数地差就是所求地问题.解:()÷()(岁)(年)答:年前父亲地年龄是儿子年龄地倍.、想:根据题意,可以将题中地条件转化为:平均分给名同学、名同学、名同学、名同学都少一支,因此,求出、、、地最小公倍数再减去就是要求地问题.解:、、、地最小公倍数是(支)答:这盒铅笔最少有支.、想:根据只把底增加米,面积就增加平方米,?可求出原来平行四边形地高.根据只把高增加米,面积就增加平方米,可求出原来平行四边形地底.再用原来地底乘以原来地高就是要求地面积.解:(÷)×(÷)(平方米)答:平行四边形地原来地面积是平方米.?地得到地得到地11 / 11。
六年级小升初数学解决问题50道精品(夺冠系列)
六年级小升初数学解决问题50道一.解答题(共50题, 共294分)1.某修路队修一条路, 5天完成全长的20%, 照这样计算, 完成任务还需多少天?2.六年级有200名同学, 本学期的体育成绩如下图。
(1)不合格的人数占全年级总人数的百分之几?(2)各个等级的人数分别是多少?3.某水果店新进一批水果, 其中苹果占新进水果总量的30%, 香蕉占40%, 已知这两种水果共70kg, 这批水果的总量是多少?4.蔬菜基地今年生产了2.4万吨蔬菜, 比去年增产了二成, 去年这个蔬菜基地的产量是多少万吨?5.小兵和小明进行智力竞赛, 答对记+1分, 答错记-1分。
看一看下表, 说一说谁的成绩好, 他们分别答错了哪几题。
6.玩具厂生产一种电动玩具, 原来每件成本96元, 技术革新后, 每件成本降低到了84元, 每件成本降低了百分之几?7.如图, 有一个圆柱形的零件, 高是10cm, 底面直径是6cm, 零件的一端有一个圆柱形的孔, 圆柱形孔的直径是4cm, 孔深5cm, 如果将这个零件接触空气的部分涂上防锈漆, 一共需涂多少平方厘米?8.压路机前轮直径10分米, 宽2.5米, 前轮转一周, 可以压路多少平方米?如果平均每分前进50米, 这台压路机每时压路多少平方米?9.甲、乙两种商品, 成本共2200元, 甲商品按20%的利润定价, 乙商品按15%的利润定价。
后来都按定价的九折打折出售, 结果仍获利131元。
甲商品的成本是多少元?10.一场音乐会的门票, 55%是按全价卖出, 40%是五折卖出, 剩下的20张门票是免费赠送的。
(1)这场音乐会的门票一共有多少张?(2)如果门票一共卖了7200元, 那么一张门票的全价是多少元?11.小红在书店买了两本打八折出售的书, 共花了42元, 小红买这两本书便宜了多少钱?12.修建一个圆柱形的沼气池, 底面直径是3米, 深2米.在池子的四壁和下底面抹上水泥, 抹水泥的面积是多少平方米?13.在一次捐款活动中, 实验小学五年级学生共捐款560元, 比四年级多捐40%, 六年级学生比五年级少捐。
六年级小升初奥数题
1、一件工程,甲独做12天完成,乙独做18天完成,丙独做24天完成;这件工作先由甲做了若干天,然后由乙做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于完成任务,求这件工作做完共用多少天2、砌一面墙,甲要用10天,若甲乙合作6天可以完成,乙丙合作要8天完成;现在三人合作,砌完墙后甲比丙多砌了3000块;乙砌了多少块3、4、一件工程,甲先做63天,再由乙独做28天完成,如果两队合作需48天完成;现在甲先做42天,再由乙做,还要多少天完成565、一件工程,甲独做要12天完成,乙独做要9天完成,如果甲先做若干天后乙接着做,共用10天完成,问甲做了多少天46、一份稿件,甲、乙、丙三人单独打字分别要20小时,24小时,30小时;现在三人合打,但甲因中途另有任务提前撤出,结果用12小时完成,甲只打了多少小时27、师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟;两人共同加工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个108 608、修一条公路,甲独修要40天,乙独修要24天;现在两队同时从两端开工,结果在距中点750米处相遇,这段公路长多少米6009、师徒两人同时一起加工一批零件,用了15/4小时完成,完工时师傅比徒弟一共多做零件30个;如果单独加工这批零件,师傅需要6小时,徒弟需要10小时,这批零件共有多少个10、120•1师徒效率比5:3,即工作量的比也是5:3,师比徒弟多做2份,两份对应30个;•30÷5-3×5+3=120•215/4 ÷6=5/8甲15/4时完成工作总量的5/815/4 ÷10=3/8乙15/4时完成工作总量的3/830 ÷5/8-3/8=12011、移栽树苗,兄弟俩合栽8小时完成,哥哥先栽了3小时后,弟弟又栽了1小时,还剩总数11/16没栽,已知哥哥每小时比弟弟多栽7棵,这块地共有多少棵树苗11210、一批零件,由甲乙两人合做30天完成,甲先做22天,两人再合作12天,剩下的乙单独做还要16天才能全部完成;又知甲每天比乙少做4个零件,问照这样完成任务时,乙共做了多少个零件11、株洲火车站检票前若干分钟开始排队,假设每分钟来的旅客一样多;若同时开4个检票口,15分钟检完,若同时开6个检票口,9分钟检完,那么要求5分钟检完,开放多少个检票口12、仓库里原有一些货物,以后还不断运货进仓,而且每天运进的货同样多;如果用4辆同样的汽车运,9天运完;如果用5辆汽车运,6天运完;如果用1辆汽车运出仓库里原有的存货,则需要几天运完1813、加工一批零件,甲独做需75小时,乙独做需50小时,已知每小时乙比甲多做12个;如果甲的工效提高50%,而乙每小时比原来多做8个,那么两人合做完成这批零件的2/3需要多少小时 1514、加工一批零件,甲、乙合做24小时可以完成;现在由甲先独做16小时,然后乙再独做12小时,还剩下这批零件的2/5没完成;已知甲每小时比乙多做3个零件,问这批零件共有多少个 36015、有一批黄沙,如果用3辆卡车,4天可运完;如果用4辆马车,5天可运完;如果用20辆板车,6天可运完;现在由2辆卡车、3辆马车、7辆板车共同运2天后,全部改用板车运,且必须在2天内运完,后两天需多少辆板车 1516、甲乙丙三人合修一堵围墙,甲、乙合修6天完成了1/3,乙丙合修2天完成余下工程的1/4,剩下的再由甲、乙、丙三人合修5天完成;现在领工资360元,依工作量分配,甲、乙、丙应各得多少元66 182 11217、甲乙两人承包一项工程,共得工资1120元;已知甲工作了10天,乙工作了13天,又知甲4天的工资比乙5天的工资多40元,求乙分得工资多少元52018、早上8点,甲、乙两车同时从A、B两地的中点处背向开出,甲车开向A地,乙车开向B地,上午9点30分,甲车到达A地,此时乙车距离B地还有60千米;甲车到达A地后立即掉头开往B地,乙车到达B地后也立即掉头开往A地,中午12点,两车在途中相遇,求A、B两地的距离;24019、甲乙两人分别从A、B两地同时出发,相向而行,已知甲的速度是乙的倍,小时后相遇,如果他们同向而行甲在乙的后面,那么甲追上乙需要多少小时 320、甲、乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度比是3:2,他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B地时,乙离A地还有14千米,那么AB 两地的距离是多少千米 4521、甲乙两车分别从A、B两地出发,相向而行,甲乙的速度比是5:4,相遇后,甲减速20%,乙增速20%,当甲到达B时,乙离A还有10千米,A、B两地相距多少千米45022、一辆汽车从A城开往B城,如果把车速提高20%,则可比原定时间提前1小时到达B城市,如果按原来速度行驶100千米后,再将速度提高30%,恰巧也能比原定时间提前1小时到达B城市;A、B两城市之间的路程是多少千米36023、小明星期天从家去电影院观看电影叶问,去时每分钟走60米,回来时每分钟走50米,这样来回在路上共用了11/12小时,小明家距电影院多远 150024、某人从甲地去乙地,如果先骑摩托车行12小时,再换骑自行车9小时正好到达乙地;如果先骑自行车21小时,再换骑摩托车行8小时,也正好到达乙地;问全程骑摩托车需要多少小时到达乙地;15 25、小景同学每天早晨在同一时刻从家里骑自行车去学校上学,如果以每分钟200米的速度行进,则可在上课前5分钟到达学校;如果以每分钟160米的速度行进,则会迟到5分钟;请问小景家距离学校多远 800026、0901班的小匡、小贺、小龙三位同学进行百米赛跑假设在赛跑中三人均保持速度不变,跑步结束时,玲玲同学记录结果显示:当小匡到达终点时,小贺落后8米;当小贺到达终点时,小龙落后5米;那么当小匡到达终点时,小龙距离终点还有多远27、甲乙两人分别从A、B两地同时出发,相向而行,出发时他们的速度之比为3:2;相遇后甲的速度提高20%,乙的速度提高1/3,继续前行,这样当甲到达B地时,乙离A地还有41千米;求A 、 B两地的距离;•13528、快、中、慢三辆车同时从甲地出发去乙地,沿同一条公路,有一骑摩托车的人从乙地前往甲地;骑摩托车的人经过了6分钟、10分钟、15分钟分别与这三辆车相遇;现在知道快车每小时80千米,中车每小时走40千米,求慢车每小时走多少千米先求出摩托车的速度和AB的距离,也可以根据总路程不变列出方程;2029、甲乙两人分别从A、B两地同时出发,相向而行,匀速前进,如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,5小时相遇,那么,A、B两地的距离是多少千米4030、某商品按20%的利润定价,然后按9折出售,结果赚了32元,该商品的成本是多少元 40031、如果李先生以定价的6/7出售一台照相机,他将赚取80元的利润;如果他以其定价的7/8出售,则赚取85元的利润;求照相机的原定价; 28032、某商品按定价出售,每件可获利润45元;如果按定价的70%出售10件,与按定价每件减价25元出售12件所获得的利润一样多;这种商品每件定价多少元 7033、甲乙两种商品成本共2200元,甲商品按20%的利润定价,乙商品按15%的利润定价;后来都按定价的90%打折出售,结果仍获利131元;甲种商品的成本是多少元120034、商店以每只28元的价格购进一批玩具熊,然后以每只36元的价格出售;当卖出总数的5/6时,不仅收回了全部成本,还盈利240元;商店一共购进多少只玩具熊12035、商店以每双13元的价格购进一批凉鞋,售价为每双16元,卖到还剩5双时,除去购进这批凉鞋的成本还获利88元;这批凉鞋共多少双5636、已知甲校学生数是乙校学生数的2/5,甲校的女生数是甲校学生数的3/10,乙校的男生数是乙校学生数的21/50,那么两校女生总数占两校学生总数的几分之几1/237、某中学的初中部三个年级中,初一的学生数是初二学生的9/10,初二的学生数是初三学生数的5/4,这个学校里初三的学生数占初中部学生的几分之几8/2738、甲班原有学生是乙班的2/3,现在从乙班调4人到甲班,那么甲班人数就相当于乙班人数的7/8,甲乙两班共有学生多少人6039、甲乙两人原有钱若干,现有18元奖金,如果全部给甲,则甲的钱为乙的2倍,如果全部给乙,则乙的钱为甲的7/8,问原来两人各有多少元钱72 4540、两筐苹果共重80千克,如果甲筐取出1/5给乙筐,两筐苹果重量正好相等,原来两筐苹果各有多少千克50 3041、某校有3/5的学生是男生,男生的1/20想当医生,全校想当医生的学生的3/4是男生,那么全校女生的几分之几想当医生42、一包糖,奶糖占总块数1/3,放入18块水果糖后,奶糖占总块数的2/9,奶糖有多少块1243、甲乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,甲、乙两桶油原来各有多少千克 27 2144、甲乙两个桶,甲桶内装1升油,乙桶是空的;第一次把甲桶的1/2倒给乙,第二次把乙桶的1/3倒给甲,第三次把甲的1/4倒给乙,第四次在把乙桶的1/5倒给甲;如此反复,不计消耗,倒了19次,甲桶中还有多少升油45、一个半圆的周长是分米,它的半径是多少分米46、47、48、49、50、51、52、53、54、55、56、57、时针和分针在9点多少分第一次重合49有1/1158、在4点与5点之间,时针与分针什么时候成直角4时5又5/11分和4时38又2/11分59、兴趣小组四年级学生比三年级多25%,五年级学生比四年级少10%,六年级学生比五年级多10%,如果六年级学生比三年级多38人,那么三至六年级共有多少人 73860、大小两桶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3:2,求大瓶里原有多少千克油61、洗衣机厂计划20天内生产洗衣机1600台,生产了5天后,由于技术改进了,效率提高了25%,完成计划要用多少天62、如图,甲乙两人分别从A、B两地同时同向而行,经过4小时15分,甲在C处追上乙,这时两人共行了41千米;如果乙从A到B再到C那样走,则他还要用1小时45分;A,B两地相距多少千米63、甲乙两辆汽车同时从A,B两个城市相对开出,经过8小时相遇后,甲车继续向前开到B城还要4小时,已知甲每小时比乙快35千米,求A,B两个城市之间的距离;64、甲乙两辆汽车同时从A,B两站相对开出,第一次相遇时离A站有90千米,然后各按原速度继续行驶,分别到达对方车站后立即沿原路返回,第二次相遇时离A站的距离占A,B两站间的65%,A,B两站间的路程是多少千米65、甲乙两车分别从A,B两地同时出发相向而行,相遇点距中点320米;已知甲的速度是乙的速度的5/6,求A,B两地的路程;66、小明家到学校3.5千米,通常他总是步行上学;有一天他想锻炼身体,前1/3的路程快跑,速度是步行速度的4倍,后一段路程慢跑,速度是步行速度的2倍,这样比平时早35分钟到校,小明步行速度是多少67、如图,在三角形ABC中,M是AD的中点,BD是DC的3倍,求AE是EC的几分之几68、如图,长方形ABCD长8厘米,宽6厘米,延长BC到E,三角形甲比三角形乙面积多16平方厘米,求CE的长;69、图中,两个1/4圆弧的半径分别为2厘米和4厘米,求两个阴影A 与B的面积差;70、如图:BF:AB=1:6,AE:AC=1:5,CD:CB=1:4.若三角形ABC的面积为120平方厘米,求三角形DEF 的面积;71、在如图所示的长方形ABCD中,三角形ABD的面积比三角形BCD的面积大10平方厘米,求阴影部分的面积;72、如图:一个矩形被分成8个小矩形,其中有5个矩形的面积如图所示,那么其中最大的矩形的面积;。
六年级小升初奥数竞赛题100道及答案(完整版)
六年级小升初奥数竞赛题100道及答案(完整版)题目1:甲、乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行60 千米,乙车每小时行80 千米,经过 3 小时两车相遇。
A、B 两地相距多少千米?答案:(60 + 80)×3= 140×3= 420(千米)答:A、B 两地相距420 千米。
题目2:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2,这个长方体的体积是多少立方厘米?答案:80÷4 = 20(厘米)5 + 3 + 2 = 10长:20×5/10 = 10(厘米)宽:20×3/10 = 6(厘米)高:20×2/10 = 4(厘米)体积:10×6×4 = 240(立方厘米)答:这个长方体的体积是240 立方厘米。
题目3:在比例尺是1 : 5000000 的地图上,量得甲、乙两地的距离是8 厘米。
一辆汽车从甲地开往乙地,每小时行80 千米,几小时能到达乙地?答案:实际距离:8×5000000 = 40000000(厘米)= 400(千米)时间:400÷80 = 5(小时)答:5 小时能到达乙地。
题目4:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成这项工程?答案:1÷(1/10 + 1/15)= 1÷(3/30 + 2/30)= 1÷5/30= 6(天)答:甲乙合作,6 天可以完成这项工程。
题目5:小明看一本120 页的故事书,第一天看了全书的1/4,第二天看了全书的1/3。
还剩下多少页没有看?答案:第一天看的页数:120×1/4 = 30(页)第二天看的页数:120×1/3 = 40(页)剩下的页数:120 - 30 - 40 = 50(页)答:还剩下50 页没有看。
题目6:一个圆形花坛的周长是31.4 米,这个花坛的半径是多少米?答案:31.4÷3.14÷2 = 5(米)答:这个花坛的半径是5 米。
小升初奥数竞赛题100例附答案(完整版)
小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。
小升初数学常见奥数题100道附答案(完整版)
小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。
2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。
3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。
4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。
5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。
小升初常考的奥数题100道附答案(完整版)
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
六年级小升初奥数题目
六年级小升初奥数题目一、工程问题。
1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。
现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。
从开始到完成共用了16天。
问乙队休息了多少天?- 解析:- 甲队单独做20天完成,则甲队每天的工作效率为1÷20=(1)/(20);乙队单独做30天完成,则乙队每天的工作效率为1÷30=(1)/(30)。
- 甲队工作了16 - 3=13天,甲队完成的工作量为(1)/(20)×13=(13)/(20)。
- 那么乙队完成的工作量为1-(13)/(20)=(7)/(20)。
- 乙队完成这些工作量需要的时间为(7)/(20)÷(1)/(30)=(7)/(20)×30 = 10.5天。
- 所以乙队休息的天数为16 - 10.5 = 5.5天。
2. 有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10(2)/(5)分钟后,共注水4(1)/(3)吨,水池能装水多少吨?- 解析:- 1小时 = 60分钟,甲管1分钟注水1÷60=(1)/(60),乙管1分钟注水1÷40=(1)/(40)。
- 两管同时开10(2)/(5)分钟,即(52)/(5)分钟,它们注水的效率和为(1)/(60)+(1)/(40)=(2 + 3)/(120)=(5)/(120)=(1)/(24)。
- 那么(52)/(5)分钟的注水量占水池总量的(1)/(24)×(52)/(5)=(13)/(30)。
- 已知共注水4(1)/(3)吨,即(13)/(3)吨,设水池能装水x吨,则(13)/(30)x=(13)/(3),解得x = 10吨。
二、行程问题。
3. 甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。
如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)
小升初50道经典奥数题,有空练练手!(附答案以及详细解析)小升初奥数50题01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。
【解析】分给一班后还剩下40-20=20个梨,因为其余平均分给二班和三班,所以二班分到20÷2=10个。
02、7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。
【解析】年龄问题,7年前,儿子年龄为12-7=5岁,而妈妈年龄是儿子的6倍,所以妈妈七年前的年龄为5×6=30岁,那么妈妈今年37岁。
03、同学们进行广播操比赛,全班正好排成相等的6行。
小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有( )人【解析】站队问题,要注意不要忽略本身。
从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。
04、有一串彩珠,按“2红3绿4黄”的顺序依次排列。
第600颗是( )颜色。
【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66....6,余数为6,所以第600颗是黄颜色。
05、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周长有( )厘米,绳子长( )厘米。
【解析】绕树三圈余30厘米,绕树四圈则差40厘米,所以树的周长为30+40=70厘米,绳子长为3×70+30=240厘米。
06、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这只蜗牛要( )小时才能爬出井口。
【解析】每小时爬上3米后要滑下2米,相当于每小时向上爬了1米,那么7小时后,蜗牛向上爬了7米,离井口还差3米,所以只需要再1小时,蜗牛就可爬出井口,因此需要的总时间为8小时。
07、锯一根10米长的木棒,每锯一段要2分钟。
如果把这根木棒锯成相等的5段,一共要( )分钟。
小学六年级小升初奥数
第一讲 计算一运用分配律与基本计算 1、 1752×37-174×1.9+1752×82 2、8888×58-4444×16+443、10÷3.14-3.72÷3.144、837[(0.25)]9416⨯-- 5、43435757⨯÷⨯二乘除结合与配对思想1、 (0.34×7.8×7.6)÷(1.7×0.13×1.9)2、100-98+96-94+92-90+……+8-6+4-23、2222222 (99)989796321-+-++-+三等差数列 1、1+2+3+。
+100 2、3+7+11+15+。
+107四凑整与平方差 1、23999919999+ 2、 27999619998+五约分 1、( 967772+365524)24(3277÷+12558) 2、1202505051313131321212121212121212121+++3、498381382382498116⨯+⨯- 4、 199319941199319921994⨯-+⨯6、(383-321012⨯)÷[(3.375+4125)13226÷]7、199811998199819992000÷÷六换元法: 1、19961997×19971996-19961996×199719972、1111111111111111(1...)(......)(1....)(....)3572009357201135720113572009+++++⨯+++-++++⨯++++巩固练习1、2.54 2.54⨯÷⨯2、4.75×1.36×0.375÷(434 ×1925 ×38)3、 150-120÷1.4×0.844、 99-97+95-93+91-89+…+7-5+3-15、 2119911997+ 6、81+294÷(3.4-1511)×1167、 2222222011201020092008....21-+-+-+第二讲 裂项与估算一、裂差与裂和1、1111.....12233420102011++++⨯⨯⨯⨯2、1111...612202450++++3、222....3445910+++⨯⨯⨯4、111....1335911+++⨯⨯⨯5、1111....42870418+++6、7215614213012011216121-------7、111... 1232348910 +++⨯⨯⨯⨯⨯⨯8、57911131517 6122030425672 -+-+-+三估算1、求1111 (199119922009)+++的整数部分巩固练习1、1111 12233420102011 +++⋯⋯+⨯⨯⨯⨯2、 111124466820062008++++⨯⨯⨯⨯L3、11111----3153563994、26+621+1341+581+7161+33215、 2.6258⨯+0.324.8⨯-825÷ 6 1994 ⨯19931993-1992 ⨯19941994 7、 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++ 8、1111 (601602625)s =+++求s 的整数部分 9、 求 121212122++++第三讲解方程一等式两条性质的应用1、2x-5=4x-172、3x+7=5x-133、5(x-66)=30—4 x4、2(x+5)-3(x-1)=5x+15、4.2x÷0.6-14=0.76、4x-3(20-x)=6x-7(11-x)7、2x+4(35-x)=948、14.2-(0.4x+2.4)=10.8 二比例方程1、23-1195xx=+2、(x+180):90=(x-180):603、2424x-:1818x-=2:1三分数方程1、 2x - x-12 =2+ x+122、253164x x---=3、 1-13x=3-3x4、11(3)(32)11214x x ++-=5、11(170)1034x x --=6、21(100)3653x x +-=四百分数方程1、40%x+10%(300-x )=300×30%2、100× 8%=6.4%(100+x)3、30%x+300×20%=25%(300+x )4、100×30%+x=1(100)3x +5、50⨯48%+62.5%x+(50-x)=566、0.9(1+20%)x+0.9(1+30%)(500-x)=500+67第四讲分数应用题准备题60比()多15; 160比()少15;60是()的15;( )是60的15( )比60多15;( )比60少15.1、小华看一本故事书,第一天看了全书的18还多21页,第二天看了全书的16少6页,还余下172页,这本故事书一共多少页?2、光明小学六年级选出男生的111和12名女生参加比赛,余下男生人数是女生的2倍,六年级共有156人,求男生和女生各有多少人?3、一桶油连桶共重56千克,三天用完,第一天用去13,第二天用去余下的23,第三天用去的比前两天和的37少6千克,油桶多重?4、工厂计划生产一批煤,实际比计划节约了25,实际用了180吨煤。
六年级小升初奥数
六年级小升初奥数奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。
小升初可以通过奥数这门竞赛来为自己争取到更好的机会。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
六年级小升初奥数1、一个两位数除72,余数是12,那么满足要求的所有两位数有几个?分别是多少?解答:由题意知,所求的两位数应是7212=60的约数,还应大于12。
在60的约数中,两位数有10、12、15、20、30、60这六个数,大于12的有:15、20、30、60这四个数。
所以满足要求的两位数有4个,分别是15、20、30、60。
2、有写着5、9、17的卡片各8张,现在从中任意抽出5张,这5张卡片上的数字之和可能是()。
A、31B、39C、55D、41解答:5、9、17三个数除以4都是余1的,任取5张,也是除以4余1的,所以是D。
3、某校五年级学生排成一个实心方阵,最外一层总人数为60人,问方阵最外层每边有多少人?这个方阵共有学生多少人?解答:方阵最外层每边人数:604+1=16(人)整个方阵共有学生人数:1616=256(人)4、12张乒乓球台上共有34人在打球,那么正在进行单打和双打的台子各有多少张?解答:利用鸡兔同笼的想法,假设都在进行单打,那么应有122=24人,多出34-24=10人。
把单打变为双打,每个台子需要增加2人,所以双打的台子有102=5张,单打的台子有12-5=7张。
5、一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人?解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)6、有黑白两种棋子共300枚,按每堆3枚分成100堆。
其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。
那么在全部棋子中,白子共有多少枚?解答:271+432+153=158(枚)7、有336个苹果、252个桔子、210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中的三样水果各有多少个?解答:(336,252)=(84,252)=84(84,210)=(84,42)=42所以可以分成42份礼物苹果:33642=8(个)桔子:25242=6(个)梨:21042=5(个)8、正方形操场四周栽了一圈树,每两棵树相隔5米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初奥数经典试题集锦(1)一工人工作7天,老板有一段黄金,每天要给工人1/7的黄金作为工资,老板只能切这段黄金2刀,请问怎样切才能每天都给工人1/7的黄金?(2)有2个人开油坊,每天榨出10斤油,正好装满一个大油篓,他们用一个能盛3斤油的勺和一个能盛7斤油的小油篓平分了这10斤油,请问他们是如何分的?(3)一老板有2个白球和1个红球,老板和一赌徒赌博,老板用3个不透明的杯子盖住这3个球,让赌徒猜红球在哪个杯子里。
于是赌徒选了一个杯子,还不知道里面是否是红球。
老板有个习惯,在对方翻开选好的杯子之前,自己先翻开一个里面是白球的杯子,然后再问赌徒是否想用选好的杯子对换另一个未翻开的杯子。
请问赌徒对换杯子赢的可能性大还是不换大?(4)有若干根不均匀的绳子,每根绳子烧完的时间是一个小时,用什么方法确定一段1小时15分钟的时间?(5)有三个人去住旅馆,住三间房,每一间房$10元,于是他们一共付给老板$30,第二天,老板觉得三间房只需要$25元就够了于是叫小弟退回$5给三位客人,谁知小弟贪心,只退回每人$1,自己偷偷拿了$2,这样一来便等于那三位客人每人各花了九元,于是三个人一共花了$27,再加上小弟独吞的$2,总共是$29。
可是当初他们三个人一共付出$30那么还有$1呢?(6)有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜的布质、大小完全相同,而每对袜了都有一张商标纸连着。
两位盲人不小心将八对袜混在了一起。
他们每人怎样才能取回黑袜和白袜各两对呢?(7)有一辆火车以每小时15公里的速度离开洛杉矶开往42公里以外的纽约,另一辆火车以每小时20公里的速度离开纽约开往洛杉矶。
如果有一只鸟,以每小时30公里的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?(8)你有两个罐子,50个红色弹球,50个蓝色弹球,随机选出一个罐子,随机选取出一个弹球放入罐子,怎么给红色弹球最大的选中机会?在你的计划中,得到红球的准确几率是多少?(9)你有四瓶药丸,每瓶装的药丸数量不等,但都多于20粒,每瓶中每粒药丸重10,过期的一瓶中每粒药丸重11。
用电子秤称量一次,如何找出哪瓶药过期了?(10)对一批编号为1~100、全部开着的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……100的倍数反方向又拨一次开关。
问:最后为关熄状态的灯的编号?(11)想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?(12)1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?(13)在一天的24小时之中,时钟的时针、分针和秒针完全重合在一起的时候有几次?(14)一个大人让孩子去买苹果,给了孩子3元钱,让他买4个苹果,但每个苹果2.5元钱,可孩子买完苹果还剩4角钱。
问:他是怎么买的?(15)在9个点上画10条直线,要求每条直线上至少有三个点(16)假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。
条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿球的人,你该先拿几个才能保证以后怎么拿能使你得到第100个乒乓球?(17)每架飞机只有一个油箱,一箱油可供一架飞机绕地球飞半圈,空中没有加油机,但飞机之间可以相互加油。
问:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,不允许中途降落,必须全部安全返回机场)(18)有三只母虎,每只母虎都有自己的一只小虎。
他们要过一条河,这条河上只有一支船,而且每次最多只能坐二只老虎。
如果其它小虎落单的话,母虎要吃其它的小虎。
三只母虎会摇船,但只有一只小虎会摇船。
当小虎离开对应的母虎后到对岸碰到其它母虎存在的话,也会被吃掉。
++++++++++++++++++++++++++++++++++++++++++++++小升初应用题训练试题及解答【试题1】甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A 地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B 地?【解答】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。
【试题2】有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30 天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?【解答】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。
两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180 /80+24(头)24亩需牛:(180/80+24)*(24/15)=42头【试题3】某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?【解答】甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元三人合作一天完成(5/12+4/15+7/20)÷2=31/60,三人合作一天支付(750+400+560)÷2=855元甲单独做每天完成31/60-4/15=1/4,支付855-400=455元乙单独做每天完成31/60-7/20=1/6,支付855-560=295元丙单独做每天完成31/60-5/12=1/10,支付855-750=105元所以通过比较选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元【试题4】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.【解答】把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍上面部分和下面部分的高度之比是(50-20):20=3:2所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍所以长方体的底面积和容器底面积之比是(4-1):4=3:4独特解法:(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,所以体积比就等于底面积之比,9:12=3:4【试题5】甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?【解答】把甲的套数看作5份,乙的套数就是6份。
甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份甲比乙多4-3=1份,这1份就是10套。
所以,甲原来购进了10×5=50套。
【试题6】有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5. 经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?【解答】把一池水看作单位“1”。
由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。
甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。
甲管后来的注水速度是1/4×(1+25%)=5/16用去的时间是5/12÷5/16=4/3小时乙管注满水池需要1÷5/28=5.6小时还需要注水5.6-7/3-4/3=29/15小时即1小时56分钟继续再做一种方法:按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时乙管注满水池的时间是7/3÷5/12=5.6小时时间相差5.6-4=1.6小时后来甲管速度提高,时间就更少了,相差的时间就更多了。
甲速度提高后,还要7/3×5/7=5/3小时缩短的时间相当于1-1÷(1+25%)=1/5所以时间缩短了5/3×1/5=1/3所以,乙管还要1.6+1/3=29/15小时再做一种方法:①求甲管余下的部分还要用的时间。