人教版初中数学知识点总结精华

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结(精华)

第一章 有理数

1、有理数的分类: ① ⎪⎪⎩

⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0 ? a+b=0 .

4、.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)

0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a

1;若ab=1? a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数

(2)有理数减法法则::减去一个数等于加上这个数的相反数

(3)有理数的乘法法则:✍两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;

✍多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘

(4)有理数的除法法则✍两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;

✍除以一个不为0的数,等于乘以这个数的倒数

7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;

(2)乘法的结合律:(ab )c=a (bc );

(3)乘法的分配律:a (b+c )=ab+ac .

8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数

(2)数轴上的点表示的有理数,左边的数总比右边的数小

(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小

(4)两数相乘(或相除),同号得正 > 0,异号得负 < 0

9、有理数乘方的法则:(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a

n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .

10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一

位的数,这种记数法叫科学记数法.

11、非负数的性质:若02=++c b a ,则000===c b a 且且

第二章 整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5、整式:单项式和多项式统称整式

6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

7、合并同类项的法则:将同类项的系数相加作为结果的系数,字母和字母的指数不变。

8、去括号法则:去括号,看符号;是“+”号,不变号;是“-”号,全变号

第三章 一元一次方程

1、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.一元一次方程的一般式:ax+b=0(x 是未知数,a 、b 是常数,且a ≠0).

3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… 得到方程的解.

4.列方程解应用题的常用公式:

(1)行程问题: 距离=速度·时间 时间距离速度= 速度

距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效

工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题: 售价=定价·折·

101 ,利润=售价-成本, %100⨯-=成本

成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),

S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=π

R 2h ,V 圆锥=3

1πR 2h. 第四章 图形的认识初步

1、直线公理:两点确定一条直线

2、线段公理:两点之间,线段最短

3、两点之间的距离:连接两点的线段的长度叫做两点之间的距离

4、'0601=;'''601=;1周角=0360;1平角=0

180

5、两个角的和等于直角,这两个角互余;两个角的和等于平角,这两个角互补

6、同角或等角的余角相等;同角或等角的补角相等

第五章 相交线与平行线

1、命题:判断一件事情的语句叫命题。命题是由题设和结论两部分构成的,它可以改写成“如果……那么……”的形式。

2、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

3、.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

5、平行线的判定: 判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角互补,两直线平行。

6、平移的性质:平移前后的图形全等

第六章 实数

1、实数的分类

相关文档
最新文档