力学习题-第3章非惯性系(含答案)

合集下载

分析力学基础答案非惯性系中的质点动力学答案

分析力学基础答案非惯性系中的质点动力学答案

第一章分析力学基础答案1-1 图a自由度数为1;图b自由度数为2。

1-2广义力不都具有力的量纲,可以是力,也可以是力矩,还可以是其他量。

广义力与广义坐标的虚增量之积等于虚功。

1-3分别对图示系统写出其势能表达式,求一阶与二阶导数,由稳定性判别依据可得图a所示系统为不稳定平衡状态,图b所示系统为稳定平衡状态。

1-4只要内力作功就应该计入内力所作的功。

1-5将摩擦力看作为“主动力”,即可应用动力学普遍方程或拉格朗日方程。

1-6刚体平面运动有3个自由度,选质心坐标和转角为广义坐标,写出系统的动能,刚体所受力系向质心简化,此即为3个广义力,代入拉格朗日方程运算即可。

1-7在证明拉格朗日两个恒等式时,在推导以广义坐标表示的动力学普遍方程时。

第二章非惯性系中的质点动力学答案2-1找不到作用处;不成立。

2-2略。

2-3A对。

2-4向右面;(2)向左面;(3)与南、北半球情况相同。

2-5 略。

第三章碰撞答案3-1按恢复因数定义结合动量守恒定理求解。

时,基本按原速返回,基本不动;时,停止运动,以速度前进;时,以速度继续前进,以速度2前进。

3-2一般情况下,难以积分;碰撞过程中,可看为常量,容易积分。

3-3弹性碰撞时变形不能全部恢复,机械能损耗难以计算,不适宜用动能定理;恢复因数e=1时,是完全弹性碰撞,无机械能损失,可以用动能定理。

3-4恢复因数定义为碰撞后与碰撞前物体接触点处法向速度的比值;补充动力学方程以解决机械能损耗难以计算的困难。

3-5棒球击于球棒的撞击中心且与球棒垂直时,不震手;反之,手握棒处有碰撞冲量,有碰撞力,震手。

3-6用撞击中心的概念解释;撞击中心趋于无穷远处,无意义。

3-7均可用动量定理和对质心的动量矩定理求解。

作用于距质心l/6长度处。

第四章机械振动基础答案4-1 弹簧固有频率与弹簧松紧程度无关;不可以。

4-2不同,水平放置重力不是恢复力,铅直放置重力为恢复力。

如果在无重力场,固有频率与放置方式无关。

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理第三章课后习题答案

大学物理第三章课后习题答案

r3
, k 为常量。试求两粒子相距为 r 时的势能,设力为零的
r = a cos ωt i + b sin ωt j , r 式中 a , b , ω 是正值常数,且 a ≻ b 。
(1)说明这质点沿一椭圆运动,方程为

x2 y 2 + = 1; a2 b2
(2)求质点在 A 点 (a ,0) 时和 B 点 (0, b ) 时的动能; (3)当质点从 A 点到 B 点,求力 F 所做的功,并求 F 的分力 Fx i 和 Fy j 所做的 功; (4) F 力是不是保守力? 12 . 如果物体从髙为 h 处静止下落,试求(1)时间为自变量; 12. (2)高度为自变量, 画出它的动能和势能图线,并证明两曲线中动能和势能之和相等。 . 一质量为 m 的地球卫星,沿半径为 3R e 的轨道运动, R e 为地球的半径,已知 13 13. 地球的质量为 M e ,求(1)卫星的动能; (2)卫星的引力势能; (3)卫星的机械 能。 . 如图所示, 14 14. 小球在外力作用下, 由静止开始从 A 点出发做匀加速运动,到达 B 点时撤消外力,小球 无摩擦的冲上竖直的半径为 R 的半圆环, 到达最高 点 C 时,恰能维持在圆环上做圆周运动,并以此速 度抛出而刚好落回到原来的出发点 A 处, 如图试求 小球在 AB 段运动的加速度为多大? . 如图所示,有一自动卸货矿车,满载时的质量 15 15. 为 M ,从与水平倾角 α = 30° 斜面上的点 A 由静 止下滑。设斜面对车的阻力为车重的 0.25 倍, 矿 车下滑距离 l 时,矿车与缓冲弹簧一道沿斜面运 动。当矿车使弹簧产生最大压缩形变时,矿车自 动卸货, 然后矿车借助弹簧的弹性力作用, 使之返回原位置 A 在装货。试问要完成这 一过程,空载时车的质量与满载时车的质 量之比应为多大? . 半径为 R 的光滑半球状圆塔的顶点 A 16 16. 上,有一木块 m ,今使木块获得水平速度

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 3­10 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]

《工程力学》课后习题与答案全集

《工程力学》课后习题与答案全集
解:取DC杆上的C为动点,OAB为动系,定系固结在支座上。
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN

由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。

(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。

理论力学习题精选

理论力学习题精选
B 保守力的旋度一定为 0;
C 凡是矢量,它对空间某一点或者某一轴线就必具有矢量矩;
D 由动量矩守恒律(角动量守恒律)可知,若质点的动量矩为一恒矢量,则质点 必不受外力作用。
答案:D 5、研究有心力问题,采用哪一种坐标系最简单?( )
A 直角坐标系;
B 自然坐标系;
C 平面极坐标系;
D 球面坐标系。 答案:C 6、下列表述中正确的是:( )
分析:水平方向外力为零,非保守内力但不做功 例1解

得:

得:
例 2 质量为 M 的平板车静止在光滑地面上,车上有 N 个人,每人的质量都为 m , 若每人消耗同样的体力(即每人作功相同)沿水平方向向后跳,忽略空气阻力,人可看作 质点。
问:怎样的跳法可使车得到最大的动能?
解:取地面参考系人作总功 W 为
2、杆对 O 点的动量矩
3、杆的动能 解法一: 解法二:
,所以有 得
例 3 已知:质量为 m1 的匀质细杆 AB 铰接于质量为 m2 的可在光滑水平面上移动的平 车上。初始时系统静止,杆处于铅垂位置。求:杆与水平面成 q 角时,杆的角速度。
解:运动学分析,建立坐标系;
受力分析,分析外力系的特点(外力系主矢量在 x 轴的投影为零、约束力不做功)
习题精选 第二章 普遍定理提供了解决质系动力学问题的一般方法 普遍定理包括动量方法和能量方法: 动量方法 — 向量方程 能量方法 — 标量方程 分析运动,建立坐标系 受力分析,画受力图。分析未知约束力的规律:是否做功?力矩是否为零? 分析已知量和未知量 选取相应的普遍定理 动能定理 – 已知主动力求运动 动量(矩)定理– 已知运动求力 解题要点 选择系统为对象、分析受力(内力和外力)和运动 选择合适的定理:一般平动用动量定理、转动用动量矩定理.和能量有关用动能定理、要 考虑整体运动可用质心运动定理. 为避免约束反力在方程中出现, 适当选择对轴的动量矩或选择法向动能定理(因为法向 反力不做功) 注意:用守恒律特别重要! 例 1 椭圆摆 已知质量为 mA 的滑块放在光滑水平面上,摆锤质量 mB,无重杆长 l 求:系统的运动微分方程

陈世民理论力学简明教程(第二版)课后答案

陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。

在理论力问题的简单处理中,一般只需近似到三阶以内。

二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。

2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。

非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。

解出特解为1λ,2λ。

*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。

理论力学期末前复习题-3.填空选择

理论力学期末前复习题-3.填空选择

一、填空题 1、质点运动方程为 r = a t ,θ= bt ,则极坐标下的轨道方程为 ,加速度大小为 。

[θbar =;224t b ab +;221t b a +] 1、质点运动方程为t b y t a x ωωsin ,cos ==(b a ,为常数)其轨道方程为 ,速度大小为 。

[t b t a v by a x ωω22222222cos sin ;1+==+] 2、单位质量的两个质点位于xy 平面上运动,在某时刻其位矢、速度分别为j i v j i v j i r j i r52,,32,32121+=-=+=+= 则此时质心位矢=c r ,质心速度为=c v ,质系动量=p,质系动能T= ,质系对原点的角动量=J。

[)43(21j i r c+=)43(21j i v c +=;j i p43+= ;T=31/2;k J 2=] 3、质量均为1的三个质点组成一质系,若其瞬时速度分别为i v k v j v3,2,2321==-=,则质系的动量为 ,质心速度为 。

[k j i223+- ;k j i3232+-]3、质量均为1的三个质点组成一质系,某时刻它们的位矢分别为,2,,32321k j r j i r k j i r+=+=++=,则质系的质心位矢为 。

[k j i r c322++=] 4、已知质点势能为)(2122y x V +=,则保守力=F 。

[j y i x F --=]5、当质点受有心力作用时,其基本守恒律的数学表达式为 和 。

[h r =θ2;E r V r rm =++)()(2122θ ] 6、一个圆盘半径为r ,质量为m ,沿直线作纯滚动,盘心速度为c v,则圆盘的转动角速度=ω ,圆盘的绝对动能T= 。

[r v c /=ω;2224121ωmr mv T c +=] 7、标出下列两图中作平面运动刚体的转动瞬心的位置:7、标出下列两图中作平面运动刚体的转动瞬心的位置:V AV BV V B VV B V A V BcV AV B VV B c V A V BcV V B c8、作用在刚体上的力可沿力的作用线任意移动而不影响它的作用效果,这叫 ,因此作用在刚体上的力是 矢量。

工程流体力学课后习题答案(杨树人)

工程流体力学课后习题答案(杨树人)

工程流体力学目录第一章流体的物理性质 (1)一、学习引导 (1)二、难点分析 (2)习题详解 (3)第二章流体静力学 (5)一、学习引导 (5)二、难点分析 (5)习题详解 (7)第三章流体运动学 (13)一、学习引导 (13)二、难点分析 (13)习题详解 (16)第四章流体动力学 (22)一、学习引导 (22)习题详解 (24)第五章量纲分析与相似原理 (34)一、学习引导 (34)二、难点分析 (34)习题详解 (36)第六章粘性流体动力学基础 (40)一、学习引导 (40)二、难点分析 (40)习题详解 (42)第七章压力管路孔口和管嘴出流 (50)一、学习引导 (50)二、难点分析 (50)习题详解 (51)主要参考文献 (59)第一章流体的物理性质一、学习引导1.连续介质假设流体力学的任务是研究流体的宏观运动规律。

在流体力学领域里,一般不考虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。

按照这种假设,流体充满一个空间时是不留任何空隙的,即把流体看作是连续介质。

2.液体的相对密度是指其密度与标准大气压下4℃纯水的密度的比值,用δ表示,即=ρδρ水3.气体的相对密度是指气体密度与特定温度和压力下氢气或者空气的密度的比值。

4.压缩性在温度不变的条件下,流体的体积会随着压力的变化而变化的性质。

压缩性的大小用体积压缩系数βp表示,即1 =p dVβV dp5.膨胀性指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。

其大小用体积膨胀系数βt表示,即1 = t dVβV dt6.粘性流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。

7.牛顿流体和非牛顿流体符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。

8.动力粘度牛顿内摩擦定律中的比例系数μ称为流体的动力粘度或粘度,它的大小可以反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。

材料力学习题册答案-第3章 扭转

材料力学习题册答案-第3章 扭转

第三章扭转一、是非判断题1.圆杆受扭时,杆内各点处于纯剪切状态。

(×)2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。

(×)3.薄壁圆管和空心圆管的扭转切应力公式完全一样。

(×)For personal use only in study and research; not for commercial use4.圆杆扭转变形实质上是剪切变形。

(×)5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。

(√)6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。

(×)7.切应力互等定理仅适用于纯剪切情况。

(×)8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。

(√)9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。

(√)10.受扭圆轴的最大切应力只出现在横截面上。

(×)11.受扭圆轴内最大拉应力的值和最大切应力的值相等。

(√)12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。

( × )二、选择题1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )A τ;B ατ;C 零;D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )A 1τ=τ2, φ1=φ2B 1τ=τ2, φ1≠φ2C 1τ≠τ2, φ1=φ2D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。

理论力学3分析力学基础课后答案

理论力学3分析力学基础课后答案

代入拉格朗日方程,得
则 3-3
[
]
质量为 m 的质点悬在 1 线上,线的另 1 端绕在 1 半径为 R 的固定圆柱体上,如图
250
3-3 所示。设在平衡位置时,线的下垂部分长度为 l,且不计线的 质量。求此摆的运动微分方程。 解 取 θ 为广义坐标,设小球的静平衡位置为其零势能点。 系统势能
V = mg [(l + R sin θ ) − (l + θR ) cosθ ]
A
A x
& & x
θ
C
θ
FN
ϕ
θ −ϕ
l & ϕ 2 y
θ
& & x
θ
x′ B
C mg B
(c)
l && ϕ 2 y
(a)
& (见图 3-7b) & 、ϕ 解 2 自由度,给广义坐标 x, ϕ ,则广义速度为 x
(b) 图 3-7
l & & − cos(θ − ϕ )ϕ vCx = x 2 l & sin(θ − ϕ ) vCy = ϕ 2
x A = x B = 0, y A = −2a sin θ , y B = 2a sin θ , xO = 2a cosθ
对相应坐标的变分
δ x A = δ x B = 0,δ y A = −2a cosθδ θ ,δ y B = 2a cosθδ θ δ xO = −2a sin θδ θ
根据动力学普遍方程,有
系统动能
势能
m 2 m 2 l2 2 m 1 m 2 & 2 = (x & + ϕ & − lx &ϕ & cos(θ − ϕ )) + l 2ϕ &2 (vCx + vCy ) + ⋅ l 2ϕ 2 2 12 2 4 24 m 2 m 2 2 m & + lϕ & − lx &ϕ & cos(θ − ϕ ) = x 2 6 2 l V = − mgx sin θ − mg cos ϕ (设初始 A 处势能为零) 2 T= ∂L m & cos(θ − ϕ ) & − lϕ = mx & ∂x 2 d ∂L m m && cos(θ − ϕ ) − lϕ & sin(θ − ϕ )ϕ & & − lϕ ( ) = m& x & dt ∂x 2 2

第三章:牛顿运动定律(3.2_牛顿第二定律、两类动力学问题)讲解

第三章:牛顿运动定律(3.2_牛顿第二定律、两类动力学问题)讲解

2012年物理一轮精品复习学案:第2节 牛顿第二定律、两类动力学问题【考纲知识梳理】一、牛顿第二定律1、内容:牛顿通过大量定量实验研究总结出:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向和合外力的方向相同。

这就是牛顿第二定律。

2、其数学表达式为:m Fa =ma F =牛顿第二定律分量式:⎩⎨⎧==yy x x ma F ma F用动量表述:t PF ∆=合3、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理微观粒子高速运动问题; 二、两类动力学问题1.由受力情况判断物体的运动状态;2.由运动情况判断的受力情况 三、单位制1、单位制:基本单位和导出单位一起组成了单位制。

(1)基本单位:所选定的基本物理量的(所有)单位都叫做基本单位,如在力学中,选定长度、质量和时间这三个基本物理量的单位作为基本单位: 长度一cm 、m 、km 等; 质量一g 、kg 等; 时间—s 、min 、h 等。

(2)导出单位:根据物理公式和基本单位,推导出其它物理量的单位叫导出单位。

2、由基本单位和导出单位一起组成了单位制。

选定基本物理量的不同单位作为基本单位,可以组成不同的单位制,如历史上力学中出现了厘米·克·秒制和米·千克·秒制两种不同的单位制,工程技术领域还有英尺·秒·磅制等。

【要点名师精解】一、对牛顿第二定律的理解1、牛顿第二定律的“四性”(1)瞬时性:对于一个质量一定的物体来说,它在某一时刻加速度的大小和方向,只由它在这一时刻所受到的合外力的大小和方向来决定.当它受到的合外力发生变化时,它的加速度随即也要发生变化,这便是牛顿第二定律的瞬时性的含义.例如,物体在力F1和力F2的共同作用下保持静止,这说明物体受到的合外力为零.若突然撤去力F2,而力F1保持不变,则物体将沿力F1的方向加速运动.这说明,在撤去力F2后的瞬时,物体获得了沿力F1方向的加速度a1.撤去力F2的作用是使物体所受的合外力由零变为F1,而同时发生的是物体的加速度由零变为a1.所以,物体运动的加速度和合外力是瞬时对应的.(2)矢量性(加速度的方向与合外力方向相同);合外力F是使物体产生加速度a的原因,反之,a是F产生的结果,故物体加速度方向总是与其受到的合外力方向一致,反之亦然。

理论力学习题答案第三章

理论力学习题答案第三章

第三章思考题解答3.1 答:确定一质点在空间中得位置需要3个独立变量,只要确定了不共线三点的位置刚体的位置也就确定了,故须九个独立变量,但刚体不变形,此三点中人二点的连线长度不变,即有三个约束方程,所以确定刚体的一般运动不需3n 个独立变量,有6个独立变量就够了.若刚体作定点转动,只要定出任一点相对定点的运动刚体的运动就确定了,只需3个独立变量;确定作平面平行运动刚体的代表平面在空间中的方位需一个独立变量,确定任一点在平面上的位置需二个独立变量,共需三个独立变量;知道了定轴转动刚体绕转动轴的转角,刚体的位置也就定了,只需一个独立变量;刚体的平动可用一个点的运动代表其运动,故需三个独立变量。

3.2 答物体上各质点所受重力的合力作用点即为物体的重心。

当物体的大小远小于地球的线度时物体上各质点所在点的重力加速度都相等,且方向彼此平行即重力场为均匀场,此时质心与重心重合。

事实上但物体的线度很大时各质点所在处g 的大小是严格相等,且各质点的重力都指向地心,不是彼此平行的,重心与质心不和。

答 当物体为均质时,几何中心与质心重合;当物体的大小远小于地球的线度时,质心与重心重合;当物体为均质且大小远小于地球的线度时,三者都重合。

3.4 答 主矢F 是力系各力的矢量和,他完全取决于力系中各力的大小和方向,故主矢不随简化中心的位置而改变,故而也称之为力系的主矢;简化中心的位置不同,各力对简化中心的位矢i r 也就不同则各力对简化中心的力矩也就不同,故主矩随简化中心的位置而变,被称之为力系对简化中心的主矩。

分别取O 和O '为简化中心,第i 个力i F 对O 和O '的位矢分别为i r 和i r ',则i r =i r '+O O ',故()()iii ii i O F O O r F r M ⨯'-'=⨯'=∑∑'()∑∑⨯'-⨯'=ii ii i F O O F r ∑⨯'+=ii o F O O M即o o M M ≠'主矢不变,表明刚体的平动效应不变,主矩随简化中心的位置改变,表明力系的作用对刚体上不同点有不同的转动效应,但不改变整个刚体的转动规律或者说不影响刚体绕质心的转动。

理论力学第三版(周衍柏)全部习题答案

理论力学第三版(周衍柏)全部习题答案
由加速度的微分形式我们可知
代入得
对等式两边同时积分
可得 :
( 为常数)
代入初始条件: 时, ,故

又因为
所以
对等式两边同时积分 ,可得:
1.6 解 由题可知质点的位矢速度

沿垂直于位矢速度
又因为 , 即

(取位矢方向 ,垂直位矢方向 )
所以

即 沿位矢方向加速度
垂直位矢方向加速度
对③求导
对④求导
把③④⑦⑧代入⑤⑥式中可得
时, 得 ,故

同理,把⑦代入⑤可以解出
把⑦代入⑤
代入初条件 时, ,得 .所以

1.23证 (a)在1.22题中, 时,则电子运动受力 电子的运动微分方程
①-②-③
对②积分

对④再积分


( 为一常数)
此即为抛物线方程.
当 时
则电子受力
则电子的运动微分方程为
①-②-③
同1.22题的解法,联立①-②解之,得
理论力学第三版周衍柏全部习题答案理论力学第三版周衍柏周衍柏理论力学答案理论力学周衍柏理论力学教程周衍柏理论力学周衍柏pdf理论力学第三版答案理论力学课后习题答案理论力学复习题及答案理论力学习题答案
第一章 质点力学
第一章习题解答
1.1 由题可知示意图如题1.1.1图:
设开始计时的时刻速度为 ,由题可知枪弹作匀减速运动设减速度大小为 .

所以 ,代入 的表达式中可得:
此即为子弹击中斜面的地方和发射点的距离 的最大值
1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.

理论力学简明教程第三章非惯性参考系课后答案

理论力学简明教程第三章非惯性参考系课后答案

第三章 非惯性参考系不识庐山真面目,只缘身在此山中。

地球的多姿多彩,宇宙的繁荣,也许在这里可以略见一斑。

春光无限,请君且放千里目,别忘了矢量语言在此将大放益彩。

【要点分析与总结】1 相对运动t r r r '=+t t dr dr dr dr dr r dt dt dt dt dtυω'''==+=++⨯ t r υυω''=++⨯()t dv dv d v r a dt dt dtω''+⨯==+222**22()t d r d r d dr r v r dt dt dt dtωωωω'''''=++⨯+⨯+⨯+⨯()2t a a r r v ωωωω''''=++⨯+⨯⨯+⨯t c a a a '=++〈析〉仅此三式便可以使“第心说”与“日心说”归于一家。

(1) 平动非惯性系 (0ω=)t a a a '=+ 即:()t ma F ma '=+-(2) 旋转非惯性系 (0t t a υ==)()2a a r r ωωωωυ''''=+⨯+⨯⨯+⨯2 地球自转的效应(以地心为参考点)2mr F mg m r ω=--⨯写成分量形式为:2sin 2(sin cos )2cos x y z mx F m y my F m x z mz F mg m y ωλωλλωλ⎧=+⎪=-+⎨⎪=-+⎩ 〈析〉坐标系选取物质在地面上一定点O 为坐标原点,x 轴指向南方,y 轴指向东方,铅直方向为 z 轴方向。

2mr F mg m r ω=--⨯ 为旋转非惯性系 ()2F mg mr m r m r m r ωωωω-=+⨯+⨯⨯+⨯在 ,rR ωω条件下忽略 m r ω⨯与 ()m r ωω⨯⨯所得。

正因如此,地球上的物体运动均受着地球自转而带来的科氏力 2m r ω-⨯的作用,也正是它导致了气旋,反气旋,热带风暴,信风,河岸右侧冲刷严重,自由落体,傅科摆等多姿多彩的自然现象。

大学物理(机械工业出版社)第三章课后答案

大学物理(机械工业出版社)第三章课后答案

第三章 刚体力学#3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。

若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ==dtd J C ωω=-∴dtJ C d t⎰⎰-=∴ωωωωtJC -=0lnωωtJC e-=0ωω 当021ωω=时,2ln CJ t =。

(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J tJ C dt eωC J 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。

3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力解:由牛顿第二定律和转动定律得ma T mg =-ααJ R Mg TR =-.sin 2由平行轴定理 223MR J =联立解得 g m M M m a 83s i n 48+-=αmg mM MT 83)sin 43(++=α3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动,如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。

解:设平板的加速度为a 。

该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。

αT m m gT M设圆柱体的质心加速度为C a ,则C a M f 22=遵守转动定理,ββ22221R M J R f ==又因为圆柱体无滑滚动 βR a a C += 且 g M M f )(211+=μ解以上各方程得 212131)(MM gM M F a ++-=μ3-4 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。

2019版物理大一轮浙江讲义:第三章 牛顿运动定律 第1

2019版物理大一轮浙江讲义:第三章 牛顿运动定律 第1

第1讲牛顿运动三定律力学单位制[考试标准]一、牛顿第一定律1.内容一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因.(2)指出了一切物体都有惯性,因此牛顿第一定律又称为惯性定律.3.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质.(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.(3)普遍性:惯性是物体的固有属性,一切物体都有惯性,与物体的运动情况和受力情况无关.自测1 下面对牛顿第一定律和惯性的分析正确的是( )A.沿水平方向匀速飞行的飞机投弹时,如果当目标在飞机的正下方时投下炸弹,能击中目标B .地球自西向东自转,你向上跳起来后,不会落到原地C .摩托车做飞跃障碍物的表演时为了减少向前翻车的危险,应该后轮先着地D .有的同学说,向上抛出的物体,在空中向上运动时,肯定受到了向上的作用力 答案 C二、牛顿第二定律1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向跟作用力的方向相同. 2.表达式:F =ma .3.适用范围:只适用于物体低速运动的情况.自测2 牛顿第二定律的表达式可以写成m =F a,对某个物体来说,它的质量m ( ) A .跟合外力F 成正比B .跟合外力F 与加速度a 都无关C .跟它的加速度a 成反比D .跟合外力F 成反比,跟它的加速度a 成正比 答案 B解析 m =F a只是一个计算式,物体质量与合外力和加速度均无关. 三、力学单位制1.力学中的基本物理量及单位(1)力学中的基本物理量是长度、质量、时间.(2)力学中的基本单位:基本物理量的所有单位都是基本单位.如:毫米(mm)、克(g)、毫秒(ms)等等.三个基本物理量的单位在国际单位制中分别为米(m)、千克(kg)、秒(s). 2.单位制(1)基本单位和导出单位一起组成了单位制.(2)国际单位制(SI):国际计量大会制定的国际通用的、包括一切计量领域的单位制,叫做国际单位制.自测3 (2017·杭州市四校联考)同学们知道物理学中力的单位是“N”,但“N”是一个导出单位,如果用国际制基本单位表示,下列正确的是( ) A .kg·m/s 2B .kg·m/sC .kg 2·m/s D .kg·m 2/s答案 A四、牛顿第三定律1.作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一物体一定同时对前一物体也施加了力.2.牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上.自测4 关于作用力与反作用力,下列说法中正确的是( )A.物体相互作用时,先有作用力而后才有反作用力B.作用力与反作用力大小相等、方向相反,作用在同一条直线上,因此它们的合力为零C.弹力的反作用力一定是弹力D.马能将车拉动,是因为马拉车的力大于车拉马的力答案 C命题点一牛顿第一定律1.应用牛顿第一定律分析实际问题时,要把生活感受和理论问题联系起来深刻认识力和运动的关系,正确理解力不是维持物体运动状态的原因,克服生活中一些错误的直观印象,建立正确的思维习惯.2.惯性的特性(1)普遍性:惯性是物体的固有属性,一切物体都具有惯性.(2)无关性:惯性与物体的运动状态无关,与物体所处的位置无关,无论物体处于怎样的运动状态、处于何处,惯性总存在.(3)唯一性:质量是惯性大小的唯一量度.3.惯性的表现形式(1)在物体不受外力时,惯性表现为保持原来的静止状态或匀速直线运动状态.(2)在物体所受合外力不为零时,惯性表现为运动状态改变的难易程度,质量越大,惯性越大,运动状态越难改变.例1 科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法不符合历史事实的是( )A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质答案 A变式1 关于牛顿第一定律的说法不正确的是( )A.牛顿第一定律不能在实验室中用实验验证B.牛顿第一定律说明力是改变物体运动状态的原因C.惯性定律与惯性的实质是相同的D.物体的运动不需要力来维持答案 C变式2 下列关于惯性的说法正确的是( )A.开车系安全带可防止由于人的惯性而造成的伤害B.子弹飞出枪膛后,因惯性受到向前的力而继续飞行C.飞机起飞时飞得越来越快,说明它的惯性越来越大D.物体在粗糙水平面上比在光滑水平面上难推动,说明物体在粗糙水平面上惯性大答案 A解析若开车时不系安全带,刹车时由于惯性,人会继续向前运动,可能会对人造成伤害,A对;子弹离开枪膛后向前飞行是由于它的惯性,但它并不受到向前的力,B错;物体的惯性只与它的质量有关,与物体的运动状态、受不受摩擦力等因素无关,C、D错.变式3 如图1所示,冰壶在冰面运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变,我们可以说冰壶有较强的抵抗运动状态变化的“本领”.这里所指的“本领”是冰壶的惯性,惯性的大小取决于( )图1A.冰壶的速度B.冰壶的质量C.冰壶受到的推力D.冰壶受到的阻力答案 B解析一个物体惯性的大小,与其运动状态、受力情况是没有任何关系的,衡量物体惯性大小的唯一因素是质量,故B正确.命题点二牛顿第二定律1.牛顿第二定律的“五性”(1)矢量性:a与F方向相同.(2)瞬时性:a与F对应同一时刻.(3)因果性:F是产生a的原因.(4)同一性:a 、F 、m 对应同一物体,应用时统一使用国际单位制单位. (5)独立性:每一个力都产生各自的加速度.2.a =F m 是加速度的决定式,a =ΔvΔt是加速度的定义式,物体的加速度是由合外力决定的,与速度无关.例2 如图2所示,位于水平地面上的质量为m 的小木块,在大小为F ,方向与水平方向成α角的拉力作用下沿地面做匀加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为( )图2A.F mB.F cos αmC.F cos α-μmgmD.F cos α-μmg -F sin αm答案 D解析 对木块受力分析,如图所示,在竖直方向上合力为零,即F sin α+F N =mg ,在水平方向上由牛顿第二定律有F cos α-μF N =ma .联立可得a =F cos α-μmg -F sin αm,故选项D 正确.变式4 下列对牛顿第二定律的表达式F =ma 及其变形公式的理解正确的是( ) A .由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比 B .由m =Fa 可知,物体的质量与其所受合力成正比,与其运动的加速度成反比 C .由a =F m 可知,物体的加速度与其所受合力成正比,与其质量无关 D .由m =F a可知,物体的质量可以通过测量它的加速度和它所受的合力求出 答案 D解析 牛顿第二定律的表达式F =ma 表明了各物理量之间的数量关系,即已知两个量,可求第三个量.但物体的质量是由物体本身决定的,与物体的加速度和物体的受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关;但物体的加速度与其质量和其所受合力都有关,故排除A 、B 、C ,选D.变式5 如图3所示,质量m =10 kg 的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F =20 N 的作用,则物体产生的加速度是(g 取10 m/s 2)( )图3A .0B .4 m/s 2,水平向右 C .2 m/s 2,水平向左 D .2 m/s 2,水平向右答案 B解析 物体水平向左运动,所受滑动摩擦力水平向右,F f =μmg =20 N ,故物体所受合外力F合=F f +F =40 N ,方向水平向右,由牛顿第二定律可得:a =F 合m=4 m/s 2,方向水平向右,B 正确.拓展点 牛顿第二定律的瞬时性 牛顿第二定律瞬时性的“两种”模型:刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变. 例3 如图4所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m ,物块2、4质量均为M ,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )图4A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +MMg D .a 1=g ,a 2=m +M m g ,a 3=0,a 4=m +MMg 答案 C解析在抽出木板的瞬间,物块1、2与刚性轻质杆连接处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a1=a2=g;而物块3、4间的轻质弹簧的形变还来不及改变,此时弹簧对物块3向上的弹力大小和对物块4向下的弹力大小仍为F=mg,因此a3=0,由牛顿第二定律得a4=F+MgM=m+MMg,所以C正确.变式6 两个质量均为m的小球,用两条轻绳连接,处于平衡状态,如图5所示.现突然迅速剪断轻绳OA,让小球下落,在剪断轻绳的瞬间,设小球A、B的加速度分别用a1和a2表示,则( )图5A.a1=g,a2=g B.a1=0,a2=2gC.a1=g,a2=0 D.a1=2g,a2=0答案 A解析绳子的张力可以突变,剪断OA后小球A、B只受重力,其加速度a1=a2=g,故A正确.命题点三牛顿第三定律1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生的效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.定律中的“总是”说明对于任何物体,在任何情况下牛顿第三定律都是成立的.3.作用力与反作用力虽然等大反向,但因作用的物体不同,所产生的效果(运动效果或形变效果)往往不同.4.作用力与反作用力只能是一对物体间的相互作用力,不能牵扯第三个物体.5.区别作用力、反作用力与平衡力的简单方法是看作用点,作用力和反作用力应作用在相互作用的两个物体上,平衡力作用在一个物体上.例4 如图6所示,质量相等的甲、乙两人所用绳子相同,甲拉住绳子悬在空中处于静止状态;乙拉住绷紧绳子的中点把绳子拉断了,则( )图6A.绳子对甲的拉力小于甲的重力B.绳子对甲的拉力大于甲对绳子的拉力C.乙拉断绳子前瞬间,绳上的拉力一定小于乙的重力D.乙拉断绳子前瞬间,绳上的拉力一定大于乙的重力答案 D解析甲拉住绳子悬在空中处于静止状态,绳子对甲的拉力等于甲的重力,A错误;由牛顿第三定律可知,绳子对甲的拉力与甲对绳子的拉力大小相等,B错误;因乙能把绳子拉断,说明乙拉断绳子前瞬间,绳子的拉力一定大于甲拉绳子的力,也一定大于乙的重力,故C 错误,D正确.变式7 下列关于作用力和反作用力的说法正确的是( )A.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力互相平衡C.人推车前进,人对车的作用力大于车对人的作用力D.物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等答案 D解析作用力与反作用力同时产生,同时变化,同时消失,物体对地面产生压力的同时地面对物体产生支持力,选项A错误;物体对地面的压力和地面对物体的支持力作用在不同的物体上,作用效果不能平衡,不能合成,选项B错误;人推车前进,人对车的作用力与车对人的作用力是作用力与反作用力,大小相等,方向相反,选项C错误;物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等,选项D正确.变式8 (2017·温州市十校期末联考)如图7所示为我国的“长征七号”运载火箭刚发射时的情景.则下列说法正确的是( )图7A.火箭受到地面对它的弹力作用而升空B.火箭受到下部空气对它的作用而升空C.火箭受到向下喷射的气体对它的作用而升空D.在没有空气的环境中这类火箭无法升空答案 C解析火箭升空利用的是喷出的气体对火箭的反冲作用,不是地面对它的弹力作用,也不是下部空气对它的作用,故A、B错误,C正确;因为气体的反冲作用,这类火箭在没有空气的环境中仍可以获得前进的动力,仍可以升空,故D错误.变式9 如图8所示,用水平力F把一个物体紧压在竖直墙壁上静止,下列说法中正确的是( )图8A.水平力F跟墙壁对物体的弹力是一对作用力与反作用力B.物体的重力跟墙壁对物体的静摩擦力是一对平衡力C.水平力F与物体对墙壁的压力是一对作用力与反作用力D.物体对墙壁的压力与墙壁对物体的弹力是一对平衡力答案 B解析水平力F跟墙壁对物体的弹力作用在同一物体上,大小相等、方向相反,且作用在同一条直线上,是一对平衡力,选项A错误;物体在竖直方向上受竖直向下的重力以及墙壁对物体竖直向上的静摩擦力的作用,因物体处于静止状态,故这两个力是一对平衡力,选项B 正确;水平力F作用在物体上,而物体对墙壁的压力作用在墙壁上,这两个力不是平衡力,也不是相互作用力,选项C错误;物体对墙壁的压力与墙壁对物体的弹力是一对作用力与反作用力,选项D错误.变式10 如图9所示,用细线将A物体悬挂在顶板上,B物体放在水平地面上.A、B间有一劲度系数为100 N/m的轻弹簧,此时弹簧伸长了2 cm.已知A、B两物体的重力分别是3 N 和5 N.则细线的拉力及B对地面的压力分别是( )图9A.8 N和0 N B.5 N和7 NC.5 N和3 N D.7 N和7 N答案 C解析对A由平衡条件得F T-G A-kx=0,解得F T=G A+kx=3 N+100×0.02 N=5 N,对B 由平衡条件得kx+F N-G B=0,解得F N=G B-kx=5 N-100×0.02 N=3 N,由牛顿第三定律得B对地面的压力是3 N,故选项C正确.1.关于物理量或单位,下列说法中正确的是( )A.加速度、时间、力等均为矢量B.质量、位移、速度等均为标量C.长度、质量、时间为国际单位制的三个力学基本物理量D.后人为了纪念牛顿,把“牛顿”作为力学中的基本单位答案 C2.下列关于惯性的说法中,正确的是( )A.物体只有在突然运动或突然停止时才有惯性B.物体的质量越大或速度越大,其惯性也就越大C.在太空中飞行的航天飞机内的物体,其惯性消失D.惯性是物体的属性,与物体是否受力和运动无关答案 D3.一天,下着倾盆大雨.某人乘坐列车时发现,车厢的双层玻璃窗内积水了,列车进站过程中,他发现水面的形状如图中的( )答案 C4.(2017·温州市十校期末联考)如图1所示是教师上课做的一个演示实验,将中间开孔的两块圆饼状磁铁用一根木棒穿过,手拿住木棒(保持水平)使磁铁保持静止,当手突然释放,让木棒和磁铁一起下落时,发现两块磁铁向中间靠拢并吸在一起了.下列说法中正确的是( )图1A.手拿住木棒保持静止时,任意一块磁铁所受的磁力小于木棒对它的静摩擦力B.手拿住木棒保持静止时,任意一块磁铁所受的重力大于木棒对它的弹力C.放手下落时,由于失重现象,使木棒与磁铁间弹力发生变化D.放手下落时,磁铁惯性减小答案 C解析手拿住木棒使磁铁保持静止时,说明磁铁处于平衡状态,故任意一块磁铁所受的磁力等于木棒对它的静摩擦力,任意一块磁铁所受的重力等于木棒对它的弹力,故A、B错误;放手下落时,加速度向下,故磁铁处于失重状态,由于失重现象,使木棒与磁铁间弹力发生变化,故C正确;由于下落时磁铁质量不变,故惯性不变,故D错误.5.关于力、运动状态及惯性的说法,不正确的是( )A.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去B.伽利略对牛顿第一定律的建立做出了贡献C.一个运动的物体,如果不再受力了,它总会逐渐停下来,这说明,静止状态才是物体长时间不受力时的“自然状态”D.牛顿认为力的真正效应是改变物体的速度答案 C解析伽利略根据理想实验推出,如果没有摩擦,在水平面上运动的物体将以恒定的速度运动下去,选项A正确;伽利略对牛顿第一定律的建立做出了巨大的贡献,选项B正确;一个运动的物体,如果不再受力了,它将以原来的速度做匀速直线运动,选项C错误;力是改变物体运动状态的原因,选项D正确.6.用手托着一块砖,开始时静止不动,后来手突然向上加速运动,下列判断不正确的是( ) A.静止时,砖受到的支持力等于砖的重力B.加速时,砖对手的压力大于砖的重力C.静止时,砖受到的支持力等于砖对手的压力D.加速时,砖受到的支持力大于砖对手的压力答案 D解析静止时,砖的重力与其受到的支持力是一对平衡力,大小相等,A正确;不论静止还是加速,砖受到的支持力和其对手的压力都是一对相互作用力,大小相等,故C正确,D错误;加速时,砖受到的支持力大于砖的重力,则砖对手的压力大于砖的重力,故B正确.7.某人用绳子将一桶水从井内向上提的过程中,不计绳子的重力,以下说法正确的是( ) A.只有在桶匀速上升过程中,绳子对桶的拉力才等于桶对绳子的拉力B.桶加速上升的过程中,绳子对桶的拉力大于桶对绳子的拉力C.桶加速上升的过程中,绳子对桶的拉力等于桶对绳子的拉力D.桶减速向上运动的过程中,绳子对桶的拉力小于桶对绳子的拉力答案 C8.如图2所示,有人用一簇气球使一座小屋成功升空.当小屋加速上升时,它受到的拉力与重力的关系是( )图2A.一对平衡力B.作用力和反作用力C.拉力小于重力D.拉力大于重力答案 D解析因加速上升,所以拉力大于重力.9.(2017·浙江名校协作体模拟)如图3所示是我国一种传统的民族体育项目“押加”,实际上相当于两个人拔河,如果绳的质量不计,且保持水平,甲、乙两人在“押加”比赛中甲获胜,则下列说法中正确的是( )图3A.甲对乙的拉力始终大于乙对甲的拉力B.甲把乙加速拉过去时,甲对乙的拉力大于乙对甲的拉力C.只有当甲把乙匀速拉过去时,甲对乙的拉力大小才等于乙对甲的拉力大小D.甲对乙的拉力大小始终等于乙对甲的拉力大小,只是地面对甲的摩擦力大于地面对乙的摩擦力答案 D解析由作用力与反作用力的关系知,D正确.10.下列说法中正确的是( )A.人走路时,地对脚的力大于脚蹬地的力,所以人才往前走B.只有你站在地上不动时,你对地面的压力和地面对你的支持力才是大小相等、方向相反C.物体A静止在物体B上,A的质量是B的质量的100倍,而A作用于B的力的大小等于B 作用于A的力的大小D.以卵击石,石头没损坏而鸡蛋破了,这是因为石头对鸡蛋的作用力大于鸡蛋对石头的作用力答案 C11.如图4所示,在一辆表面光滑的小车上,有质量分别为m1、m2的两个小球(m1>m2)随车一起匀速运动,当车突然停止时,若不考虑其他阻力,设车足够长,则两个小球( )图4A.一定相碰B.一定不相碰C.不一定相碰D.条件不足,难以确定是否相碰答案 B解析两个小球放在表面光滑的小车上,又不考虑其他阻力,故水平方向上不受外力,由牛顿第一定律可知两个小球将以原来的速度运动下去,即两小球仍然以相同的速度做匀速直线运动,一定不相碰.只有B选项正确.12.在日常生活中,小巧美观的冰箱贴使用广泛.一磁性冰箱贴贴在冰箱的竖直表面上静止时,它受到的磁力( )A.小于受到的弹力B.大于受到的弹力C.和受到的弹力是一对作用力与反作用力D.和受到的弹力是一对平衡力答案 D13.雨滴在空气中下落,当速度比较大时,它受到的空气阻力与其速度的二次方成正比,与其横截面积成正比,即F f=kSv2,则比例系数k的单位是( )A.kg/m4B.kg/m3C.kg/m2D.kg/m答案 B解析表达式F f=kSv2中:F f、S、v的单位分别为N、m2、m/s,又1 N=1 kg·m/s2,则得1 kg·m/s2=1 k·m2·m2/s2,所以k的单位为kg/m3.故选B.14.(2017·宁波市九校高三上学期期末)如图5所示,质量为m的儿童在玩蹦极跳床,当其静止悬挂时,拴在腰间的两弹性橡皮绳的拉力大小均恰为mg,若右侧橡皮绳突然断裂,则此时该儿童( )图5A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 答案 B解析 右侧橡皮绳断裂时,左侧橡皮绳拉力不突变,故合力沿原断裂橡皮绳的方向斜向下,大小为mg ,由牛顿第二定律可知只有B 项正确.15.(2016·温州市联考)如图6所示,a 、b 两小球用细线连接,通过一轻质弹簧悬挂在天花板上,a 、b 两球的质量分别为m 和2m ,在细线烧断瞬间,a 、b 两球的加速度分别为(取向下为正方向)( )图6A .0,gB .-g ,gC .-2g ,gD .2g,0答案 C解析 在细线烧断之前,a 、b 可看成一个整体,由二力平衡知,弹簧弹力等于整体重力,故弹簧弹力方向向上,大小为3mg .当细线烧断瞬间,弹簧的形变量不变,则弹力不变,故a 球受向上3mg 的弹力和向下mg 的重力,故a 球加速度大小为3mg -mgm=2g ,方向向上.对b球而言,细线烧断后只受重力作用,故b 球加速度大小为2mg2m =g ,方向向下.取向下为正方向,有a a =-2g ,a b =g ,故选项C 正确.16.如图7所示,质量为1 kg 的物体与桌面间的动摩擦因数为0.2,物体在7 N 的水平拉力作用下获得的加速度大小为(g 取10 m/s 2)( )图7A .0B .5 m/s 2C .8 m/s 2D .12 m/s 2答案 B解析 物体所受合外力大小F 合=F -μmg =5 N ,加速度大小a =F 合m=5 m/s 2,选项B 正确. 17.如图8所示,质量为60 kg 的人站在水平地面上,用定滑轮装置将质量为m =40 kg 的重物送入井中.当重物以2 m/s 2的加速度加速下落时,忽略绳子和定滑轮的质量及定滑轮的摩擦,则人对地面的压力大小为(g 取10 m/s 2)( )图8A .200 NB .280 NC .320 ND .920 N答案 B解析 对重物,根据牛顿第二定律有mg -F T =ma ,得绳子的拉力大小F T =320 N ,然后再对人进行受力分析(如图所示),由平衡知识得Mg =F T +F N ,得F N =280 N ,根据牛顿第三定律可知人对地面的压力大小为280 N ,B 正确.18.如图9所示,轻质弹簧上端拴一质量为m 的小球,平衡时弹簧的压缩量为x ,在沿竖直方向上下振动的过程中,当小球运动到最低点时,弹簧的压缩量为2x ,试求:图9(1)此时小球的加速度. (2)此时弹簧对地面的压力. 答案 (1)g ,方向竖直向上 (2)2mg ,方向竖直向下解析 (1)小球平衡时有:mg =kx ,在最低点,取竖直向上为正方向,有2kx -mg =ma ,解得a =g ,方向竖直向上.(2)由牛顿第三定律可知,弹簧对地面的压力大小等于其弹力大小,故F N =2kx =2mg ,方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相对转盘不动,转动角速度的最小值为
rad/s(结果保留一位小数)。
答案:3.2 解:取转盘参为参考系(匀角速转动的非惯性系),以木块为研究对象,受力分 析:重力 mg 、静摩擦力 f 、斜面的支持力 N 、惯性离心力 F m2r (方向沿 径向向外, r 为木块离盘心的水平距离)。木块处于静止状态,受力平衡有: 沿斜面方向: mg sin m 2r cos f 0
h 1 gt 2 , l vt 2
其中,v R 为物体刚好离开圆盘时相对地面的速度(此时,物体相对圆盘的速 度近似为零)。 设小物体质量为 m,与圆盘的摩擦力为 f,以圆盘为参考系(因为圆盘绕其轴的 角速度逐渐增大,所以可将其在短时间内视为匀角速转动的非惯性系)。小物体 恰好滑出圆盘时受最大静摩擦力 f mg ,加上沿圆盘径向方向的惯性离心力
2. 在以加速度 a 相对惯性系作加速平动的非惯性系中,质点 m 受到的惯性力的 大小等于 ma. 答案:对 解释:请参考本章视频。
3. 由于惯性力是人为引入的虚拟力,所以它的作用效果与真实力不同。 答案:错 解释:虽然惯性力不是真实的力,找不到施力物体,但其作用效果与真实力相同。 比如,地面上静止的汽车突然加速,站在车上的人突然向后倾倒的现象可以理解 为惯性力的作用,其效果与站在静止的车上人突然有力向后拉他是相同的。
A. v =
gh tan 1 ;B. v =
gh tan 2 ;C. v =
gh tan 1 tan 1 + tan 2
;
D.
v=
gh tan 1 cot 1 + cot 2
答案:D 解:以小球为参考系(匀角速转动的非惯性),小球上、下两侧绳中的张力分别

FT1、FT 2
,加上水平方向的惯性离心力 m
地面间夹角为 ,加上惯性力 ma 后,圆木处于平衡状态,圆木脱离地面条件是 圆木与地面相互作用力为零。 水平方向:T cos ma
竖直方向:T sin mg
由几何关系得: sin

l
h d
联立得: a g (l d )2 h2 。 h
3. 一摩托车以 36km/h 的速率在地面上行驶。其轮胎与地面间的摩擦系数μ为 0.3. 则摩托车在转弯时轨道的最小曲率半径 R 为 A. 10.8m; B. 34m; C. 120m; D. 441m 答案:B 解:36km / h = 10m/s
第三章 非惯性系质点动力学 课后测验题 一、选择题 1. 如图,一小车沿倾角为θ的光滑斜面滑下。小车上悬挂一摆锤。当摆锤相对小 车静止时,摆线与铅垂线的夹角为 A. 0; B. θ; C. 2θ; D. 90°
答案:B 解:以斜面为参考系(惯性系),以小车与摆锤整体为研究对象,应用牛顿第二 定律有: Mg sin Ma 以小车为参考系(加速直线运动的非惯性系),以水平向右和向上为 x, y 的正方 向,以摆球为研究对象,加上沿斜面向上的惯性力 ma 后,对摆球应用牛顿第二 定律: x 方向:T sin ma cos y 方向:T cos ma sin mg 两式联立得: tg tg ,即 。
设摩托车与地面间的摩擦力为 f,以摩托车为参考系(匀角速转动的非惯性 系),加上水平方向的惯性离心力 mv2 后,摩托车处于平衡状态:
R
水平方向受力平衡: f mv2 0 R
竖直方向受力平衡: N mg 0
最大静摩擦力条件: f N
联立得最小半径 Rmin= 34 m.
4. 一根绳子的两端分别固定在顶板和底板上,两固定点位于同一铅垂线,相距 为 h。一小球系于绳上某点处,以一定的速度在水平面内做匀速圆周运动,此时 小球两边的绳均被拉直,两绳与铅垂线的夹角分别为θ1 和θ2,若下面的绳子中的 张力为零,则小球的速度为

g r

3.2
rad
s

3. 由于地球的自转,物体的表观重力在地球不同纬度处是不同的,南北极处最 (填“大”或“小”)。 答案:大
三、判断题 1. 根据相对性原理,一切惯性系都是等价的,所以在不同的惯性参考系中所观 测到的力学现象均相同。 答案:错 解释:所谓的等价是指在不同的参考系中力学规律等价,而不是指在不同的参考 系中所观测到的力学现象相同。例如,在相对地面匀速行驶的船上,使水滴从挂 在船舱顶部的瓶口落入瓶正下方的一个水碗内。在船上(一个惯性系)的人看来, 水碗是不动的,水滴自由落体;而对在岸上(另一惯性系)的人来说(假如能够 观测到船内发生的现象),则水碗是运动的,水滴作平抛运动,但他们都可用相 同的理论,即牛顿定律,解释各自所看到的现象。
m2R mv2 后,小物体相对圆盘处于平衡状态,对其应用牛顿第二定律: R
0 mg mv2 R
联立可得: l 2Rh = 0.4m.
2. 如图,一个 3:4:5 的斜面固连在一转盘上,一木块静止在斜面上,木块离转盘
中心的水平距离为 40cm,斜面和木块之间的摩擦系数μ = 0.25。若使此木块保持Fra bibliotekv2 R
后,对小球应用牛顿第二定律:
水平方向:
FT 1
sin 1

FT 2
sin 2

m
v2 R
竖直方向: FT1 cos1 FT 2 cos2 mg
由图中几何关系可得:
R tan 1

R tan 2

h
若 FT 2

0 ,则 FT1

mg cos
,v

tan 1 cot1 cot2
沿垂直于斜面的方向: N mg cos m 2r sin 0
木块刚好滑动时有: f N 其中的 号对应木块有沿斜面向上的运动趋势; 号对应木块有沿斜面向下的运 动趋势,此种情况对应圆盘的最小角速度情况。
联立解得:
sin cos cos sin
gh
5. 下述地球表面上各点海水所受的作用力中,对潮汐现象起主要作用的是: A. 月球的引力和地球围绕地-月质心公转时的加速平动惯性力 B. 月球的引力和地球的引力 C. 月球的引力和地球围绕地球质心匀角速转动的惯性离心力 D. 月球的引力和地球的支持力 答案:A 解释:请参考本章视频。
二、填空题 1. 一小物体放在一半径为 R = 1m 的水平圆盘边缘上,小物体与圆盘间的静摩擦 系数为μ = 0.2。若圆盘绕其轴的角速度逐渐增大到一个值时,小物体滑出圆盘并 最终落到比盘面低 h = 0.4m 的地面上。问从它离开圆盘的那一点算起,小物体越 过的水平距离 l 为 m(结果保留一位小数). 答案:0.4 解:设小物体下落时间为 t,有:
2. 在卡车的尾部通过一根绳子拖着一根粗细均匀的圆木。绳长为 d,圆木长为 l, 绳与卡车的连接点距地高 h。为使圆木与地面脱离,卡车的加速度 a 至少为 A. g; B. g/h; C. gh/(l+d); D. g (l + d )2 - h2
h
答案:D 解:以车为参考系(加速直线运动的非惯性系),以圆木为研究对象。设圆木与
相关文档
最新文档