PID口诀

合集下载

PID常用口诀

PID常用口诀

PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1。

(1)确定比例系数Kp
确定比例系数Kp时,首先去掉PID的积分项和微分项,可以令Ti=0、Td=0,使之成为纯比例调节。

输入设定为系统允许输出最大值的60%~70%,比例系数Kp由0开始逐渐增大,直至系统出现振荡;再反过来,从此时的比例系数Kp逐渐减小,直至系统振荡消失。

记录此时的比例系数Kp,设定PID的比例系数Kp为当前值的60%~70%。

(2)确定积分时间常数Ti
比例系数Kp确定之后,设定一个较大的积分时间常数Ti,然后逐渐减小Ti,直至系统出现振荡,然后再反过来,逐渐增大Ti,直至系统振荡消失。

记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

(3)确定微分时间常数Td
微分时间常数Td一般不用设定,为0即可,此时PID调节转换为PI调节。

如果需要设定,则与确定Kp的方法相同,取不振荡时其值的30%。

(4)系统空载、带载联调
对PID参数进行微调,直到满足性能要求。

PID参数选择原则及常用口诀

PID参数选择原则及常用口诀

PID选择原则
PID选择原则;
1、先比例再积分,然后再把微分加 2、对象时间常数大或者延迟时间长,引入D作 用,若系统允许偏差,则可以选择PD调节,系 统要求无差,则选PID, 3、对象时间常数小,受扰动影响不大,要求 无差,则PI调节(锅炉水位控制) 4、对象时间常数小,受扰动影响不大,不要 求无差,则选P调节(除氧气水位控制) 5、对象时间常数或者延迟很大,受扰动影响 也很大,简单控制系统已经不能满足要求,需 要采用复杂控制系统,从小到大顺序查 先是比例后积分,最后再把微分加 曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降 曲线波动周期长,积分时间再加长 曲线振荡频率快,先把微分降下来 动差大来波动慢。微分时间应加长 理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低

PID调节口诀

PID调节口诀

PID调节口诀PID调节口诀1. ID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: =20~60%,T=180~600s,D=3-180s压力P: =30~70%,T=24~180s,液位L: =20~80%,T=60~300s,流量L: =40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID常用口诀

PID常用口诀

PID常用口诀1.PID常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID口诀

PID口诀

PID的参数调整口诀参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

1. PID常用口诀:参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3对于流量系统:P(%)40--100,I(分)0.1--1对于压力系统:P(%)30--70,I(分)0.4--3对于液位系统:P(%)20--80,I(分)1--5温度T: P="20"~60%,T=180~600s,D=3-180s压力P: P="30"~70%,T=24~180s,液位L: P="20"~80%,T=60~300s,流量L: P="40"~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。

PID口诀、参数调节要领

PID口诀、参数调节要领

PID口诀、参数调节要领PID调节口诀PID常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低解释1:1、曲线漂浮绕大弯——指负载曲线是发散的,没有逐渐收敛到目标值上,这是非常失败的波形曲线,是调试不成功的。

2、曲线偏离回复慢——指负载曲线虽然不发散,逐渐收敛到了目标值上,但是收敛速度较慢。

这也算不上是调试得很成功的波形,还有需要优化的地方。

3、曲线波动周期长——这是指负载曲线要经过长时间的波动后,才能逐渐回到稳定值上。

即先要经过长时间的振荡,然后才能稳定在目标值上,也是不太理想的波形曲线。

4、曲线振荡频率快——这是指负载曲线频繁、快速的振荡,半天稳定不下来。

一般,出现这种波形的原因,是因为你的调节器调节力度太猛了,需要缓和一下。

可以通过减小调节器的比例P参数值,或增大积分时间常数I 参数的值,来达到缓和的目的。

/service/answer/solution.aspx?Q_id=46956&cid=1041解释2:PID调节顺口溜是人们在实践中总结的参数整定的大致方向,但实际的PID调节中需要不断的调整和完善,从而找到最佳的控制点。

PID控制器就是根据系统的误差,利用比例(P)、积分(I)、微分(D)计算出控制量来进行控制。

在PID控制器的参数设定中,PID算法涵盖了动态控制过程中的过去、现在、将来的主要信息。

其中比例P代表了当前的信息,起纠正偏差的作用,使过程反应迅速,但系统输出存在稳态误差;微分(D)在信号变化时有超前控制作用,代表将来的信息。

在过程开始时强迫过程进行,过程结束时减少超调,克服震荡,提高系统稳定性,加快系统的过渡过程。

PID参数整定口诀

PID参数整定口诀

PID参数整定口诀
首先是P(比例)参数的整定:
1.增大P,系统更快速响应;
2.减小P,系统更稳定。

接下来是I(积分)参数的整定:
1.增大I,系统的超调量减小;
2.减小I,系统的超调量增大。

最后是D(微分)参数的整定:
1.增大D,系统的震荡减小;
2.减小D,系统的震荡增大。

综合考虑的时候,可以使用以下顺序进行整定:
1.先将I和D参数设置为0,只调整P参数;
2.逐渐增大P参数,直到系统出现超调;
3.根据需要的系统响应速度调整P参数;
4.添加I参数,减小系统超调;
5.根据需要的系统稳定性调整I参数;
6.最后添加D参数,减小系统震荡。

需要注意的是,以上只是一种简单的整定顺序,具体情况需要结合实际的系统性能要求来设置参数。

此外,整定PID参数的过程是一个迭代的过程,需要不断地调整和优化,直到满足系统的需求。

总结起来,PID参数整定的口诀可以概括为:根据需要的系统性能目标,逐步调整P、I和D参数,将系统的超调、响应速度和稳定性达到最佳状态。

通过不断迭代和优化,最终得到满足系统要求的PID参数设置。

PID常用口诀

PID常用口诀

PID常用口诀(转)1.PID常用口诀:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长;理想曲线两个波,前高后低4比1好。

2.一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

pid参数整定口诀

pid参数整定口诀

pid参数整定口诀PID参数整定是控制工程中非常重要的一个环节,直接影响到系统的稳定性和控制性能。

PID参数整定的目标是使系统具有快速的响应速度、稳定的控制效果和较小的超调量。

为了帮助大家更好地理解和记忆PID参数整定的口诀,下面将介绍一个常用的PID参数整定口诀。

PID参数整定口诀:走极限,求权重,看超调。

第一步,走极限。

在进行PID参数整定之前,需要通过手动调节控制器的输出信号,使系统输出达到一个较大的稳定数值。

这个数值要足够大,以使得系统的控制效果能够体现出来。

通过走极限可以确定系统的主要时间常数和响应速度,为后续的参数整定提供依据。

第二步,求权重。

根据系统的特性,我们可以通过试探或者理论计算的方法来确定PID参数的权重比例。

权重比例的选择取决于系统的稳定性和超调量要求。

一般来说,比例参数越大,系统的响应速度越快,但也容易引起较大的超调量;而积分参数对系统的稳定性有很大的影响,可以用来消除系统的静差;微分参数则主要用来抑制系统的振荡或缓解系统的超调。

第三步,看超调。

在确定了PID参数的权重比例之后,我们需要观察系统的超调量来调整PID参数。

超调量是指系统在过渡过程中最大超过目标值的幅度。

通过观察和分析系统的动态响应,可以逐步调整PID参数,减小超调量并提高系统的控制性能。

PID参数整定口诀“走极限,求权重,看超调”简单明了地概括了PID参数整定的基本步骤和要点。

通过走极限来确定系统的时间常数和响应速度,再通过求权重来确定PID参数的比例、积分和微分参数,最后通过观察和分析超调量来调整参数,以达到系统稳定且控制性能优良的效果。

需要强调的是,PID参数整定是一个经验性的工作,需要结合具体的控制对象和系统要求来进行调整。

口诀只是一个指导性的工具,实际操作中还需要进一步考虑系统的稳定裕度、响应速度要求以及控制器的增益范围等因素。

总之,PID参数整定是控制工程中非常重要的一步,正确的参数设定可以使系统的控制效果更加稳定和优良。

PID口诀、参数调节要领

PID口诀、参数调节要领

PID口诀、参数调节要领PID调节口诀PID常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低解释1:1、曲线漂浮绕大弯——指负载曲线是发散的,没有逐渐收敛到目标值上,这是非常失败的波形曲线,是调试不成功的。

2、曲线偏离回复慢——指负载曲线虽然不发散,逐渐收敛到了目标值上,但是收敛速度较慢。

这也算不上是调试得很成功的波形,还有需要优化的地方。

3、曲线波动周期长——这是指负载曲线要经过长时间的波动后,才能逐渐回到稳定值上。

即先要经过长时间的振荡,然后才能稳定在目标值上,也是不太理想的波形曲线。

4、曲线振荡频率快——这是指负载曲线频繁、快速的振荡,半天稳定不下来。

一般,出现这种波形的原因,是因为你的调节器调节力度太猛了,需要缓和一下。

可以通过减小调节器的比例P参数值,或增大积分时间常数I 参数的值,来达到缓和的目的。

/service/answer/solution.aspx?Q_id=46956&cid=1041解释2:PID调节顺口溜是人们在实践中总结的参数整定的大致方向,但实际的PID调节中需要不断的调整和完善,从而找到最佳的控制点。

PID控制器就是根据系统的误差,利用比例(P)、积分(I)、微分(D)计算出控制量来进行控制。

在PID控制器的参数设定中,PID算法涵盖了动态控制过程中的过去、现在、将来的主要信息。

其中比例P代表了当前的信息,起纠正偏差的作用,使过程反应迅速,但系统输出存在稳态误差;微分(D)在信号变化时有超前控制作用,代表将来的信息。

在过程开始时强迫过程进行,过程结束时减少超调,克服震荡,提高系统稳定性,加快系统的过渡过程。

pid常用口诀

pid常用口诀

PID常用口诀:参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1。

PID控制算法:关键的参数Kc(Gain,增益),Ti(积分时间常数),Td(微分时间常数),Ts(采样时间),在S7-200中PID功能是通过PID指令功能块实现。

通过定时(按照采样时间)执行PID功能块,按照PID 运算规律,根据当时的给定、反馈、比例-积分-微分数据,计算出控制量。

也就说这些参数是通过PLC的功能块实现的.一般的控制就在OB35里调用FB58就行了,只需要输入设定值,输出值和过程值的地址就行了。

还有在DB58里设置一下。

1、PID是经典控制(使用年代久远)2、PID是误差控制()对液压泵转速进行控制除PLC外还要:1、变频器-作为电机驱动;2、差动变压器-作为输出反馈。

PID怎么对误差控制,听我细细道来:所谓“误差”就是命令与输出的差值。

比如你希望控制液压泵转速为1500转(“命令电压”=6V),而事实上控制液压泵转速只有1000转(“输出电压”=4V),则误差: e=500转(对应电压2V)。

如果泵实际转速为2000转,则误差e=-500转(注意正负号)。

该误差值送到PID控制器,作为PID控制器的输入。

PID控制器的输出为:误差乘比例系数Kp+Ki*误差积分+Kd*误差微分。

Kp*e + Ki*∫edt + Kd*(de/dt)(式中的t为时间,即对时间积分、微分)上式为三项求和(希望你能看懂),PID结果后送入电机变频器或驱动器。

从上式看出,如果没有误差,即e=0,则Kp*e=0;Kd*(de/dt)=0;而Ki*∫edt 不一定为0。

三项之和不一定为0。

总之,如果“误差”存在,PID就会对变频器作调整,直到误差=0P I D不是算出来的它是几个参数通过这几个参数可以调整系统的控制性能P 》》》比例I 》》》》积分D 》》》》微分P决定系统调整快慢性能P越大达到设定值越快但是会过冲容易引起震荡I决定到达后的稳定I越大越稳定但是改变设定值容易反应慢D决定在稳定后设定改变后变化快慢就像是一个运动员跑步起跑、跑步、停止一样P是跑的快慢性太快到达终点容易过冲I是最后刹车是否稳定D是对指令反应速度这三个参数主要由控制要求和系统本身固有的性能决定希望能对你有帮助你没有PLC的书嘛?书上写的较清楚PLC在执行PID调节指令时,须对算法中的9个参数进行运算,为此S7-200的PID指令使用一个存储参数的回路表。

pid参数整定口诀

pid参数整定口诀

pid参数整定口诀在控制系统的整定过程中,PID参数的调节是至关重要的一步。

PID控制器的三个参数(比例增益Kp、积分时间Ti和微分时间Td)的合理调节可以确保系统的稳定性、鲁棒性和响应速度。

以下是一些常用的PID参数整定口诀和参考内容,帮助工程师更好地掌握PID控制器的调节技巧。

1. 哈勃曼法则(Huffman法):- 比例增益Kp:当Ti和Td都为0时,首先增大Kp,直到系统开始振荡,然后将Kp减小一半,以此为起点进行调节。

- 积分时间Ti:增大Ti,直到消除系统的超调现象和稳态误差。

- 微分时间Td:增大Td,以使系统的响应更加快速,降低超调。

2. 柯恩-库革曼法则(Cohen-Coon法):- 响应时间方法:先测量系统的响应时间T,然后根据不同的系统类型,选择相应的PID参数,通过以下公式进行计算: - 比例增益Kp = 0.5 / Kc- 积分时间Ti = 0.54 * T- 微分时间Td = 0.33 * T- 此方法适用于一阶系统、二阶系统以及一些特定的常见非线性系统。

3. 托伯曼法则(Tyreus-Luyben法):- 针对超调过大或过小的系统:增加Kp以减小超调,然后增加Ti以增加稳态精度,最后增加Td以加快系统的响应速度。

- 针对超调合适但响应速度过慢的系统:增大Kp以加快响应速度,增加Ti以减小超调,最后增加Td以消除静差。

4. Ziegler-Nichols法则:- 原始的Ziegler-Nichols法则有两种方法:经验法则和整定法则。

- 经验法则:从系统的临界点开始调节,测量临界增益Kcu 和周期Tu,根据系统类型选择合适的PID参数,如下:- 比例增益Kp = 0.6 * Kcu- 积分时间Ti = 0.5 * Tu- 微分时间Td = 0.125 * Tu- 整定法则:通过逐步增大Kp,找到最小振荡增益Kpu和周期Tpu。

根据系统类型选择合适的PID参数,如下:- 比例增益Kp = 0.4 * Kpu- 积分时间Ti = 0.5 * Tpu- 微分时间Td = 0.125 * Tpu5. Lambda法则:- 在某个给定的超调限制下,选择合适的响应时间λ(一般取系统的时间常数),根据系统类型选择合适的PID参数,如下:- 比例增益Kp = (0.6/λ) * Kcu- 积分时间Ti = (1.2/λ) * Tu- 微分时间Td = (0.075/λ) * Tu6. 神经网络整定法则:- 利用神经网络和优化算法,通过对系统建模和参数搜索,自动调节PID参数以实现最佳控制效果。

PID常用口诀总结

PID常用口诀总结

电子知识PID(169)1.PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID 控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀

PID调节口诀1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低控制器参数的工程整定,各种调节系统中参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID常用口诀

PID常用口诀

PID常用口诀参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。

微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System withSteady-state Error)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.首先请问口诀:【参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢。

微分时间应加长;理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低。

】中的曲线指的是pid输出值(比如阀门开度)曲线还是过程变量曲线(比如控制的温度值)?
2.当温度设定值为85度,P=-0.5 I=1.2 D=0.2时,当温度上升至85.2度时开始下降,但是会一直下降到58度左右才会再次上升,而且可能会稳定在75度左右很长时间,总的来说就是阀门打开比较快,但关闭却很慢,即使实时温度与设定温度偏差很大,pid输出值也变化很慢。

之后我换了一组pid:
P=-0.6 I=0.2 D=0.1,设定温度为82度,温度变化过程为:反应很慢,82.6开始输出,下降过程中开度反而增大,导致越降越快,79.5开始下降,之后79.0又上升至80.4下降至80.0上升至81.0下降至79.5上升至80.4下降至78.3上升至80.4下降至79.5上升至79.9,下降至79.4上升至80.5下降至78.3上升至84.2下降至78.2。

如此反反复复,求助各位前辈在这种情况下该如何调节pid参数,口诀虽知晓,但貌似囫囵吞枣,意思却不甚理解。

相关文档
最新文档