伺服驱动PID调整口诀及说明

合集下载

PID调节口诀

PID调节口诀

PID调节口诀PID调节口诀1. ID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: =20~60%,T=180~600s,D=3-180s压力P: =30~70%,T=24~180s,液位L: =20~80%,T=60~300s,流量L: =40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID调节口诀

PID调节口诀

PID调节口诀1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀

PID算法的通俗讲解及调节口诀PID算法是一种常用的控制算法,它可以帮助我们将实际测量值与期望值进行比较,并根据比较结果进行相应的控制。

PID算法由三个部分组成,分别是比例控制(P)、积分控制(I)和微分控制(D)。

在实际应用中,我们可以根据实际情况来调节PID算法的参数,以实现更准确的控制效果。

比例控制(P)是PID算法的核心部分之一,它根据误差的大小来调整输出量。

具体来说,比例控制会将误差与一个常数进行相乘,然后输出到系统中。

当误差较大时,输出量也会较大,从而加快系统的响应速度;当误差较小时,输出量也会较小,从而减小系统的超调量。

积分控制(I)是为了解决系统存在的稳态误差而引入的,它通过对误差的累加来调整输出量。

具体来说,积分控制会将误差乘以一个常数,并加到一个累加器中,然后输出到系统中。

通过积分控制,系统可以在长时间内逐渐减小误差,从而达到期望值。

微分控制(D)是为了解决系统存在的超调问题而引入的,它通过对误差的变化率进行调整。

具体来说,微分控制会将误差的变化率与一个常数进行相乘,并输出到系统中。

通过微分控制,系统可以在误差大幅度变化时降低输出量的变化速度,从而减小超调量。

除了PID算法的三个部分,还需要根据实际情况来调节PID算法的参数,以实现更准确的控制效果。

调节PID算法的口诀有三个重要的方面:1.比例项(P项)的调节:-当P项过大时,系统容易产生超调,并且响应速度较快,但稳定性较差;-当P项过小时,系统的响应速度较慢,并且稳态误差较大;-因此,需要通过改变P项的大小来调节系统的超调量和响应速度。

2.积分项(I项)的调节:-当I项过大时,系统容易产生超调,并且响应速度较慢;-当I项过小时,系统的稳态误差较大;-因此,需要通过改变I项的大小来调节系统的超调量和稳态误差。

3.微分项(D项)的调节:-当D项过大时,系统容易产生振荡,并且响应速度较快;-当D项过小时,系统的超调量较大;-因此,需要通过改变D项的大小来调节系统的振荡情况和超调量。

PID参数整定口诀

PID参数整定口诀

PID参数整定口诀
首先是P(比例)参数的整定:
1.增大P,系统更快速响应;
2.减小P,系统更稳定。

接下来是I(积分)参数的整定:
1.增大I,系统的超调量减小;
2.减小I,系统的超调量增大。

最后是D(微分)参数的整定:
1.增大D,系统的震荡减小;
2.减小D,系统的震荡增大。

综合考虑的时候,可以使用以下顺序进行整定:
1.先将I和D参数设置为0,只调整P参数;
2.逐渐增大P参数,直到系统出现超调;
3.根据需要的系统响应速度调整P参数;
4.添加I参数,减小系统超调;
5.根据需要的系统稳定性调整I参数;
6.最后添加D参数,减小系统震荡。

需要注意的是,以上只是一种简单的整定顺序,具体情况需要结合实际的系统性能要求来设置参数。

此外,整定PID参数的过程是一个迭代的过程,需要不断地调整和优化,直到满足系统的需求。

总结起来,PID参数整定的口诀可以概括为:根据需要的系统性能目标,逐步调整P、I和D参数,将系统的超调、响应速度和稳定性达到最佳状态。

通过不断迭代和优化,最终得到满足系统要求的PID参数设置。

伺服驱动PID调整口诀及说明

伺服驱动PID调整口诀及说明

伺服驱动PID调整口诀及说明
伺服驱动PID调整口诀及说明
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。

微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
P比例;PI比例积分;I积分;D微分
PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。

PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

PID常用口诀

PID常用口诀

PID常用口诀(转)1.PID常用口诀:参数整定找最佳,从小到大顺序查;先是比例后积分,最后再把微分加;曲线振荡很频繁,比例度盘要放大;曲线漂浮绕大湾,比例度盘往小扳;曲线偏离回复慢,积分时间往下降;曲线波动周期长,积分时间再加长;曲线振荡频率快,先把微分降下来;动差大来波动慢,微分时间应加长;理想曲线两个波,前高后低4比1好。

2.一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID调节口诀

PID调节口诀

1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

PID基本概述和参数调整口诀

PID基本概述和参数调整口诀

PID基本概述和参数调整口诀(一)PID基本概述:1、PID是一个闭环控制算法。

因此要实现PID算法,必须在硬件上具有闭环控制,就是得有反馈。

比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上,下面也将以转速控制为例。

2、PID是比例(P)、积分(I)、微分(D)控制算法。

但并不是必须同时具备这三种算法,也可以是PD,PI,甚至只有P算法控制。

我以前对于闭环控制的一个最朴素的想法就只有P控制,将当前结果反馈回来,再与目标相减,为正的话,就减速,为负的话就加速。

现在知道这只是最简单的闭环控制算法。

3、比例(P)、积分(I)、微分(D)控制算法各有作用:比例,反应系统的基本(当前)偏差e(t),系数大,可以加快调节,减小误差,但过大的比例使系统稳定性下降,甚至造成系统不稳定;积分,反应系统的累计偏差,使系统消除稳态误差,提高无差度,因为有误差,积分调节就进行,直至无误差;微分,反映系统偏差信号的变化率e(t)-e(t-1),具有预见性,能预见偏差变化的趋势,产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除,因此可以改善系统的动态性能。

但是微分对噪声干扰有放大作用,加强微分对系统抗干扰不利。

积分和微分都不能单独起作用,必须与比例控制配合。

4、控制器的P,I,D项选择:根据实际的目标系统调试出最佳的PID参数。

(二)常用控制规律的特点:1、比例控制规律P:采用P控制规律能较快地克服扰动的影响,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现。

它适用于控制通道滞后较小、负荷变化不大、控制要求不高、被控参数允许在一定范围内有余差的场合。

如:水泵房冷、热水池水位控制;油泵房中间油罐油位控制等。

2、比例积分控制规律(PI):在工程中比例积分控制规律是应用最广泛的一种控制规律。

积分能在比例的基础上消除余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。

PID调节口诀

PID调节口诀

PID调节时的波动时正常现象,但是波动剧烈,上下抖动太大的话,说明PID参数设置有问题,下面是PID参数整定时的常用口诀,可以根据口诀所描述的现象来整定PID参数,首先凭经验选取一组感觉上误差不会太大的PID参数,然后观察调节时的现象,然后根据口诀所述来慢慢调整
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。

微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
(回答补充:如果P值过大就会出现超调过高,也就是第一个波动会很高,当然如果太小就会出现到达设定值比较慢的情况,然后如果I值过大,也就是积分时间过长就会出现你所说的上下波动太大,I值越大,这个波动的幅度就越大,D值是防扰动用的它会抑制PID对外部扰动的过敏性调节,与波动幅度没有太大关系)。

PID调试步骤(附口诀)

PID调试步骤(附口诀)

PID调试步骤(附口诀)没有一种控制算法比PID调节规律更有效、更方便的了。

现在一些时髦点的调节器基本源自PID。

甚至可以这样说:PID调节器是其它控制调节算法的吗。

为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。

调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。

这就给使用者带来相当的麻烦,特别是对初学者。

下面简单介绍一下调试PID参数的一般步骤:1.负反馈自动控制理论也被称为负反馈控制理论。

首先检查系统接线,确定系统的反馈为负反馈。

例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

其余系统同此方法。

2.PID调试一般原则a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数T d。

3.一般步骤a.确定比例增益P确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

b.确定积分时间常数Ti比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

PID整定方法与口诀

PID整定方法与口诀

3.PID参数整定⑴采样周期T符合工程准则。

(2)K p/K i/K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。

此时PID调节器的比例度为临界比例度6 k,被调参数的工作周期为为临界周期Tk。

O —■■值O -Utsu临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5 次等幅振荡为止。

此时的比例度示值就是临界比例度6 k。

5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。

临界比例度法PID参数整定经验公式调节规律调节器参数6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。

多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。

衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。

纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度6s,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。

pid调节参数设置口诀详解

pid调节参数设置口诀详解

pid调节参数设置口诀详解
PID调节是控制系统中常用的一种控制方法。

在实际应用中,PID 调节需要设置不同的参数,才能达到最优的控制效果。

下面给大家介绍一下PID调节参数设置的口诀,希望能对大家有所帮助。

一、比例(P)参数设置
1. 比例参数越大,响应越快,但容易产生超调。

2. 比例参数越小,响应越慢,但不容易产生超调。

3. 一般情况下,比例参数初始值取50。

二、积分(I)参数设置
1. 积分参数越大,响应越慢,但容易消除稳态误差。

2. 积分参数越小,响应越快,但容易产生超调和震荡。

3. 一般情况下,积分参数初始值取0.1。

三、微分(D)参数设置
1. 微分参数越大,响应越快,但容易产生震荡。

2. 微分参数越小,响应越慢,但不容易产生震荡。

3. 一般情况下,微分参数初始值取0。

四、总结
1. 初始参数设置可以根据经验值进行设置。

2. 在实际应用中,需要根据实际情况进行参数调整。

3. 调节过程中需要注意及时记录参数变化和系统响应情况,以便进行调节。

以上就是PID调节参数设置口诀的详细介绍,希望对大家有所帮
助。

在实际应用中,需要不断地通过试验和调整,找到最优的PID调节参数组合,以达到控制系统的最佳效果。

PID调节口诀

PID调节口诀

PID调节口诀1.参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低。

2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID 调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD 控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

pid口诀

pid口诀

1. PID 常用口诀:参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,2. 一看二调多分析,调节质量不会低2.PID 控制器参数的工程整定,各种调节系统中P.I.D 参数经验数据以下可参照:对于温度系统:P (%)20--60,I (分)3--10,D (分)0.5--3对于流量系统:P (%)40--100,I (分)0.1--1对于压力系统:P (%)30--70,I (分)0.4--3对于液位系统:P (%)20--80,I (分)1--5温度T: P="20"~60%,T=180~600s,D=3-180s压力P: P="30"~70%,T=24~180s,液位L: P="20"~80%,T=60~300s,流量L: P="40"~100%,T=6~60s 。

3.PID 控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。

PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID 控制技术。

积分时间往下降, 曲线波动周期长, 积分时间再加长, 曲线振荡频率快, 先把微分降下来, 动差大来波动慢, 微分时间应加长, 理想曲线两个波, 前高后低4比1。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

pid参数整定口诀

pid参数整定口诀

pid参数整定口诀在控制系统的整定过程中,PID参数的调节是至关重要的一步。

PID控制器的三个参数(比例增益Kp、积分时间Ti和微分时间Td)的合理调节可以确保系统的稳定性、鲁棒性和响应速度。

以下是一些常用的PID参数整定口诀和参考内容,帮助工程师更好地掌握PID控制器的调节技巧。

1. 哈勃曼法则(Huffman法):- 比例增益Kp:当Ti和Td都为0时,首先增大Kp,直到系统开始振荡,然后将Kp减小一半,以此为起点进行调节。

- 积分时间Ti:增大Ti,直到消除系统的超调现象和稳态误差。

- 微分时间Td:增大Td,以使系统的响应更加快速,降低超调。

2. 柯恩-库革曼法则(Cohen-Coon法):- 响应时间方法:先测量系统的响应时间T,然后根据不同的系统类型,选择相应的PID参数,通过以下公式进行计算: - 比例增益Kp = 0.5 / Kc- 积分时间Ti = 0.54 * T- 微分时间Td = 0.33 * T- 此方法适用于一阶系统、二阶系统以及一些特定的常见非线性系统。

3. 托伯曼法则(Tyreus-Luyben法):- 针对超调过大或过小的系统:增加Kp以减小超调,然后增加Ti以增加稳态精度,最后增加Td以加快系统的响应速度。

- 针对超调合适但响应速度过慢的系统:增大Kp以加快响应速度,增加Ti以减小超调,最后增加Td以消除静差。

4. Ziegler-Nichols法则:- 原始的Ziegler-Nichols法则有两种方法:经验法则和整定法则。

- 经验法则:从系统的临界点开始调节,测量临界增益Kcu 和周期Tu,根据系统类型选择合适的PID参数,如下:- 比例增益Kp = 0.6 * Kcu- 积分时间Ti = 0.5 * Tu- 微分时间Td = 0.125 * Tu- 整定法则:通过逐步增大Kp,找到最小振荡增益Kpu和周期Tpu。

根据系统类型选择合适的PID参数,如下:- 比例增益Kp = 0.4 * Kpu- 积分时间Ti = 0.5 * Tpu- 微分时间Td = 0.125 * Tpu5. Lambda法则:- 在某个给定的超调限制下,选择合适的响应时间λ(一般取系统的时间常数),根据系统类型选择合适的PID参数,如下:- 比例增益Kp = (0.6/λ) * Kcu- 积分时间Ti = (1.2/λ) * Tu- 微分时间Td = (0.075/λ) * Tu6. 神经网络整定法则:- 利用神经网络和优化算法,通过对系统建模和参数搜索,自动调节PID参数以实现最佳控制效果。

pid 调整的经验和口诀

pid 调整的经验和口诀
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T: P=20~60%,T=180~600s,D=3-180s
压力P: P=30~70%,T=24~180s,
pid 调整的经验和口诀
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
液位L: P=20~80%,T=60~300s,
流量L: P=40~100%,T=6~60s。
PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如:一个小电机带

PID调节口诀

PID调节口诀

PID调节口诀1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。

3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

比例(P)控制比例控制是一种最简单的控制方式。

其控制器的输出与输入误差信号成比例关系。

当仅有比例控制时系统输出存在稳态误差(Steady-state error)。

积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。

对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服驱动PID调整口诀及说明
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。

微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低
P比例;PI比例积分;I积分;D微分
PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。

PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下:比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

相关文档
最新文档