3分钟教你看懂PCB叠层文件

合集下载

PCB各层含义简介浅显易懂图文展示

PCB各层含义简介浅显易懂图文展示

PCB各层含义简介浅显易懂图文展示写在前面•一,各层整体简介•二,二层板常用的层实例(绘制阶段)o 1.上下两层(T/B Layer)o 2.多层(Multi Layer)o 3.丝印层(T/B Overlay)o 4.Mechanical 1与Keep out层•三,例子板子下载链接•四,实际板子举例(成板阶段)•五,结束语:以上内容如有错误或不妥欢迎指出,谢谢!写在前面希望帮助初学AD(PCB画图)的同学对PCB实物有辅助认识的作用PCB( Printed Circuit Board),中文名称为印制电路板,又称印刷线路板,说简单点就是块电路板一,各层整体简介English 中文作用Top Layer 顶层信号层主要用来放置走线和元器件Bottom Layer 底层信号层同上,就是一个在上面一个在背面Keep out Layer 禁止布线层所选区域外禁止布线,也有人用于设计板框Mechanical 1 机械层1 用于界定元件位置(可当Keep-out用,具体看制板厂要求)Mechanical 13、机械层13、元件本体尺寸,包括三维English 中文作用14 14Mechanical 15、16 机械层15、16用于在设计极早期估算线路板尺寸Top Overlay 顶层丝印层用来标注各种标识,元件号,商标等Bottom Overlay 底层丝印层底层丝印,同上,就是在底层Top Paste 顶层锡膏防护层定义不被盖油的层,用于焊接或SMT加工Bottom Past 底层锡膏防护层同上Top Solder 顶层阻焊层定义不可焊接的区域保护铜箔不被氧化等作用Top Solder 底层阻焊层同上,即板子上绿(其他)色的外面这一层Drill Guide 钻孔定位层焊盘及过孔的钻孔的中心定位坐标层(注意是中心)Drill Drawing 钻孔描述层焊盘及过孔的钻孔尺寸孔径尺寸描述层Multi-Layer 多层过孔穿透此层二,二层板常用的层实例(绘制阶段)1.上下两层(T/B Layer)上下两层主要用于布线和放置元器件,红色线是顶层的走线(即导线),蓝色线是底层的二维图例:三维图例:2.多层(Multi Layer)用于绘制过孔,比如需要直插元件或者固定螺丝在封装库独立封装设计时(红色标记):多层过孔用于固定螺丝的效果(绿色标记):二维:三维:3.丝印层(T/B Overlay)这个层就很有意思了,甚至可以图案上去,常规用法就是表元器件标号、说明、商标:二维(绿色):三维(红色):加图案:二维:三维:4.Mechanical 1与Keep out层这两个层都可以用来做板框和限制走线,但是严格划分的话,Mechanical 1层是用来制定板框的,而Keep out 层是用来设置禁止布线区域的,严格上讲Mechanical 1 的面积要大于Keep out一点才符合设计初衷。

多层PCB堆叠描述

多层PCB堆叠描述

多层PCB堆叠描述叠层结构采用0.3 1/1+1080*2+0.2 1/1+ 1080*2+0.3 1/1(0.265/0.22/0.265)详细描述:该板为6层板,采用3块2层板叠压而成,0.3 1/1,表示第一个双层板的介质厚度加上第一层铜箔厚度为0.3mm,1/1表示第一个双层板铜箔厚度为1盎司;1080×2,表示半固化板(软胶)厚度为0.12mm,1080为0.06mm;0.2 1/1,表示第二个双层板的介质厚度加上两层铜箔厚度为0.2mm,1/1表示第二个双层板铜箔厚度为1盎司;1080×2,表示半固化板(软胶)厚度为0.12mm,1080为0.06mm;0.3 1/1,表示第三个双层板的介质厚度加上两层铜箔厚度为0.3mm,1/1表示第二个双层板铜箔厚度为1盎司;结合目前PCB板加工厂家的工艺能力,在用polar公司阻抗计算器CITS25计算PCB板上迹线特性阻抗时,对影响PCB板迹线控制阻抗的几个相关参数分述如下:1、铜层厚度铜层厚度代表了PCB迹线的高度T。

内层铜箔通常情况下用到1OZ(厚度为35微米),也有在电源层要流过大电流时用到2OZ(厚度为70微米)。

外层铜箔常用1/2OZ(18微米),但由于经过板镀和图形电镀最终成品外层铜厚将达到48微米(实际计算时用该值),设计成其他铜厚将较难控制铜厚厚度公差。

若外层使用1OZ铜箔,则最终铜厚将达到65微米。

2、 PCB板迹线的上下线宽由于侧蚀的影响,PCB迹线的截面为一梯形,上下线宽差距以1mil来计算,其中下线宽=要求线宽,而上线宽=要求线宽-1mil。

3、阻焊层阻焊层厚度按10um为准(选择盖阻焊模式),但有机印后将会有所增厚,但其变化将基本不会带来阻抗值的变化。

4、介质厚度常用板材(芯板):(mm OZ/OZ *表示其数值为不包括铜箔厚度的芯板厚度)0.13* 1/1 0.21* 1/1 0.25* 1/1 0.36* 1/10.51* 1/1 0.71* 1/1 0.80* 1/11.0 1/1 1.2 1/1 1.6 0.5/0.5 1.6 1/1 1.6 2/22.0 1/1 2.0 2/2 2.4 1/13.0 1/1 3.2 1/1芯板在计算控制阻抗时的实际厚度:芯板规格0.13 0.21 0.25 0.36 0.51 0.71 0.80厚度(mm)0.13 0.21 0.25 0.36 0.51 0.71 0.80厚度(mil)5.12 8.27 9.84 14.17 20.08 27.95 31.50芯板规格1.0 1.2 1.62.0 2.4 2.5厚度(mm)0.99 1.15 1.55 1.95 2.35 2.45厚度(mil)38.98 45.28 61.02 76.77 92.52 96.46常用半固化片:(mm/mil)7628: 0.175/6.92116: 0.11/4.31080: 0.066/2.6实际计算厚度时注意半固化片随着两面线路结构不同而有所不同:(mil)HOZ 半固化片规格Copper/Gnd Gnd/Gnd Copper/Signal Gnd/SignalSignal/Signal1080 2.8 2.6 2.5 2.4 2.22116 4.6 4.4 4.2 4.0 3.87628 7.3 7.0 6.8 6.7 6.61OZ 半固化片规格Copper/Gnd Gnd/Gnd Copper/Signal Gnd/SignalSignal/SignalCopper/Gnd1080 2.8 2.6 2.5 2.4 2.22116 4.5 4.3 4.1 3.9 3.77682 7.1 6.8 6.6 6.56.4其中GND层包括铜面积占80%以上的线路层。

PCB层叠设计方法和基本原则介绍

PCB层叠设计方法和基本原则介绍

PCB层叠设计方法和基本原则介绍
PCB设计工程师在完成预布局后,重点需要对板子布线瓶颈处进行分析,再结合PCB设计软件关于布线要求来确定布线层数,综合单板的性能指标要求与成本承受能力,确定单板的电源、地的层数以及它们与信号层的相对排布位置。

本节主要介绍PCB层叠设计方法:PCB设计软件CrossSecTIon界面、PCB层叠设计的基本原则。

一、CrossSecTIon 界面介绍
Allegro提供了一个集成、方便、强大的层叠设计与阻抗计算控制的工具,叫做Cross SecTIon。

如下图所示,可以非常直观地进行材料选择,参数确定,然后得到最终阻抗结果。

其中各选项的含义:
1.Type:选择各层的类型:电导、介质、平面
2.Material:材料,常用为 FR-4
3.Thickness:每一层的厚度
4.ConducTIvity:电导率
5.Dielectric Constant:介电常数
6.LossTangent:损耗角
7.NegativeArtwork
8.Shield:参考平面
技术专区
•FPC整个制造组装的流程介绍
•软板厂抢备货积极,臻鼎成为国内PCB首家营收破千亿•ADS生成bin的方法 ADS路径问题
•富智康计划加速印度制造印度本地设立PCB产线•14nm纳米是全球半导体工艺的壁垒或者“坎”?
-全文完-。

PCB叠层结构知识多层板设计技巧

PCB叠层结构知识多层板设计技巧

PCB叠层结构知识多层板设计技巧PCB(Printed Circuit Board)叠层结构是指将多个层(Layer)的电路板通过堆叠的方式组合在一起形成一个整体。

多层板设计技巧包括了布线规则、信号与电源分离、地电平整、阻抗控制等方面的知识。

下面将详细介绍PCB叠层结构知识和多层板设计技巧。

首先,关于PCB的叠层结构。

PCB的叠层结构可以根据电路设计的需要选择不同的层数,一般常见的有4层、6层、8层等不同层数的叠层结构。

叠层结构具有以下几个优点:1.紧凑性:叠层结构可以将电路板的整体尺寸缩小,提高电子产品的集成度。

2.信号完整性:通过在内层设置地电平、电源电平和信号层,可以有效减少信号串扰和引入的干扰,提高信号完整性。

3.电路效率:叠层结构可以实现电路的分区布局,提高电路的工作效率。

在进行多层板设计时,需要注意以下一些设计技巧:1.PCB分区:将电路板按照不同功能进行分区,将信号层、地电平、电源电平等布局在不同的分区内,以减小信号串扰和电磁干扰。

2.信号与电源分离:将高频信号与低频信号的电源层分离开来,以减小高频信号对低频信号的干扰。

3.地电平规划:在每一层中都设置地电平层,通过整体的地电平规划和细致的连接,可以有效减小信号引入的误差和电磁辐射。

4.阻抗控制:针对高频信号的传输需要控制信号线的阻抗,通过在叠层结构中选择合适的层间间距和层间介质常数,可以实现所需的阻抗匹配。

5.差分信号布线:对于差分信号,要注意将两条线平行布线,且长度相等,以减小信号的模式转换和串扰。

6.信号引线规划:信号引线的布线应尽量短且直,以减小传输延迟和信号失真。

7.确保电源稳定:多层板设计中,要保证各个层的电源电平稳定,避免因电源干扰导致的工作异常。

综上所述,PCB的叠层结构是一种优化电路设计的方法,可以提高电路性能和可靠性。

在进行多层板设计时,需要根据具体的电路要求选择合适的叠层结构,并采用相关的设计技巧,以确保电路板的性能达到设计目标。

PCB叠层设计解析

PCB叠层设计解析

PCB叠层设计1、叠层的目的和作用现在的单板及系统速率越来越高,单板PCB的叠层越来越重要。

单板PCB的叠层就是将信号层、电源平面层和地平面层在既符合机械工艺要求又符合单板性能要求下合理的堆叠在一起,其目的和作用主要有以下几方面:(1)为信号提供基准参考平面,如GND平面;(2)为有源器件提供一个低阻抗的电源分配系统,如电源平面;(3)平面层为信号提供低阻抗的最小回流路径,信号与回流组成的环流面积与EMC关联很大;(4)隔离信号层,防止相邻信号层间的串扰,同时对信号层产生的噪声加以屏蔽和吸收;(5)相邻电源地平面形成的平板电容是一个大容值几乎无寄生电感的去耦傍路电容;电源地平面可被当作一个平板电容器来对待,尤其在中低频时,其ESR,ESL都很小。

在这种情况下,电源、地平面作为一个去耦电容,对RF能量的抑制具有电容器无可比拟的优越性,通常电容器在500MHz以上,由于分布参数的影响,电容基本上曾现感性,已经失去作用,而电源、地平面则100MHz以上直至GHz的范围内具有良好的去耦滤波特性。

但是由于电源、地平面通常由于设计的需要,会被分割,这样就造成了平面的不完整,因此此时平面的电容特性会变得非常复杂,而且,在高频时,由于分布电感ESL的影响,电源、地平面相当于一个谐振腔,具有谐振特性,而且自谐振频率是物理结构和外置的函数高速PCB的叠层设计在保证电源/地阻抗及EMI控制方面有较大影响。

而当该电源、地平面的位置有激励源,就很容易起振。

故通过增加滤波电容或适当调整芯片的外置,从而达到我们的设计要求。

(6)合理的叠层不仅能起到信号传输线阻抗控制的作用,同时又起到抑制板上系统噪声的作用;(7)在PI仿真中,电源平面与参考地平面之间的距离是与电源平面的阻抗成正相关的,可通过合理的叠层去改善电源层的阻抗。

2、信号回流的层间跳转多层PCB中,每个布线层都应该和一个镜像层相邻,信号的返回电流在其对应的镜像层上流动。

PCB叠层结构知识

PCB叠层结构知识

PCB叠层结构知识较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。

我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。

对布通一块板子容易,布好一块好难。

小资料对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题;层的排布一般原则:元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;尽量避免两信号层直接相邻;主电源尽可能与其对应地相邻;兼顾层压结构对称。

对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。

注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层的排布,切忌生搬硬套,或抠住一点不放。

以下为单板层的排布的具体探讨:*四层板,优选方案1,可用方案3方案电源层数地层数信号层数 1 2 3 41 1 12 S G P S2 1 2 2 G S S P3 1 1 2 S P G S方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP层;至于层厚设置,有以下建议:满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM层,即采用方案2:此方案为了达到想要的屏蔽效果,至少存在以下缺陷:电源、地相距过远,电源平面阻抗较大电源、地平面由于元件焊盘等影响,极不完整由于参考面不完整,信号阻抗不连续实际上,由于大量采用表贴器件,对于器件越来越密的情况下,本方案的电源、地几乎无法作为完整的参考平面,预期的屏蔽效果很难实现;方案2使用范围有限。

PCB叠层设计规范文档

PCB叠层设计规范文档

PCB叠层设计规范文档层压设计规则作者:刘军喜2010/10/201.0设计规则:1.1非客户指定结构设计、非阻抗板压板结构设计1.1.1底铜厚度≤1OZ板最外层介电层(L1-2,LN-LN-1层)厚度设计为2.8-14.6MIL,其它层介电层设计为3-14.6MIL;1.1.2无耐高压测试要求的板压板结构设计a、3oz≥底铜厚度≥2OZ介电层厚度设计至少大于4.5MIL;b、4oz≥底铜厚度≥3OZ介电层厚度设计至少大于6.5MIL;c、底铜厚度≥5oz的板需工程出工程评估给工艺组评估后再确定。

1.1.3有耐高压测试板要求的板,根据客户高压要求设计具体的压合结构,通常高压测试在2000V-2800V时,介电层设计至少大于6MIL,具体客户要求的板材TG、CTE、CTI、耐CAF等详细情况需工程出工程评估给工艺组评估后再确定。

备注:介电层指PP层,含core介电层,介电层厚度及core厚度均指中值,不含公差,当厚度>5MIL时公差按IPC4101三级公差进行控制;当厚度≤5MIL 时,公差按±0.5MIL控制;超IPC4101三级公差的MI备注要求特别控制及备料.1.2 客户指定结构板、阻抗板压板结构设计若客户指定结构,工程组在接单时尽量与客户沟通按以上要求设计,当不能满足以上要求时,出工程评估单给工艺评估.1.3板边尺寸设计制作标准1.3.1所有板MI设计开料尺寸需比压合后成型尺寸单边大0.1~0.2″,同时预留开料刀具损耗每刀0.1″。

1.3.2四层板板边一般设计为≥0.5″,特殊情况下可以做到0.4″,但必须满足以下条件:A、非阻抗板;B、介电层厚<8.0MIL;C、内层铜厚<2OZ;1.3.3六层及以上板按照板边≥0.75″控制,六层板特殊情况下可做0.6″(min),但需满足上述a、b、c条件。

1.3.4两张及以上芯板压合的四层板板边设计要求同六层板。

1.3.5 OPE系统设计单元边到开料边一般为≥0.9″,最小可生产0.80″。

多层PCB层叠结构

多层PCB层叠结构

多层PCB层叠结构多层PCB层叠结构是指将多层电路板垂直堆叠在一起形成的复合结构。

每层电路板通过内层连接铜箔或盲孔连接进行互联,形成多层互联的电路板结构。

多层PCB层叠结构在电子产品中广泛应用,可以提供更高的集成度、更好的信号完整性和更好的电磁兼容性。

以下是对多层PCB层叠结构的详细介绍。

1.多层PCB层叠结构的形成在多层PCB层叠结构中,每一层电路板都通过内层连接铜箔或盲孔连接进行互联。

内层连接铜箔是涂覆在电路板表面的一层薄铜箔,用于互联内层电路板。

而盲孔连接是通过在电路板上钻孔并在钻孔内填充导电材料,实现不同层之间的互联。

通过这些互联方式,多层PCB层叠结构中的各层电路板可以实现信号的传输和电力的供应。

2.多层PCB层叠结构的优势-更高的集成度:多层PCB层叠结构可以将大量的电路布局在一个小尺寸的电路板上,提高了电子产品的集成度,降低了产品的体积和重量。

-更好的信号完整性:多层PCB层叠结构可以通过控制互联线的长度和层间电容来降低信号的传输延迟和传输损耗,提高信号的完整性和稳定性。

-更好的电磁兼容性:多层PCB层叠结构可以通过分层布局、层间隔绝、屏蔽层等措施来减少电磁干扰和串扰,提高产品的电磁兼容性。

-更高的可靠性:多层PCB层叠结构中的内层连接铜箔和盲孔连接可以提供更好的连接可靠性,降低连接线路的应力和故障率。

3.多层PCB层叠结构的设计考虑在设计多层PCB层叠结构时,需要考虑以下因素:-信号/电源分层:将不同类型的信号和电源分层布局在不同的层次,避免信号和电源之间的互相干扰。

-分层布局:在多层PCB层叠结构中,需要将布局相似或相关的电路放在相邻层,以便进行互联。

-地面层设置:在多层PCB层叠结构中,通常在每一层上设置一个地面层,用于减少电磁噪声和提供良好的地面引用。

-信号层与地面层的隔离:为了减少信号层和地面层之间的串扰,通常在它们之间设置一层隔离层。

-控制层间阻抗:在多层PCB层叠结构中,需要控制层间连接线的宽度和间距以满足特定的阻抗要求,以确保信号传输的完整性。

pcb叠层参考

pcb叠层参考

pcb叠层参考名词定义:SIG:信号层;GND:地层;PWR:电源层;电路板的叠层安排是对PCB的整个系统设计的基础。

叠层设计如有缺陷,将最终影响到整机的EMC性能。

总的来说叠层设计主要要遵从两个规矩:1. 每个走线层都必须有一个邻近的参考层(电源或地层);2. 邻近的主电源层和地层要保持最小间距,以提供较大的耦合电容;下面列出从两层板到十层板的叠层:2.1 单面板和双面板的叠层;对于两层板来说,由于板层数量少,已经不存在叠层的问题。

控制EMI辐射主要从布线和布局来考虑;单层板和双层板的电磁兼容问题越来越突出。

造成这种现象的主要原因就是因是信号回路面积过大,不仅产生了较强的电磁辐射,而且使电路对外界干扰敏感。

要改善线路的电磁兼容性,最简单的方法是减小关键信号的回路面积。

关键信号:从电磁兼容的角度考虑,关键信号主要指产生较强辐射的信号和对外界敏感的信号。

能够产生较强辐射的信号一般是周期性信号,如时钟或地址的低位信号。

对干扰敏感的信号是指那些电平较低的模拟信号。

单、双层板通常使用在低于10KHz的低频模拟设计中:1 在同一层的电源走线以辐射状走线,并最小化线的长度总和;2 走电源、地线时,相互靠近;在关键信号线边上布一条地线,这条地线应尽量靠近信号线。

这样就形成了较小的回路面积,减小差模辐射对外界干扰的敏感度。

当信号线的旁边加一条地线后,就形成了一个面积最小的回路,信号电流肯定会取道这个回路,而不是其它地线路径。

3 如果是双层线路板,可以在线路板的另一面,紧靠近信号线的下面,沿着信号线布一条地线,一线尽量宽些。

这样形成的回路面积等于线路板的厚度乘以信号线的长度。

2.2 四层板的叠层;推荐叠层方式:2.2.1 SIG-GND(PWR)-PWR (GND)-SIG;2.2.2 GND-SIG(PWR)-SIG(PWR)-GND;对于以上两种叠层设计,潜在的问题是对于传统的1.6mm(62mil)板厚。

层间距将会变得很大,不仅不利于控制阻抗,层间耦合及屏蔽;特别是电源地层之间间距很大,降低了板电容,不利于滤除噪声。

PCB叠层及阻抗计算

PCB叠层及阻抗计算

PCB叠层及阻抗计算PCB叠层是指在电路板上将多个铜箔层堆叠在一起,形成不同信号层和电源层的设计。

通过合理的叠层设计,可以有效地减小电路板的尺寸、提高电路板的性能和可靠性。

在PCB设计中,阻抗计算也是非常重要的一部分,可以帮助设计师保证信号传输的质量和稳定性。

一、PCB叠层设计1.信号层:用于传输信号的层,可以分为内层信号层和外层信号层。

内层信号层主要用于传输高速信号,外层信号层主要用于低速信号或者电源信号。

2.电源层:用于提供电源给电路的层。

在PCB设计中,通常会将电源设计为分层的结构,以避免相互干扰。

一般情况下,会有一个或者多个地平面层和一个或者多个电源层。

3.地层:用于提供整个电路板的通用地参考。

在PCB设计中,通常会分为多个地平面层,并通过通过并联电容等方式实现地的连接。

在进行PCB叠层设计时,需要考虑以下几个方面:1.信号层的选择:根据电路的布局需求和导引层的情况选择信号层的数量和位置。

一般而言,高速信号应尽量使用内层信号层传输,以减少信号的辐射和串扰。

2.电源层和地层的设计:根据电源和地的需求,合理设置电源层和地层的数量和分布。

一般情况下,电源和地应尽量平衡分布,避免在其中一区域集中。

3.引脚的布局:根据IC引脚和外部组件的布局要求,合理选择信号层和电源层的位置。

一般而言,IC引脚应尽量直接连接到内层信号层,以减小信号传输的电磁干扰。

4.路径的规划:根据电路布局和信号传输的要求,设计信号层之间的路径规划。

一般而言,高速信号应尽量选择较短的路径和宽的层间距,以减小信号的传输损耗和串扰。

二、阻抗计算阻抗是指信号在PCB设计中传输时所遇到的电阻和电感。

对于高速信号传输来说,阻抗的控制是非常关键的,可以有效地减小信号的反射和串扰,提高信号的传输质量。

在PCB设计中,常用的阻抗控制方法有以下几种:1.板厚控制:通过调节电路板的厚度,可以调节信号的传输速度。

一般而言,板厚越小,信号的传输速度越快,板厚越大,信号的传输速度越慢。

PCB设计之“常见叠层设计”村田中文技术社区

PCB设计之“常见叠层设计”村田中文技术社区

PCB设计之“常见叠层设计”村田中文技术社区
本文介绍一些常见的叠层设计。

PCB的组成
PCB看上去像一个多层蛋糕,制作过程中将不同材料的层,通过粘合剂粘合到一起。

从表层开始分别是丝印——阻焊——铜——FR4——铜。

铜——阻焊——丝印。

其中铜和FR4可以根据实际层数调整厚度,也有很多种类型,包括芯板、基板、光板、PP等等。

对于一个常规的PCB板,表层和底层基本是固定的,区别在于中间层。

丝印位于最表层,一般以数字、字母、符号等组成,颜色以白色为主,也有其他颜色。

阻焊层,也就是所谓的绿油层,位于表层铜上方,其作用是防止PCB上的走线和其他的金属、焊锡或者其它的导电物体接触导致短路。

阻焊层的存在,使得可以在正确的地方进行焊接,并且防止焊锡搭桥。

阻焊一般都是绿色,也有别的颜色。

常见的PCB叠层
以下是常见的2~12层板的叠层结构,每一种叠层都有他的利与弊,有的是便于布局布线,有的是EMC性能比较好,有的是信号完整
性比较好,实际使用的时候会根据不同的需求选取不同的叠层结构。

PCB叠层文件
PCB叠层文件一般由PCB制板厂提供(也可以自己根据板材使用Polar Si9000计算),一般会包含两部分:一部分是PCB叠构图,一部分是阻抗结构图。

PCB叠构图主要是说明PCB的压合叠构,每一层的厚度,所用的板材类型及介电常数,残铜率等等。

阻抗结构图主要是根据使用该叠层结构的PCB需要控制的阻抗值来计算出每种阻抗对应的线宽和线间距。

PCB电路板如何快速掌握PCB四层板

PCB电路板如何快速掌握PCB四层板

PCB电路板如何快速掌握PCB四层板四层电路板布线方法一般而言,四层电路板可分为顶层、底层和两个中间层。

顶层和底层走信号线,中间层首先通过命令DESIGN/LAYERSTACKMANAGER用ADDPLANE添加INTERNALPLANE1和INTERNALPLANE2分别作为用的最多的电源层如VCC和地层如GND(即连接上相应的网络标号。

注意不要用ADDLAYER,这会增加MIDPLAYER,后者主要用作多层信号线放置),这样PLNNE1和PLANE2就是两层连接电源VCC和地GND的铜皮。

如果有多个电源如VCC2等或者地层如GND2等,先在PLANE1或者PLANE2中用较粗导线或者填充FILL(此时该导线或FILL对应的铜皮不存在,对着光线可以明显看见该导线或者填充)划定该电源或者地的大致区域(主要是为了后面PLACE/SPLITPLANE命令的方便),然后用PLACE/SPLITPLANE在INTERNALPLANE1和INTERNALPLANE2相应区域中划定该区域(即VCC2铜皮和GND2铜片,在同一PLANE中此区域不存在VCC 了)的范围(注意同一个PLANE中不同网络表层尽量不要重叠。

设SPLIT1和SPLIT2是在同一PLANE中重叠两块,且SPLIT2在SPLIT1内部,制版时会根据SPLIT2的边框自动将两块分开(SPLIT1分布在SPLIT的外围)。

只要注意在重叠时与SPLIT1同一网络表的焊盘或者过孔不要在SPLIT2的区域中试图与SPLIT1相连就不会出问题)。

这时该区域上的过孔自动与该层对应的铜皮相连,DIP封装器件及接插件等穿过上下板的器件引脚会自动与该区域的PLANE让开。

点击DESIGN/SPLITPLANES可查看各SPLITPLANES。

protel99的图层设置与内电层分割PROTEL99的电性图层分为两种,打开一个PCB设计文档按,快捷键L,出现图层设置窗口。

PCB叠层设计层的排布原则和常用层叠结构

PCB叠层设计层的排布原则和常用层叠结构

PCB叠层设计层的排布原则和常用层叠结构PCB(Printed Circuit Board)叠层设计是指在PCB板上合理地布局和堆叠不同层的电路板,以满足电路功能和性能要求的技术。

叠层设计不仅涉及到电路布线的密度和走线规则,还涉及到信号传输、电磁兼容和散热等因素。

在进行PCB叠层设计时,需要考虑以下几个原则:1.信号分类:根据电路板上的信号类型,将信号分类到不同的层,以便优化布局和提高信号的完整性。

2.电源和地层布局:将电源和地层布置在电路板的内层,并尽量使用连续的电源和地平面,以确保稳定的供电和减少信号噪声。

3.分析和隔离敏感信号:将敏感信号和高速信号分离并在不同的层上布置,以避免信号相互干扰。

4.电磁兼容性:在叠层设计中,需要考虑电磁兼容性问题,通过合理地堆叠层,减少信号层之间的串扰和辐射。

5.散热:在叠层设计中,需要考虑电路板散热问题,将散热层布置在适当的位置,以提高散热效果。

常用的PCB层叠结构有以下几种:1.单层结构:最简单、最常见的层叠结构,只有一层的电路板。

适用于简单的电路设计,成本低,但信号干扰较大,布线规则受限。

2.双层结构:由两层电路板组成,上层布置信号层,下层布置电源和地层。

适用于较复杂的电路设计,信号传输性能较好,但布线密度有限。

3.四层结构:由四层电路板组成,上下各一层信号层,中间两层为电源和地层。

适用于中等复杂度的电路,具有良好的抗干扰性和信号完整性。

4.六层结构:由六层电路板组成,与四层结构类似,但在两个信号层之间增加了一层作为地层。

适用于复杂的电路设计,更好地隔离信号层和提高信号完整性。

5.多层结构:由六层以上的电路板组成,可根据实际需要增加信号层、电源层和地层。

适用于超高密度和复杂的电路设计,但成本较高。

以上是常用的PCB层叠结构,实际应用还需要根据具体的设计要求和成本考虑进行选择。

正确的叠层设计可以提高电路的性能和可靠性,减少信号干扰和电磁辐射。

pcb叠层设计原理

pcb叠层设计原理

pcb叠层设计原理
PCB叠层设计原理是指在设计PCB板时,将多个叠层(Layer)堆叠在一起形成一个整体的设计布局。

叠层设计的目的是为了满足电路板的功能需求和特定的性能要求。

以下是几种常见的PCB叠层设计原理:
1. 信号完整性:在叠层设计中,需要根据信号的传输速度、功率和抗干扰要求等,将不同信号类型的层放置在合适的位置。

例如,将高速信号层与低速信号层分开,以减少串扰和噪声。

2. 电源与地:在PCB设计中,通常会有多层用于供电和地信号。

将电源层和地层铺设在内层,可以形成一个低阻抗的供电和地平面,以提供稳定的电源和地引用。

3. 信号分层:将不同功能和频率的信号分层设计,可以降低信号之间的干扰。

例如,将高频信号层与低频信号层分开,可以减少串扰和电磁干扰。

4. 机械支撑层:在PCB设计中,可以添加机械支撑层来加强PCB板的结构稳定性和强度。

机械支撑层通常位于顶层和底层之间,并且可以包括背板、边界和固定孔等。

5. 热管理:在高功率电路板设计中,考虑到散热问题,可以在叠层设计中添加散热层。

散热层通常位于内层,可以提高散热效果,并减少温度差异对电路性能的影响。

以上是一些常见的PCB叠层设计原理,具体的叠层设计原理还需根据具体的电路板设计需求和性能要求进行调整和优化。

PCB分层及堆叠

PCB分层及堆叠

八层板,如果要有6个信号层,以A 种情况为最好。

但此种排列不宜用于高速数字电路设计。

如果是5个信号层,以C 种情况为最好。

在这种情况中,S1,S2,S3都是比较好的布线层。

同时电源平面阻抗也比较低。

如果是4个信号层,以表三中B 种情况为最好。

每个信号层都是良好布线层。

在这几种情况中,相邻信号层应布线。

⑤ 十层板表四 十层板如果有6个信号层,有A ,B ,C 三种叠层顺序。

A 种情况为最好,C 种次之,B 种情况最差。

其它没有列出的情况,比这几种情况更差。

在A 种情况中,S1,S6是比较好的布线层。

S2,S3,S5次之。

这中间要特别指出的是,A 同C ,A 种情况之所以好于C 种情况,主要原因是因为在C 种情况中,GND 层同POWER 层的距离是由S5同GND 层距离决定的。

这样就不一定能保证GND 层同POWER 层的电源平面阻抗最小。

D 种情况应当说是十层板中综合性能最好的叠层顺序。

每个信号层都是优良的布线层。

E 、F 多用于背板。

其中F 种情况对EMC 的屏蔽作用要好于E 。

不足之处是在于两信号层相接,在布线上要注意。

总之,PCB 的分层及叠层是一个比较复杂的事情。

有多方面的因素要考虑。

但我们应当记住我们要完成的功能,需要那些关键因素。

这样才能找到一个符合我们要求的印制板分层及叠层顺序。

第一层 第二层 第三层 第四层 第五层 第六层 第七层 第八层 A S1 S2 GND S3 S4 POWER S5 S6 B S1 S2 S3 GND POWER S4 S5 S6 C S1 GND S2 S3 S4 S5 POWER S6 D S1 GND S2 S3 GND POWER S4 S5 E S1 GND S2 S3 GND POWER S4 S5 FS1GNDS2GNDPOWERS3GNDS4第一层 第二层 第三层 第四层 第五层 第六层 第七层 第八层 第九层 第十层 AS1 GND S2 S3 GND POWER S4 S5 GND S6 B S1 GND S2 GND S3 POWER S4 S5 GND S6 C S1 GND POWER S2 S3 GND S4 S5 GND S6 D S1 GND S2 GND S3 GND POWER S4 GND S5 E S1 GND S2 S3 GND POWER S4 GND S5 GND FGNDS1S2GNDS3S4GNDPOWERS5GND。

PCB四层板典型叠层方法与板厚控制

PCB四层板典型叠层方法与板厚控制

PCB四层板典型叠层方法与板厚控制四层板是一种常见的印制电路板(PCB)类型,其内部有四层铜箔,分别是两层信号层、一层地平面层和一层电源层。

这种叠层结构能够提供更好的电磁兼容性(EMC)和信号完整性,适用于较复杂的电路设计。

在设计四层板时,需要考虑叠层方法和板厚控制,以确保电路板的性能和可靠性。

一、四层板典型叠层方法1.信号层-地平面层-电源层-信号层叠层方法:这是最常见的四层板叠层方法。

信号层分布在两个对称层,地平面层用于提供地平面,电源层用于提供电源。

这种叠层方法可以减少信号层之间的干扰,并提供良好的电源和地平面。

2.信号层-电源层-地平面层-信号层叠层方法:这种叠层方法与第一种方法相似,只是地平面层和电源层的顺序颠倒。

这种叠层方法较少使用,但在一些特殊情况下可能会有特定要求。

3.隔层地平面层的叠层方法:在一些高频应用中,需要在信号层之间插入地平面层,以提供更好的环境屏蔽和电磁兼容性。

这种叠层方法可以减少信号层之间的互相干扰,并提供更好的信号完整性。

二、板厚控制在四层板设计中,板厚控制至关重要,常见的四层板标准厚度为1.6mm。

以下是一些常见的板厚控制要求:1.信号层和电源层铜箔厚度:通常,信号层和电源层的铜箔厚度相同,常用的铜箔厚度有1oz(约35um)和2oz(约70um)。

选择合适的铜箔厚度可以满足电流要求,并提供足够的导电性。

2.地平面层铜箔厚度:地平面层的铜箔厚度通常要比信号层和电源层的铜箔厚度大,以提供更好的导电性和地平面。

3.内层铜箔厚度:内层铜箔厚度一般与信号层和电源层的铜箔厚度相同,用于提供信号层之间的连接。

4.外层厚度:除了铜箔层之外,四层板还包括外层的基材。

通常,外层基材的厚度为0.1mm至0.2mm,可以根据需要进行选择。

5.高频应用板厚控制:对于高频应用,板厚控制更为严格。

通常要求板厚公差小于±5%。

在设计和制造过程中需要更加注意,以避免高频信号的传输损耗。

[整理版]pcb叠层结构常识

[整理版]pcb叠层结构常识

pcb叠层结构知识(汇总)2011-11-16 13:58:14标签:休闲多层板职场随着高速电路的不断涌现,PCB板的复杂度也越来越高,为了避免电气因素的干扰,信号层和电源层必须分离,所以就牵涉到多层PCB 的设计。

在多层板的设计中,对于叠层的安排显得尤为重要。

一个好的叠层设计方案将会大大减小EMI及串扰的影响,在下面的讨论中,我们将具体分析叠层设计如何影响高速电路的电气性能。

一.多层板和铺铜层(Plane)多层板在设计中和普通的PCB板相比,除了添加了必要的信号走线层之外,最重要的是安排了独立的电源和地层(铺铜层)。

在高速数字电路系统中,使用电源和地层来代替以前的电源和地总线的优点主要在于:1.为数字信号的变换提供一个稳定的参考电压。

2.均匀地将电源同时加在每个逻辑器件上3.有效地抑制信号之间的串扰原因在于,使用大面积铺铜作为电源和地层大大减小了电源和地的电阻,使得电源层上的电压很均匀平稳,而且可以保证每根信号线都有很近的地平面相对应,这同时减小了信号线的特征阻抗,对有效地较少串扰也非常有利。

所以,对于某些高端的高速电路设计,已经明确规定一定要使用6层(或以上的)的叠层方案,如Intel对PC133内存模块PCB板的要求。

这主要就是考虑到多层板在电气特性,以及对电磁辐射的抑制,甚至在抵抗物理机械损伤的能力上都明显优于低层数的PCB板。

如果从成本的因素考虑,也并不是层数越多价格越贵,因为PCB板的成本除了和层数有关外,还和单位面积走线的密度有关,在降低了层数后,走线的空间必然减小,从而增大了走线的密度,甚至不得不通过减小线宽,缩短间距来达到设计要求,往往这些造成的成本增加反而有可能会超过减少叠层而降低的成本,再加上电气性能的变差,这种做法经常会适得其反。

所以对于设计者来说,一定要做到全方面的考虑。

二.高频下地平面层对信号的影响如果我们将PCB的微带布线作为一个传输线模型来看,那么地平面层也可以看成是传输线的一部分,这里可以用“回路”的概念来代替“地”的概念,地铺铜层其实是信号线的回流通路。

多层PCB线路板制程图文解析

多层PCB线路板制程图文解析

基础知识下面为PCB基本流程图,后面附有文字解说:值得说明的是:上图中有的地方可因各个工厂的机器设备不同或采用的技术不同而有出入,即使是一个厂内,有时也可以针对性的改进流程设备,这也会不同于上面所说的。

而且,有时某种板不需要某步或按不同的流程制作,同样会不同于上图所述。

一、工具/资料制作MI组/客户Gerber资料检查客户资料完整性,可制造性(即与本厂制程能力的一致性),有疑问时问客户核对此步没做好会影响GENESIS读资料时不完全MI组/QAE 依客户要求并结合本厂实际定出工艺路线及基本要求、拼版、开料图、成型图等,后工序则根据其中的相关资料去制作这些都是GENESIS处理CAM资料的依据,每个厂都有自己的这方面的规定:包括一般情况下的要求(MI没规定时按此要求处理,因为这些要求符合本厂机器设备的制程能力)和特殊情况下的要求(即MI注明的要求),显然MI要求优先CAM 用某种CAM软件,依MI要求做出相关机器用的文件:内层菲林光绘文件、外层菲林光绘文件、钻孔文件文字菲林(碳油)光绘文件、成型(锣带)文件等。

后面实际制作时,机器就是读进相应的文件,按文件内容自动进行操作,比如钻孔机读进钻孔文件后就是按钻孔文件的内容去钻孔。

因为线路板厂机器不能直接读客户原始资料,再加上存在误差,所以CAM就是用来把客户原始资料处理为本厂机器能识别的文件,当然在处理时进行了误差方面的补偿。

本教程的重点所在,讲述如何用GENESIS软件来设计生产线路板要用的资料文件E-TEST组制作测试程式光绘用光绘机读进制作好的光绘文件,绘出所有生产时图象转移要用的菲林检查组/QAE 检查所有菲林、钻孔程式、成型程式等与MI要求的一致性1、内层菲林:一般为负片(即爆光时,线路位爆光,显影后膜保留),但其对应的Gerber文件的极性却有正负之分。

2、外层菲林:碱蚀时为正片(即爆光时线路位不爆光,显影后干膜去除);酸蚀时内层菲林.但其对应的Gerber文件的极性都为正的.3、防焊菲林:正片4、文字菲林:正片注意:各层面必要时需要镜像的还需根据复棕片面考虑镜像二、工艺流程开料裁板基板(又名覆铜板)一般尺寸为41″*49″37″*49″、43″*49″(这影响GENESIS的排版)铜箔厚度不同(这影响GENESIS里的蚀刻补偿)内层磨板增加板面粗糙度,使铜面与内层感光油或干膜的结合力加强辘油或贴膜辘油是用辘油机给板面涂上感光油,机内后段一般为烘干段(因此要冷却后继续下工序)贴膜是用贴膜机在板面贴上感光用的膜显然,只需采用上面一种方式加感光材料爆光用爆光机将内层菲林上的图像转移到有感光材料的板面上(这里用的内层菲林就是GENESIS处理好的内层Gerber文件通过光绘机绘出来的,涉及对位孔)显影将未爆光部分的油墨除去,露出铜面蚀刻/去膜显影后露出的铜经过蚀刻段将被蚀刻掉,再经过退膜、水洗、烘干,除去残余油墨,露出需要的线路(这里就要蚀刻补偿,即用GENESIS处理内层文件时加大其中过小的线路)AOI或目视关位层目视残铜;线路层AOI检查开路、短路、缺口、残铜等缺陷(涉及光学点、关位孔)棕化线路铜面经化学反应在表面形成一层棕色膜,增强内层板与PP间的结合力压合预排按MI规定,选用正确型号的PP与内层板组合,并在最外层放置铜箔,叠齐放在钢盘中热压/冷压通过施加压力和高温, PP会融化并重新固化,使各层结合为一体,再通过冷却加压使板减少变形拆板/分割整盘的板分割成WP钻靶将钻孔要用的定位孔钻出(涉及钻孔用定位孔)锣边/磨边将四板边用成型机锣整齐,并把板边磨成弧形,减少后工序刮伤板面钻孔依CAM制作好的钻孔程式,钻机钻出所有需要的孔,以便镀铜后连通所需层面及工具孔(涉及钻孔制作和加工艺孔)PTH磨板除去钻孔时产生的披除胶渍除去孔壁因钻孔时高温产生的胶渍PTH 化学方法使孔壁上沉一层薄铜,以做后续电镀铜的基础电镀加厚孔壁及表面铜,使之符合MI要求,最后烘干板面,减少氧化(以上涉及PTH孔)外层磨刷增加板面粗糙度,以增强干膜与铜面的结合力贴膜在铜面上贴上感光材料:干膜爆光将外层线路菲林上的图象转移到板面上显影将板面未爆光部位的干膜用药水除去,露出需加厚的铜(此为碱蚀工艺;若酸蚀则跟内层线路蚀刻一样)图形电镀把露出的铜加厚,再镀上纯锡做为防蚀刻用褪膜/蚀刻褪去干膜后,把未被锡盖住的铜蚀刻掉褪锡把蚀刻后的板面上的锡褪掉,就得到所要的线路(涉及外层设计,如外层令环宽度<5.5mil时应走碱蚀)AOI或目视防焊磨板加强线路铜面粗糙度,以增强油墨与铜面的结合力丝印将油墨印于板面,并烘干对位/爆光用防焊菲林拍板后,将图形转移到板面显影将未爆光部位的油墨除去,烤干后充分固化,使油墨附于板面(涉及防焊设计)化金磨板除去氧化及板面粧污化学镍/金于未上防焊的铜面上镀上镍/金,以利客户贴元件或插元件,最后烘干,防止氧化电金手指插接位使用电镀金,加厚使其更耐插拨(涉及金手指制作和电金引线)喷锡(HAL)在接点面上喷熄,平滑度适合SMD装配线文字按MI要求印出零件指示字符,方便客户生产图象转移流程同上面(涉及文字设计)成型按要求锣出外围(涉及锣带制作、V-CUT)电测即通/断路测试,确保电气性能目视外观检查,确保符合客户要求包装附:图象转移酸蚀与碱蚀制造印制板过程中的一道工序就是将照相底版上的电路图像转移到覆铜箔层压板上,形成一种抗蚀或抗电镀的掩膜图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 分钟教你看懂PCB 叠层文件
我们都知道,电路板的叠层安排是对PCB 的整个系统设计的基础。

叠层设计如有缺陷,将最终影响到整机的emc 性能。

那幺下面就和咱一起来看看到底如何才看懂叠层文件吧~
下图是我们一般情况下看到的叠层好的文件图示:
一、对(图一)解析如下:
首先,我们可以看出叠层是8 层板,有5 个走线层(TOP、ART03、
ART04、ART06、BOTTOM),有2 个地层(GND02、GND05),有1 个电源
层(PWR07)。

其次我们可以获得整个板子的使用的PP 片情况,GND02-ART03 一张芯
板(core),ART4-GND05(core) 一张芯板,ART06-PWR07(core) 一张芯板, 其
它的用PP 加铜箔,最后压合在一起而成的。

TOP、GND02 层中间的PP 片是2116 半固化片,ART03、ART04 层中间的PP 片是由2 个3313 半固化片和
1 个7628 半固化片压合而成,GND05、ART06 层中间的PP 片是由
2 个3313
半固化片和1 个7628 半固化片压合而成,PWR07、BOTTOM 层中间的PP
片是2116 半固化片。

相关文档
最新文档