七年级数学有理数阅读理解题赏析 人教版
【精选】人教版七年级数学上册 有理数(基础篇)(Word版 含解析)
【答案】 (1)3;2 (2)解:设两只蜗牛都向正方向而行,经过 y 秒后蜗牛甲能追上蜗牛乙,依题意有
,
解得
.
答:两只蜗牛都向正方向而行,经过 9 秒后蜗牛甲能追上蜗牛乙 【解析】【解答】解:(1)设两只蜗牛相向而行,经过 x 秒相遇,依题意有
,
解得
.
.
答:两只蜗牛相向而行,经过 3 秒相遇,此时对应点上的数是 2. 【分析】(1)可设两只蜗牛相向而行,经过 x 秒相遇,根据等量关系:两只蜗牛的速度和
解得,t= , 当点 P 在线段 AB 的延长线上时,AP=2PB,即 2t=2(2t−8), 解得,t=8,
∴ 当 t= 或 8 秒时,点 P 到 A 的距离是点 P 到 B 的距离的 2 倍. 【解析】【解答】解:(1)设点 A 表示的数是 a,点 B 表示的数是 b, 则|a|+|b|=8,又|a|=|b|, ∴ |a|=4, ∴ a=−4, 则点 A 表示的数是−4; ( 2 )∵ P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向右匀速运动, ∴ 当 t=3 秒时,点 A 与点 P 之间的距离为 6 个单位长度; 【分析】(1)设点 A 表示的数是 a,点 B 表示的数是 b,两点间的距离是 8 及互为相反数 的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案; (2)根据路程等于速度乘以时间即可得出答案; (3)由点 A 表示的数结合 AP 的长度,即可得出点 P 表示的数; (4)分当点 P 在线段 AB 上时,AP=2t,BP=(8-2t),根据 AP=2PB 列出方程,求解即 可;当点 P 在线段 AB 的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解 即可,综上所述即可得出答案.
第一章有理数阅读理解题赏析(人教版初一上)
第一章有理数阅读理解题赏析(人教版初一上) 阅读明白得类咨询题是近几年中考显现的新题型.学生通过阅读,学习新的知识,感悟数学思想和方法,形成科学的思维方式和思维策略。
本文以与有理数有关的中考题为例让读者感受一下这类咨询题的处理方法。
㈠ 黑洞数例1 〔2003年山东青岛〕探究数字〝黑洞〞: 〝黑洞〞原指专门惊奇的天体,它体积小,密度大,吸引力强,任何物体到了它那儿都不想再〝爬〞出来,无独有偶,数字中也类似的〝黑洞〞,满足某种条件的所有数,通过一种运算,都能被它吸到里面去,无一能逃脱它的魔掌,譬如:任意找一个3的倍数的数,先把着那个数的每一个数位上的数字都立方,再相加,得到一个新数,求和….重复运算下去,就得到一个固定的数T= ,我们称它为数字〝黑洞〞.T 为何具有如此魔力?通过认确实观看、分析,你一定能发觉它的隐秘!解析: 数字的〝黑洞〞是一个饶有爱好的咨询题.只要按照题意要求对数据进行操作,就会找到那个数字〝黑洞〞.3-----27------351-----153----153---153----因此那个黑洞数T=153 。
㈡二进制数例2〔2003年山东省〕 日常生活中我们使用的数是十进制数,而运算机使用的数是二进制数,即数的进位方法是〝逢二进一〞.二进制数只使用数字0、1,如二进制数1101记为1101(2), 1101(2)通过式子1×23+1×22+0×2+1能够转换为十进制数13,仿照上面的转换方法,将二进制数11101〔2〕转换为十进制数是( )A 29 B25 C4 D33解析 依照二进制数的定义可知:11101〔2〕=1×24+1×23+1×22+0×2+1=29,故应选〔A〕㈢等比数列例3〔2003年广西〕阅读下面一段话,并解决后面的咨询题.观看下面一列数:1,2,4,8,我们发觉,这一列数从第2项起,每一项与它前一项的比都等于2.一样地,假如一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,那个常数叫做等比数列的公比.⑴等比数列5,-15,45,…的第4项是 ;⑵假如一列数a 1, a 2, a 3, a 4,…是等比数列,且公比为q ,那么依照上述的规定,有12a a =q,23a a =q,34a a =q,…… 因此a 2=a 1q,a 3= a 2q= (a 1q )q= a 1 q 2, a 4 = a 3 q= (a 1 q 2 )q= a 1 q 3,…,a n = (用a 1与q 的代数式表示) ⑶一个等比数列的第2项是10 ,第3项是20,求它的第1项与第4项。
有理数与数轴(知识解读+真题演练+课后巩固)2023-2024学年七年级数学上册(人教版)(解析版)
z!"#$#%&!"#$%&'()*+,-./0+123445"6$&60+12-7.890:;<=344>"6$0?+**********?C-D0?EFG0344H"IJ0?K&60L'MNO+-PQRSTU0TVWXYZ 4知识点1 :正数和负数(1)概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
) (2)意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2: 有理数(1)概念整 数:正整数、0、负整数统称为整数。
分 数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
(2)分类:两种⑴按正、负性质分类: ⑵按整数、分数分类:正有理数 正整数 正整数 有理数 正分数 整数 0 零 有理数 负整数 负有理数 负整数 分数 正分数 负分数 负分数z知识点3:数轴(1)概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度(2)对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大 。
(3)应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)【题型 1 正数与负数】【典例1】(2023•西乡塘区二模)在﹣2,0,0.5,3四个数中,是负数的是( ) A .﹣2 B .0 C .0.5 D .3【答案】A【解答】解:在﹣2,0,0.5,3四个数中,是负数的是﹣2. 故选:A .【变式1-1】(2023•安徽模拟)数1,,0,﹣2,﹣3中正数有( )个. A .2 B .3C .4D .5【答案】A【解答】解:在:1,,0,﹣2,﹣3中, 正数有:1,,共2个. 故选:A .【变式1-2】(2022秋•防城港期末)下列各数中,是负数的是( ) A .0 B .﹣C .πD .3【答案】B【解答】解:A .0既不是正数,也不是负数,故选项不符合题意; B .﹣是负数,故选项符合题意; C .π是正数,故选项不符合题意;D.3是正数,故选项不符合题意;故选:B.【变式1-3】(2022秋•石楼县期末)下列各数:﹣2,0.8,﹣5,0,﹣3.14,8.3,﹣11,其中负数的有( )个.A.2B.3C.4D.5【答案】C【解答】解:负数有﹣2,﹣5,﹣3.14,﹣11,共4个,故选:C.【题型 2 相反意义的量表示】【典例2】(2023•船营区一模)中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若气温上升7℃记作:+7℃,那么气温下降10℃可记作( )A.7℃B.10℃C.﹣10℃D.﹣7℃【答案】C【解答】解:若气温上升7℃记作:+7℃,那么气温下降10℃可记作﹣10℃.故选:C.【变式2-1】(2023•吉林一模)中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作﹣500年,那么公元2023年应记作( )A.﹣2023年B.+1523年C.+2023年D.+2523年【答案】C【解答】解:∵公元前500年记作﹣500年,∴公元前为“﹣”,∴公元后为“+”,∴公元2023年就是公元后2023年,∴公元2023年应记作+2023年.故选:C.【变式2-2】(2022秋•佛山期末)下列四组量中,不具有相反意义的是( )A.海拔“上升200米”与“下降400米”B.温度计上“零上15℃”与“零下5℃”C.盈利100元与亏本25元D.长3米与重10千克【答案】D【解答】解:上升于下降具有相反意义,故A不符合题意;零上于零下具有相反意义,故B不符合题意;盈利于亏本具有相反意义,故C不符合题意;长度于质量步具有相反意义,故D符合题意;故选:D.【变式2-3】(2023•衡水二模)某日,四个城市的日平均气温如表所示:城市石家庄邢台保定张家口日平均气温/℃﹣110﹣6则日平均气温最低的是( )A.石家庄B.邢台C.保定D.张家口【答案】D【解答】解:∵﹣6<﹣1<0<1,∴日平均气温最低的城市是张家口,故选:D.【典例3】(2023•长春模拟)班级组织了一次跳远比赛,若成绩以250cm为标准,小明跳出了253cm,记做+3cm,则小亮跳出了246cm应记作( )A.+4cm B.﹣4cm C.+6cm D.﹣6cm【答案】B【解答】解:246﹣250=﹣4(cm),故选:B.【变式3-1】(2023•衡水二模)某品牌米线的包装袋上写着“300克±4%”,则下列不可能是米线的重量的是( )A.285克B.295克C.304克D.310克【答案】A【解答】解:∵300克±4%,即300×(1+4%)=312,300×(1﹣4%)=288z∴米线的重量为288~312克, 故选:A .【变式3-2】(2022秋•武陵区期末)一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不是标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D .【答案】D【解答】解:|﹣1.2|=1.2;|﹣2.3|=2.3;|0.9|=0.9;|﹣0.8|=0.8, ∵0.8<0.9<1.2<2.3, ∴0.8最小. 故选:D【变式3-3】(2022秋•德州期末)某中学进行立定跳远测试,男生成绩合格标准定为1.85米,体育老师记录了甲、乙、丙、丁四位男生成绩如下表:(超出标准的部分记为“+”,不足标准的部分记为“﹣”),你认为立定跳远成绩最好的是( ) 学生 甲 乙 丙丁成绩/米 +0.25+0.45 ﹣0.10 ﹣0.25A .甲B .乙C .丙D .丁【答案】B【解答】解:∵﹣0.25<﹣0.10<+0.25<+0.45, ∴四位男同学成绩最好的是乙; 故选:Bz【题型 3 相反意义的应用】【典例4】(2022秋•社旗县期末)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重 千克. (2)这8筐白菜中最重的重 千克;最轻的重 千克. (3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元? 【答案】(1)24.5; (2)27;22; (3)389.【解答】解:(1)最接近标准重量的是纪录中绝对值最小的数,因而是25﹣0.5=24.5(千克), 故答案为:24.5;(2)∵记录中最大的数为2,最小的数为﹣3 ∴25+2=27(千克),25﹣3=22(千克) ∴这8筐白菜中最重的重27克;最轻的22千克,故答案为:27;22.(3)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.525×8+(﹣5.5)=194.5(千克)194.5×2=389(元),答:出售这8筐白菜可卖389元.【变式4-1】(2022秋•绥德县期末)某登山队5名队员以大本营为基地,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下:(单位:米)+115,﹣30,﹣45,+180,+25,﹣20,+30,+110,﹣25,+100 (1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米? (2)登山时,5名队员在行进中全程均消耗了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?【答案】(1)没有登上顶峰,他们距离顶峰60米;(2)他们共消耗了17 升氧气.【解答】解:(1)500﹣(115﹣30﹣45+180+25﹣20+30+110﹣25+100)=60(米).答:没有登上顶峰,他们距离顶峰60米;(2)115+30+45+180+25+20+30+110+25+100=680(米),因为每人每100米消耗氧气0.5升,所以680×5÷100×0.5=17(升),答:他们共消耗了17 升氧气.【变式4-2】(2022秋•枣阳市期末)某校积极开展劳动教育活动,七年级(2)班利用劳动课举行包饺子比赛,以小组为单位(共分7个小组),以包100个饺子为基准,将这7个小组所包饺子的数量(单位:个)记录如下:﹣8,+5,+3,﹣2,+3,+7,+6.(超过100个的部分记为“+”,不足100个的部分记为“﹣”)(1)包饺子数量最多的小组与数量最少的小组相差多少个?(2)本次活动该班共包饺子多少个?【答案】(1)包饺子数量最多的小组与数量最少的小组相差15个;(2)本次活动该班共包饺子714个.【解答】解:(1)由题意,得:包的最多的小组比基准多7个,包的最少的小组比基准少8个;+7﹣(﹣8)=15(个);答:包饺子数量最多的小组与数量最少的小组相差15个;(2)(﹣8+5+3﹣2+3+7+6)+7×100=714(个);答:本次活动该班共包饺子714个.【变式4-3】(2022秋•慈溪市期末)2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一二三四五六日与计划量的差值+43﹣35﹣50+142﹣82+21﹣29(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生产成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?【答案】(1)本周生产量最多的一天比生产量最少的一天多生产224个;(2)本周实际生产总量达到了计划数量,理由见解析;(3)350050.【解答】(1)解:由表可知:因为本周生产量最多的一天是周四,最少的一天是周五,∴142﹣(﹣82)=224(个).答:本周生产量最多的一天比生产量最少的一天多生产224个.(2)∵43+(﹣35)+(﹣50)+(+142)+(﹣82)+(+21)+(﹣29)=43﹣35﹣50+142﹣82+21﹣29=10.∵10>0,∴本周实际生产总量达到了计划数量.(3)由利润=总量×(单价﹣成本)有:(10000×7+10)×(30﹣25)=70010×5=350050(元).答:该工厂本周的生产总利润是350050元.【题型 4 有理数的概念辨析】【典例5】(2022秋•朝阳区期末)下面的说法中,正确的是( )A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【答案】C【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.z故选:C .【变式5-1】(2022秋•长沙期末)在﹣3.5,,0.3070809,0,中,有理数有( )个. A .1 B .2C .3D .4【答案】D【解答】解:在﹣3.5,,0.3070809,0,中,有理数有﹣3.5,,0.3070809,0,共4个,故选:D .【变式5-2】(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是( )A .正有理数B .负有理数C .0D .非负数【答案】C【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数, 则“”表示的是0. 故选:C .【变式5-3】(2022秋•颍州区期末)下列说法正确的是( ) A .3.14不是分数B .不带“﹣”号的数都是正数C .0是自然数也是正数D .整数和分数统称为有理数 【答案】 Dz【解答】解:A 、3.14是分数,属于有理数,故A 不符合题意; B 、0不带“﹣”号,但不是正数,故B 不符合题意;C 、0是自然数,但既不是正数,也不是负数,故C 不符合题意;D 、整数和分数统称为有理数,说法正确,故D 符合题意. 故选:D .【题型 5 有理数的分类】【典例6】(2022秋•宁陕县校级期中)把下列各数填入相应的大括号里: ﹣3,3.14,﹣0.1,80,﹣25%,0,正数集合:{ }; 整数集合:{ }; 负数集合:{ }; 正分数集合:{ }. 【答案】3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【解答】解:﹣3,3.14,﹣0.1,80,﹣25%,0,,正数集合:{3.14,80,,};整数集合:{﹣3,80,0,}; 负数集合:{﹣3,﹣0.1,﹣25%,}; 正分数集合:{3.14,,}.故答案为:3.14,80,;﹣3,80,0;﹣3,﹣0.1,﹣25%;3.14,.【变式6-1】把下列各数填入相应的集合里:﹣3.14,4.3,+72,0,,﹣6,﹣7.3,﹣12,0.4,﹣,,26.(1)正数集合:{ …}; (2)负数集合:{ …}; (3)正整数集合:{ …}; (4)负整数集合:{ …};(5)非负数集合:{ …}. 【答案】(1)4.3,+72,,0.4,,26;(2)﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)+72,26;(4)﹣6,﹣12;(5)4.3,+72,0,,0.4,,26.【解答】解:(1)正数集合:{4.3,+72,,0.4,,26…};故答案为:4.3,+72,,0.4,,26;(2)负数集合:{﹣3.14,﹣6,﹣7.3,﹣12,﹣…};故答案为:﹣3.14,﹣6,﹣7.3,﹣12,﹣;(3)正整数集合:{+72,26…};故答案为:+72,26;(4)负整数集合:{﹣6,﹣12…};故答案为:﹣6,﹣12;(5)非负数集合:{4.3,+72,0,,0.4,,26…}.故答案为:4.3,+72,0,,0.4,,26.【变式6-2】(2022秋•雁塔区校级月考)把下列各数填在相应的横线上:5%,z﹣,﹣12,0,0.,﹣3.14,+6,0.101101110,.整数集合:{…};正数集合:{…};负分数集合:{…};非负整数集合:{…}.【答案】﹣12,0,+6;5%,0.,+6,0.101101110,;﹣,﹣3.14;0,+6.【解答】解:整数集合:{﹣12,0,+6…};z正数集合:{5%,0.,+6,0.101101110,…};负分数集合:{﹣,﹣3.14…}; 非负整数集合:{0,+6…}; 故答案为:﹣12,0,+6; 5%,0.,+6,0.101101110,;﹣,﹣3.14; 0,+6.【题型 6 数轴的画法及应用】【典例7】(2022•苏州模拟)以下是四位同学画的数轴,其中正确的是( ) A . B .C .D .【答案】D【解答】解:∵数轴要有三要素:单位长度,原点,正方向,并且数轴上表示的数从左到右增大,∴四个选项中只有选项D 符合题意, 故选:D .【变式7-1】(2022•杭州模拟)下列说法中正确的是( )A .数轴是一条射线B .数轴上离开原点距离越远的点表示的数越大C .数轴上的点所表示的数从左到右依次减小D .任何一个有理数都可以用数轴上的一个点表示 【答案】D【解答】解:数轴是一条直线,A 说法错误;在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,B 说法错误; 数轴上的点所表示的数从左到右依次增大,C 说法错误; 任何一个有理数都可以用数轴上的一个点表示,D 说法正确. 故选:D .【变式7-2】(2021秋•凉州区校级期末)判断下列图中所画的数轴正确的个数是( )个.A.0B.1C.2D.3【答案】B【解答】解:数轴的三要素是:原点、正方向、单位长度,图(1)没有原点,故(1)不正确;图(2)满足数轴的定义,故(2)正确;图(3)所画负半轴上的数字排列顺序不对,故(3)错误;图(4)所画单位长度不一致,故(4)不正确.故选:B.【典例8】(2022秋•自贡期末)a,b为有理数,它们在数轴上对应点的位置如z图所示.则下列关系式正确的是( )A.﹣a<﹣b<b<a B.﹣a<b<﹣b<aC.﹣b<b<﹣a<a D.a<﹣b<b<﹣a【答案】B【解答】解:如图,由数轴可得,﹣a<b<﹣b<a,故选:B.【变式8-1】(2023•贵阳模拟)有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是( )zA .a +b >0B .a ﹣b >0C .ab >0D .【答案】D【解答】解:由数轴可知b >0>a ,且b <|a|, ∴a+b <0,故A 错误,不符合题意; a ﹣b <0,故B 错误,不符合题意; ab <0,故C 错误,不符合题意;,故D 正确,符合题意.故选:D .【变式8-2】(2022秋•鼓楼区校级期末)如图,A ,B ,C ,D 是数轴上的四个点,已知a ,b 均为有理数,且a +b =0,则它们在数轴上的位置不可能落在( )A .线段AB 上 B .线段BC 上 C .线段BD 上 D .线段AD 上【答案】A【解答】解:∵a ,b 均为有理数,且a+b =0, ∴a ,b 位于原点两侧,∴a ,b 在数轴上的位置不可能落在线段AB 上.故选:A .【变式8-3】(2022秋•江阴市期末)如图,数轴上的点A ,B 分别对应有理数a ,b ,下列结论正确的是( )A .a +b >0B .a ﹣b >0C .ab >0D .以上都不正确【答案】C【解答】解:由数轴可知,a <b <0, ∴a+b <0,故A 不符合题意; a ﹣b <0,故B 不符合题意;ab >0,故C 符合题意,D 不符合题意.【题型 7 数轴上的点所表示的数】【典例9】(2022秋•天津期末)已知数轴上点A到点B的距离是4,且点B所表示的数是2,则点A所表示的数是( )A.4或﹣4B.6或﹣2C.6或2D.﹣6或﹣2【答案】B【解答】解:∵点B到点A的距离是4.∵B表示2,∴A表示为2﹣4=﹣2或2+4=6.故选:B.【变式9-1】(2022秋•武冈市期末)点A为数轴上表示﹣2的点,当点A沿数轴移动5个单位长度到点B时,点B所表示的数为( )A.7或﹣3B.3或﹣7C.3或﹣3D.7或﹣7【答案】B【解答】解:向左移动5个单位长度对应的点表示﹣2﹣5=﹣7,向右移动5个单位长度对应的点表示﹣2+5=3,故选:B.【变式9-2】(2023•义乌市校级开学)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是( )A.﹣1B.0C.1D.2【答案】C【解答】解:由图可知,被墨水盖住的整数为:﹣3,﹣2,1,2,3,相加为﹣3+(﹣2)+1+2+3=1;故选:C【变式9-3】(2023•新邵县校级一模)在数轴上表示数﹣1和2021的两个点之间的距离为( )个单位长度.A.2022B.2021C.2020D.2019z【解答】解:|﹣1﹣2021|=2022, 故选:A .【题型 8 数轴中点规律问题】【典例10】(2023•新华区校级二模)如图,不完整的数轴上有A ,B 两点,原点在A 、B 之间,沿原点将负半轴折叠到正半轴上,点A 落在点B 左侧4个单位长度处,则线段AB 的中点表示的数为( )A .2B .﹣2C .4D .﹣4【答案】A【解答】解:根据题意可设点A 表示的数为a ,则折叠后的点A 的对称点为﹣a , 因为点A 落在点B 左侧4个单位长度处,所以点B 表示的数为﹣a+4, 则AB =﹣a+4﹣a =4﹣2a , 线段AB 的一半为2﹣a ,所以AB 中点为:﹣a+4﹣(2﹣a )=2, 故选:A .【变式10-1】(2022秋•公安县期末)在数轴上,若点A ,B 表示的数分别是﹣3和5,点M 是线段AB 的中点,则M 表示的数为( ) A .1 B .2C .4D .﹣4【答案】A【解答】解:∵点A ,B 表示的数分别是﹣3和5, ∴AB =5﹣(﹣3)=8, ∵点M 是线段AB 的中点, ∴,∴点M 表示的数为:5﹣4=1; 故选:A .【变式10-2】(2022秋•江岸区期末)如图,在数轴上,点A 、B 表示的数分别是﹣19和3.点C 为线段AD 的中点,且BC =6BD ,则点C 表示的数为( )zA .﹣9B .﹣9.5C .﹣10D .﹣10.5【答案】A【解答】解:∵数轴上A ,B 两点所表示的数分别是﹣19和3, ∴AB =3+19=22, 设BD =x , ∵BC =6BD , ∴BC =6x , ∴CD =5x ,∵点C 为线段AD 的中点, ∴AD =2CD =10x , ∴AB =11x =22, ∴x =2, ∴AC =5x =10,∴点C 所表示的数是﹣19+10=﹣9. 故选:A .1.(2022•襄阳)若气温上升2℃记作+2℃,则气温下降3℃记作( ) A .﹣2℃ B .+2℃C .﹣3℃D .+3℃【答案】C【解答】解:∵气温上升2℃记作+2℃, ∴气温下降3℃记作﹣3℃. 故选:C .2.(2022•益阳)四个实数﹣,1,2,中,比0小的数是( )A .﹣B .1C .2D .【答案】A【解答】解:根据负数都小于零可得,﹣<0.故选:A.3.(2022•河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元【答案】B【解答】解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.4.(2021•南京)北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.10:00B.12:00C.15:00D.18:00【答案】C【解答】解:由题意得,北京时间应该比莫斯科时间早5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为12:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C.5.(2021•滨州)在数轴上,点A表示﹣2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A.﹣6B.﹣4C.2D.4【答案】C【解答】解:由题意可得,点B表示的数为﹣2+4=2,故选:C.z6.(2021•广州)如图,在数轴上,点A 、B 分别表示a 、b ,且a +b =0,若AB =6,则点A 表示的数为( )A .﹣3B .0C .3D .﹣6【答案】A【解答】解:∵a+b =0, ∴a =﹣b ,即a 与b 互为相反数. 又∵AB =6, ∴b ﹣a =6. ∴2b =6. ∴b =3.∴a =﹣3,即点A 表示的数为﹣3. 故选:A .7.(2021•凉山州)下列数轴表示正确的是( ) A . B .C .D .【答案】D【解答】解:A 选项,应该正数在右边,负数在左边,故该选项错误;B 选项,负数的大小顺序不对,故该选项错误;C 选项,没有原点,故该选项错误;D 选项,有原点,正方向,单位长度,故该选项正确; 故选:D .8.(2020•乐山)数轴上点A 表示的数是﹣3,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( ) A .4 B .﹣4或10C .4或﹣10D .﹣10【答案】C【解答】解:如果A 向右平移得到,点B 表示的数是:﹣3+7=4, 如果A 向左平移得到,点B 表示的数是:﹣3﹣7=﹣10,z故点B 表示的数是4或﹣10. 故选:C .9.(2020•临沂)如图,数轴上点A 对应的数是,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .﹣B .﹣2C .D .【答案】A【解答】解:点A 向左移动2个单位, 点B 对应的数为:﹣2=﹣. 故选:A .10.(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可) 【答案】见试题解答内容【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可);1.(2023•河北模拟)向东走2m ,记为+2m ,那么走﹣7m ,表示( ) A .向南走7m B .向东走7mC .向西走7mD .向北走7m【答案】C【解答】解:向东走2m ,记为+2m ,那么走﹣7m ,表示向西走7m . 故选:C .2.(2022秋•河池期末)下列说法错误的是( ) A .0既不是正数,也不是负数B .零上4摄氏度可以写成+4°C ,也可以写成4°CzC .若盈利100元记作+100元,则﹣20元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示 【答案】D【解答】解:A .0既不是正数,也不是负数,正确,故不符合题意; B .零上4摄氏度可以写成+4°C ,也可以写成4°C ,正确,故不符合题意; C .若盈利100元记作+100元,则﹣20元表示亏损20元,正确,故不符合题意; D .规定向正北走用正数表示,则向正南走才用负数表示,原说法错误,故符合题意. 故选:D .3.(2023•海安市一模)手机移动支付给生活带来便捷.如图是小颖某天微伯账单的收支明细(正数表示收入,负数表示支出,单位:元),小颖当天微信收支的最终结果是( )A .收入18元B .收入6元C .支出6元D .支出12元【答案】B【解答】解:+18+(﹣12)=6(元),即小颖当天微信收支的最终结果是收入6元.故选:B .4.(2023•官渡区校级模拟)检查四个篮球的质量,把超过标准的克数记为正数,不足标准质量的克数记为负数,结果如下表: 其中质量最好的是( )篮球编号 甲 乙 丙 丁与标准质量的差(g ) +4+7﹣3﹣8A .甲B .乙C .丙D .丁【答案】C【解答】解:根据题意可得:超过标准质量的克数记为正数,不足标准质量的克z数记为负数;观察图表,找绝对值最小的.易得|﹣3|=3最小, 故3号球最接近标准质量,质量最好, 故选:C .5.(2022秋•广西期末)在,﹣4,0,这四个数中,属于负整数的是( ) A .B .C .0D .﹣4【答案】D【解答】解:∵﹣,都是分数, ∴选项A ,B 不符合题意; ∵0既不是正数,也不是负数, ∴选项C 不符合题意; ∵﹣4是负整数, ∴选项D 符合题意, 故选:D .6.(2022秋•红河县期末)下列说法正确的是( ) A .0不是正数,不是负数,也不是整数 B .正整数与负整数包括所有的整数C .﹣0.6是分数,负数,也是有理数D .没有最小的有理数,也没有最小的自然数【答案】C【解答】解:A 0不是正数也不是负数,0是整数,故A 错误; B 正整数于负整数不包括0,故B 错误; C ﹣0.6是分数,负数,有理数,故C 正确; D 0是最小的自然数,故D 错误; 故选:C .7.(2023•晋安区校级模拟)如图,数轴的单位长度是1,若点A 表示的数是﹣1,则点B 表示的数是( )zA .1B .2C .3D .4【答案】D【解答】解:∵数轴的单位长度为1,如果点A 表示的数是﹣1, ∴点B 表示的数是:﹣1+5=4,故D 正确. 故选:D .8.(2022秋•惠阳区期末)有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣1B .﹣a <bC .a +b <0D .a ﹣b >0【答案】B【解答】解:观察数轴得:﹣2<a <﹣1,2<b <3, ∴A 选项错误,不符合题意; ∴1<﹣a <2,∴﹣a <b ,故B 选项正确,符合题意; ∴|a|<|b|,∴a+b >0,故C 选项错误,不符合题意; ∴a ﹣b <0,故D 选项错误,不符合题意; 故选:B .9.(2022秋•沈丘县月考)已知数轴上A ,B 两点到原点的距离分别是3和9,则A ,B 两点间的距离是( ) A .6 B .9或12C .12D .6或12【答案】D【解答】解:A 、B 两点表示的数同号时,A ,B 两点间的距离是9﹣3=6或﹣3﹣(﹣9)=6,A 、B 两点表示的数异号时,A ,B 两点间的距离是9﹣(﹣3)=12或3﹣(﹣9)=12,∴A ,B 两点间的距离是6或12. 故选:D .10.(2022秋•文成县期中)点A、B在同一条数轴上,其中点A表示的数为1,若点B到点A的距离为4,则点B表示的数是( )A.3B.5C.3或﹣3D.5或﹣3【答案】D【解答】解:∵1+4=5,1﹣4=﹣3,∴点B表示的数是5或﹣3,故选:D.11.(2022秋•济南期中)如图,一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣14,10,现以点C为折点,将数轴向右对折,若点A落在射线CB上且到点B的距离为6,则C点表示的数是( )A.1B.﹣3C.1或﹣5D.1或﹣4【答案】C【解答】解:10+6=16,10﹣6=4,当A落在16对应的点时,C表示的数为:(16﹣14)=1,z当A落在4对应的点时,C表示的数为:(4﹣14)=﹣5,故选:C.12.(2023春•荣县月考)观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).【答案】见试题解答内容【解答】解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1,∴第16个答案为:.故答案为:.13.(2022秋•武侯区校级月考)把下列各数分别填入相应的集合里.0,,5,3.14,π,﹣3,0.1.(1)整数集合:{…};(2)分数集合:{…};(3)有理数集合:{…};(4)非负数集合:{…}.【答案】(1)0,5,﹣3;(2),3.14,0.1;(3)0,,5,3.14,﹣3,0.1;(4)0,5,3.14,π,0.1.【解答】解:0,,5,3.14,π,﹣3,0.1.(1)整数集合:{0,5,﹣3,…};故答案为:0,5,﹣3;(2)分数集合:{,3.14,0.1,…};、故答案为:,3.14,0.1;z(3)有理数集合:{0,,5,3.14,﹣3,0.1,…};故答案为:0,,5,3.14,﹣3,0.1;(4)非负数集合:{0,5,3.14,π,0.1,…}.故答案为:0,5,3.14,π,0.1.14.(2023•泰山区校级开学)自行车厂要生产一批相同型号的自行车,计划每天生产200辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过200辆记为正,不足200辆记为负)星期一二三四五六日增减(辆)+5﹣3﹣4+13﹣10+15﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.【答案】(1)598;(2)25;(3)工人这一周的工资总额是140840元.【解答】解:(1)由表格可得,(200+5)+(200﹣3)+(200﹣4)=205+197+196=598(辆),即前三天共生产了598辆,故答案为:598;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了15﹣(﹣10)=15+10=25(辆),故答案为:25;(3)200×7×100+[5+(﹣3)+(﹣4)+13+(﹣10)+15+(﹣9)]×120=140000+7×120=140000+840=140840(元),答:工人这一周的工资总额是140840元.15.(2022秋•长安区校级期末)某食品厂在产品中抽出20袋样品,检查其质量是否达标,超过标准的部分用正数表示,不足的部分用负数表示:﹣3﹣2﹣1.501 1.5 2.5与标准质量的差/克袋数1434323(1)这批样品的总质量比标准总质量多还是少?多或少几克?(2)若每袋的标准质量为200克,求这批样品平均每袋的质量是多少克?【答案】(1)这批样品的总质量比标准总质量少,少2克;(2)这批样品平均每袋的质量是199.9克.【解答】解:(1)(﹣3)×1+(﹣2)×4+(﹣1.5)×3+0×4+1×3+1.5×2+2.5×3=﹣3﹣8﹣4.5+0+3+3+7.5=﹣2(克),即这批样品的总质量比标准总质量少,少2克;(2)200×20﹣2=4000﹣2=3998(克),3998÷20=199.9(克),即这批样品平均每袋的质量是199.9克.。
人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)
人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)一、选择题1.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112C .12D .-112A 解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .2C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.(0分)若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是()A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.(0分)当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题11.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.12.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.13.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.++-+++-++++-=_____.【分析】15.(0分)计算:(1)(2)(3)(4)(2019)(2020)第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.(0分)阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36 【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题. 【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n=mna a a a ⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36. 【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 24.(0分)计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。
2020有理数的减法-七年级数学人教版(上)(解析版)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.比1小2的数是A.–1 B.–2 C.–3 D.1【答案】A【解析】1–2=–1.故选A.2.咸宁冬季里某一天的气温为–3°C~2°C,则这一天的温差是A.1°C B.–1°C C.5°C D.–5°C 【答案】C【解析】这一天的温差是2–(–3)=2+3=5(°C),故选C.3.12–23的结果是A.13B.–13C.–16D.16【答案】C【解析】12–23=36–46=–(46–36)=–16,故选C.学科&网4.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+4 【答案】B5.如图是某市连续四天的天气预报图,根据图中的信息可知这四天中温差最大的是A.周日B.周一C.周二D.周三【答案】二、填空题:请将答案填在题中横线上.6.计算:7–(–4)=__________.【答案】11【解析】7–(–4)=7+4=11.故答案为:11.学科&网7.冬季供暖后,乐乐发现室内的温度为20°C,此时冰箱冷冻室的温度为–5°C,则室内的温度比冷冻室的温度高__________°C.【答案】25【解析】20–(–5)=20+5=25(°C),故答案为:25.8.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.【答案】35【解析】甲地最高,乙地最低,20–(–15)=20+15=35(m).故答案为:35.9.已知:|m–n|=n–m,|m|=4,|n|=3,则m–n=__________.【答案】–7或–1【解析】因为|m|=4,|n|=3,所以m=±4,n=±3,因为|m–n|=n–m,所以m–n≤0,即m≤n,所以m=–4,n=±3,当m=–4,n=3时,m–n=–7;当m=–4,n=–3时,m–n=–1;故答案为:–7或–1.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.计算:(1)2+(–8)–(–7)–5;(2)312+223+(–12)–(–13).11.先列式再计算:–1减去–23与35的和所得差是多少?【解析】–1–(–23+35)=–1–(–115)=–1+115=–1415.12.某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?【解析】(5+12+22)–(9.6+7+10.25+2.4)=39–29.25=9.75(万元).学科&网答:储蓄所该日现金增加9.75万元.13.阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,如下图,线段AB=1=0–(–1);线段BC=2=2–0;线段AC=3=2–(–1).问题:(1)数轴上点M、N代表的数分别为–9和1,则线段MN=__________;(2)数轴上点E、F代表的数分别为–6和–3,则线段EF=__________;(3)数轴上的两个点之间的距离为5,其中一个点表示的数为2,则另一个点表示的数为m,求m的值.【解析】(1)因为点M、N代表的数分别为–9和1,。
人教版七年级数学上册 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图,在数轴上每相邻两点间的距离为一个单位长度,点、、、对应的数分别是,且 .(1)那么 ________, ________:(2)点以个单位/秒的速度沿着数轴的正方向运动,秒后点以个单位/秒的速度也沿着数轴的正方向运动,当点到达点处立刻返回,与点在数轴的某点处相遇,求这个点对应的数;(3)如果、两点以(2)中的速度同时向数轴的负方向运动,点从图上的位置出发也向数轴的负方向运动,且始终保持,当点运动到时,点对应的数是多少?【答案】(1)-6;-8(2)解:由(1)可知:,,,,点运动到点所花的时间为,设运动的时间为秒,则对应的数为,对应的数为: .当、两点相遇时,,,∴ .答:这个点对应的数为;(3)解:设运动的时间为对应的数为:对应的数为:∴∵∴∵对应的数为∴①当,;②当,,不符合实际情况,∴∴答:点对应的数为【解析】【解答】解:(1)由图可知:,∵,∴,解得,则;【分析】(1)由a、d在数轴上的位置可得d=a+8,代入已知的等式可求得a的值,再根据数轴可确定原点的位置;(2)根据相遇问题可求得相遇时间,然后结合题意可求解;(3)根据AB=AC列方程,解含绝对值的方程可求解.2.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)在数轴上标示出-4、-3、-2、4、(2)结合数轴与绝对值的知识回答下列问题:①数轴上表示4和-2的两点之间的距离是________,表示-2和-4两点之间的距离是________.一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,即那么a=________②若数轴上表示数a的点位于-3和2之间,则的值是________;③当a取________时,|a+4|+|a-1-|+|a-4|的值最小,最小值是________.【答案】(1)解:如图所示:(2)6;2;1或-5;5;1;8.【解析】【解答】解:(2)①数轴上表示4和−2的两点之间的距离是4−(−2)=6,表示−2和−4两点之间的距离是−2−(−4)=2;∵|a−(−2)|=3,∴a−(−2)=±3,解得a=−5或1;②因为|a+3|+|a−2|表示数轴上数a和−3,2之间距离的和,又因为数a位于−3与2之间,所以|a+3|+|a−2|=5;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,所以当a=1时,式子的值最小,此时|a+4|+|a−1|+|a−4|的最小值是8.故答案为:6,2,−5或1;5;1,8.【分析】(1)数轴上原点表示正数,原点左边表示负数,原点右边表示正数,然后在数轴上找出表示各个数的点,用实心的小原点标记,并在实心小圆点上方写出该点所表示的数;(2)①根据数轴上任意两点的距离等于这两点所表示的数差的绝对值即可算出答案;解含绝对值的方程,根据绝对值的意义去掉绝对值符号,再解即可;②因为数a位于−3与2之间,故a+3>0,a−2<0,根据绝对值的意义去掉绝对值符号再合并他即可;③根据|a+4|+|a−1|+|a−4|表示一点到−4,1,4三点的距离的和,根据两点之间线段最短即可得出当a=1时,式子的值最小,从而将a=1代入即可算出答案。
最新人教版七年级数学上册 有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
难点详解人教版七年级数学上册第一章 有理数重点解析试卷(含答案解析)
人教版七年级数学上册第一章 有理数重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、43-的倒数是( )A .43- B .34- C .43 D .342、计算2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( ) A .23 B .32 C .23- D .32- 3、如果某商场盈利3万元,记作3+万元,那么亏损1.8万元,应记作( )A . 1.8-B . 1.8-万元C . 1.8+万元D . 1.8+4、a 与﹣2互为倒数,那么a 等于( )A .﹣2B .2C .﹣12D .12 5、小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ).A .加法的交换律和结合律B .加法的交换律C .加法的结合律D .无法判断6、地球绕太阳公转的速度约为110000km/h ,数字110000用科学记数法表示应为( )A .61.110⨯B .41110⨯C .51.110⨯D .60.1110⨯7、如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .12- B .2- C .72 D .12 8、下列各数中,比2-小的数是( )A .0B .3-C .1-D .0.6-9、观察算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,….通过观察,用你所发现的规律确定32021的个位数字是( )A .3B .9C .7D .110、计算35--+结果正确的是( )A .4B .2C .2-D .4-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A 和点B 是数轴上的两点,点A B 表示的数为1,那么A 、B 两点间的距离为_____.2、A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的数为______.3、写出一个数,使这个数的绝对值等于它的相反数:__________.4、如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有_____个.5、写出一个负数,使这个数的绝对值小于3__________.三、解答题(5小题,每小题10分,共计50分)1、计算下列各题:(1)1182004822⎛⎫⨯÷- ⎪⎝⎭;(2)535(5)16-÷-.2、计算下列各题:(1)112136⎛⎫÷- ⎪⎝⎭;(2)151124364⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭;(3)1152(10)3236⎛⎫-÷-⨯÷- ⎪⎝⎭.3、下列由四舍五入法得到的近似数,各精确到哪一位?(1)7.93; (2)0.0405;(3)25.9万; (4)57.710⨯.4、小明做了这样一道题,他的方法如下:1110101010111111133313333333⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.请你用他的方法解下面题目.设201420151(2013)2013M⎛⎫=-⨯⎪⎝⎭,1010111(5)(6)200830N⎛⎫=-⨯-⨯--⎪⎝⎭,求2019()M N+的值.5、计算.(1)66 2341.232328.77181111 -+---.(2)1121322332⎛⎫⎛⎫--++-⎪ ⎪⎝⎭⎝⎭.-参考答案-一、单选题1、B【解析】【分析】根据倒数的定义解答.【详解】解:43-的倒数是34-,故选:B.【考点】此题考查倒数的定义,熟记定义是解题的关键.2、D【解析】【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】 解:2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭, =201920202 1.513⎛⎫-⨯⨯ ⎪⎝⎭ =2020201922 1.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个, =2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个, =32-, 故选:D .【考点】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.3、B【解析】【分析】盈利、亏损表示两个具有相反意义量,把盈利记作“+”,则亏损记作“-”,进而得出答案.【详解】 解:盈利、亏损表示两个具有相反意义量,∴亏损1.8万元,应记作 1.8-万.故选:B .【考点】本题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4、C【解析】【分析】乘积是1的两数互为倒数.据此判断即可.【详解】解:a 与﹣2互为倒数,那么a 等于﹣12.故选:C .【考点】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解题关键是掌握倒数的定义.5、A【解析】【分析】根据有理数加法运算性质分析,即可得到答案.【详解】将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了:加法的交换律和结合律故选:A .【考点】本题考查了有理数加法运算的知识;解题的关键是熟练掌握有理数加法运算性质,从而完成求解.6、C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时, n 是正数,当原数的绝对值<1时,n 是负数.【详解】将110000用科学记数法表示为:51.110⨯,故选:C .【考点】本题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,表示时关键要正确确定a 的值以及n 的值.7、A【解析】【分析】数轴上向左平移2个单位,相当于原数减2,据此解答.【详解】解:∵将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数为:32-2=12-, 故选A.【考点】本题考查了数轴,利用了数轴上的点右移加,左移减,在学习中要注意培养数形结合的数学思想.8、B【分析】根据有理数的大小比较法则比较即可.【详解】 解:.0.606-=,∵32100.6-<-<-<<,∴比2-小的数是3-,故选:B .【考点】本题考查了有理数的比较大小,注意绝对值越大的负数的值越小是解题的关键.9、A【解析】【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2019除以4,余数是几就和第几个数字相同,由此解决问题即可.【详解】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2021÷4=505…1,所以32019的末位数字与33的末位数字相同是3.故选:A.【考点】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.10、B【解析】【分析】直接根据绝对值的代数意义及有理数的加法运算法则计算得出答案.【详解】解:﹣|﹣3|+5=﹣3+5=2.故选:B.【考点】此题主要考查了绝对值的代数意义及有理数的加法运算法则,正确掌握相关运算法则是解题关键.二、填空题11【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】=,解:本题主要考查数轴上两点间的距离,点A和点B111.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.2、2.【解析】【详解】解:∵A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,∴﹣1+3=2,即点B所表示的数是2,故答案为2.点睛:本题考查了数轴和有理数的应用,关键是能根据题意得出算式.3、1-(答案不唯一)【解析】【详解】分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.4、7【解析】【分析】根据图中的信息可知,墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),由此即可得到被墨迹盖住的整数,从而得到答案.【详解】根据图中信息可知:墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),∵在-5到0之间(不包括-5和0)的整数有:-4、-3、-2、-1;在0到4之间(不包括0和4)的整数有:1、2、3,∴被墨迹盖住的整数共有7个.故答案为:7.【考点】本题考查了数轴,熟知“在数轴上:-5到0之间(不包括-5和0)有哪些整数和0到4之间(不包括0和4)有哪些整数”是解答本题的关键.5、-1【解析】【分析】根据绝对值的定义及有理数的大小比较方法求解即可.【详解】解:∵|-1|=1,1<3,∴这个负数可以是-1.故答案为:-1(答案不唯一).【考点】一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.三、解答题1、(1)2004-;(2)1716. 【解析】【分析】【详解】(1)原式1717200422⎛⎫=⨯÷- ⎪⎝⎭ 17220042172004=-⨯⨯=- (2)原式535516=÷ 513516517161716⎛⎫=+⨯ ⎪⎝⎭=+= 2、(1)2-;(2)89;(3)1-.【解析】【分析】【详解】(1)原式7736⎛⎫=÷- ⎪⎝⎭76372⎛⎫=⨯- ⎪⎝⎭=-(2)原式41717364⎛⎫=+⨯÷ ⎪⎝⎭ 4174361789=⨯⨯= (3)原式5110621035⎛⎫=-⨯⨯⨯ ⎪⎝⎭1=-.3、(1)精确到百分位;(2)精确到万分位;(3)精确到千位;(4)精确到万位.【解析】【分析】根据近似数的定义一个数最后一位所在的数位就是这个数的精确度,即可得出答案.【详解】解:(1)7.93,精确到百分位;(2)0.0405,精确到万分位;(3)25.9万,精确到千位;(4)57.710⨯,精确到万位.【考点】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.4、-1【解析】【分析】先根据小明的方法求出M,N的值,然后代入代数式去接即可;【详解】∵20142014201511(2013)201320132013 20132013M⎛⎫⎛⎫=-⨯=-⨯⨯=⎪ ⎪⎝⎭⎝⎭,1010111(5)(6)200830N⎛⎫=-⨯-⨯--=⎪⎝⎭101(5)(6)(6)200830⎡⎤⎛⎫-⨯-⨯-⨯--=⎪⎢⎥⎝⎭⎣⎦620082014--=-.∴20192019()(20132014)1M N+=-=-.【考点】本题主要考查了有理数的乘方,准确计算是解题的关键.5、 (1)-24(2)6【解析】(1)解:原式=(23-2)+(-41.23-8.77)+(23611-18611)=21-50+5 =-24 (2)解:原式=312+13+223-12=(312-12)+(13+223)=3+3=6【考点】本题考查有理数加减混合,熟练掌握运用加法换律与结合合律简便运算是解题的关键.。
【精选】人教版七年级上册数学 有理数(提升篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.2.已知 , , 三点在数轴上对应的位置如图如示,其中点对应的数为2,, .(1)点对应的数是________,点对应的数是________;(2)动点,分别同时从,两点出发,分别以每秒8个单位和3个单位的速度沿数轴正方向运动.点为的中点,点在上,且,设运动时间为 .①请直接用含的代数式表示点,对应的数;②当时,求的值.【答案】(1)-12;5(2)解:① 对应的数是,对应的数是;② ,,,,由,得,由,得,故当秒或秒时, .【解析】【解答】解:(1)点对应的数为,,,点对应的数是:;点对应的数是:;故点对应的数为,点对应的数是 .【分析】(1)根据点对应的数,由的长确定出点表示的数,再根据的长确定出点表示的数;(2)①根据题意表示出点、的数即可;②列出含t的、的代数式,得出方程,求出方程的解即可.3.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.(1)在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴正方向运动经过t秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【答案】(1)解:∵a,b,c满足|a+5|+|b﹣2|+|c﹣3|=0,∴a=﹣5,b=2,c=3.设点P对应的数为x.当x<﹣5时,﹣5﹣x+2﹣x=3﹣x,解得:x=﹣6;当﹣5≤x<2时,x﹣(﹣5)+2﹣x=3﹣x,解得:x=﹣4;当2≤x<3时,x﹣(﹣5)+x﹣2=3﹣x,解得:x=0(舍去);当x≥3时,x﹣(﹣5)+x﹣2=x﹣3,解得:x=﹣6(舍去).综上所述:在数轴上存在点P,使得PA+PB=PC,点P对应的数为﹣6或﹣4.(2)解:AB﹣BC的值不变,理由如下:当运动时间为t秒时,点A对应的数为t﹣5,点B对应的数为3t+2,点C对应的数为5t+3,∴AB﹣BC=3t+2﹣(t﹣5)﹣[5t+3﹣(3t+2)]=6.∴AB﹣BC的值不变.【解析】【分析】由绝对值的非负性可求出a,b,c的值.(1)设点P对应的数为x,分x <﹣5,﹣5≤x<2,2≤x<3及x≥3四种情况考虑,由PA+PB=PC利用两点间的距离公式,即可得出关于x的一元一次方程,解之即可得出结论;(2)找出当运动时间为t秒时点A,B,C对应的数,进而可求出AB﹣BC=6,此题得解.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.6.数轴上点A对应的数为a,点B对应的数为b,且多项式6x3y-2xy+5的二次项系数为a,常数项为b(1)直接写出:a=________,b=________(2)数轴上点P对应的数为x,若PA+PB=20,求x的值(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B 出发,以每秒2个单位长度的速度沿数轴向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度【答案】(1)﹣2;5(2)解:①当点P在点A左边,由PA+PB=20得: (﹣2 ﹣x )+(5﹣x)=20, ∴②当点P在点A右边,在点B左边,由PA+PB=20得: x ﹣(﹣2 )+(5﹣x)=20,∴,不成立③当点P在点B右边,由PA+PB=20得:x ﹣(﹣2 )+(x﹣5), ∴ .∴或11.5(3)解:设经过t秒后,M、N两点相距1个单位长度,由运动知,AM=t,BN=2t,① 当点N到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,t+1+2t=5+2,所以,t=2秒,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,t+2t﹣1=5+2,所以,t=秒,② 当点N到达点A之后时,Ⅰ、当N未追上M时,M、N两点相距1个单位长度,t﹣[2t﹣(5+2)]=1,所以,t=6秒;Ⅱ、当N追上M后时,M、N两点相距1个单位长度,[2t﹣(5+2)]﹣t=1,所以,t=8秒;即:经过2秒或秒或6秒或8秒后,M、N两点相距1个单位长度.【解析】【解答】(1)∵多项式6x3y-2xy+5的二次项系数为a,常数项为b,∴a=-2,b=5,故答案为:-2,5;【分析】(1)根据多项式的相关概念即可得出a,b的值;(2)分①当点P在点A左边,②当点P在点A右边,③当点P在点B右边,三种情况,根据 PA+PB=20 列出方程,求解并检验即可;(3)设经过t秒后,M、N两点相距1个单位长度,故AM=t,BN=2t,分① 当点N 到达点A之前时,Ⅰ、当M,N相遇前,M、N两点相距1个单位长度,Ⅱ、当M,N相遇后,M、N两点相距1个单位长度,② 当点N到达点A之后时,Ⅰ、当N未追上M 时,M、N两点相距1个单位长度,Ⅱ、当N追上M后时,M、N两点相距1个单位长度,几种情况,分别列出方程,求解即可.7.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)【答案】(1)D;-1010(2)-2017;-1008.5;1010.5;【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,∴(-3)+(+2)=-1故答案为:D.②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…∴-1+2-3+4-…+2018-2019=(-1+2)+(-3+4)+…+(-2017+2018)-2019=1+1+…-2019=1009-2019=-1010故答案为:D,-1010.(2)①∵折叠纸条,表示-1的点与表示3的点重合∴对称中心为:,∴2019-1=2018,∴与表示2019的点重合的点在1的左边,∴1-2018=-2017.②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同∴点B和1,点A和1之间的距离相等,∴点A和1之间的距离为2019÷2=1009.5∵A在B的左侧,∴点A表示的数为1-1009.5=-1008.5点B表示的数为:1009.5+1=1010.5;③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.故答案为:-2017、-1008.5、1010.5、.【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
初一上册有理数内容总结及试题分析(20210318012014)
初一上册有理数内容总结及试题分析初一数学七年级上册第一章有理数主要内容:1.1正数和负数有理数1.2有理数1.2.1数轴1.2.2相反数1.2.3绝对值1.2.4有理数的加减法1.3有理数的加法1.3.1有理数的减法1.3.2有理数的乘除法1.4有理数的乘法1.4.1有理数的除法1.4.2有理数的乘方1.5乘法1.4.1科学计数法1.4.21.4.3近似数主要知识点:1 、大于0的数叫正数,在正数前加(- )的叫负数,0 既不是正数,也不是负数;2 、如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示他们;3 、正整数,0 ,负整数统称为整数;正分数,负分数统称为分数;整数和分数统称为有理数;4 、在数学中,可以用一条直线上的点表示数,这条直线就叫做数轴。
5 、设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是 a 个单位长度。
6 、设a 是一个正数,数轴上与原点的距离是a 的点有两个,他们分别在远点左右,表示a 和-a ,两点关于原点对称。
7 、像2 和-2 这样,只有符号不同的两个数叫做互为相反数。
8 、数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
记作|a| 。
9 、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数,0 的绝对值是0 。
10 、正数大于0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
11 、有理数加法法则:(1)、同号两数相加,取相同的符号,并把绝对值相加;(2)、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)、互为相反数的两个数相加得0。
一个数同0 相加,仍是这个数。
12 、有理数的加法中,两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a13 、有理数的加法中,先把前两个数相加,或者先把后两个数相加,和不变。
人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)
1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米. 故选C .【点睛】 此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.下列分数不能化成有限小数的是( )A .625B .324C .412D .116C 解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数.故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.5.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.6.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,8.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.9.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.1.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 2.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.4.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。
【精选】人教版七年级上册数学 有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.4.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
人教版七年级上册数学第一章 有理数含答案解析
人教版七年级上册数学第一章有理数含答案一、单选题(共15题,共计45分)1、有理数在数轴上对应点的位置如图所示,下列各式正确的是( )A. B. C. D.2、世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为A.5B.6C.7D.83、餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿kg,这个数据用科学记数法表示为()A.5×10 10kgB.50×10 9kgC.5×10 9kgD.0.5×10 11kg4、点在数轴上距离原点3个单位长度,将向右移动4个单位长度,再向左移动2个单位长度,此点表示的数是()A.1B.5C.-5或1D.5或-15、在下列各数中,比﹣1小的数是()A.1B.-1C.-2D.06、下列比较两个有理数的大小正确的是()A.﹣3>﹣1B.C.D.7、实数a在数轴上对应的点的位置如图所示,化简|a+3|的结果是()A.a+3B.a-3C.-a-3D.-a+38、在数轴上,表示数的点到原点的距离是个单位长度,数是的倒数,则()A. 或B. 或C. 或D. 或9、﹣2016的倒数是()A.2016B.-2016C.D.10、下列运算中,结果最小的是()A.1-(-2)B.1-|-2|C.1×(-2)D.1÷(-2)11、一个数的绝对值等于它本身,这样的数是()A.0B.0和1C.正数D.非负数12、计算2﹣(﹣3)×4的结果是()A.20B.﹣10C.14D.﹣2013、我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为()A.101B.110C.111D.110114、用四舍五入法按要求把2.0503分别取近似数,其中错误的是()A.2.1(精确到0.1)B.2.05(精确到0.001)C.2.05(精确到百分位)D.2.050(精确到千分位)15、如果一个数的平方与这个数的差等于0,那么这个数是()A.0B.﹣1C.1或0D.﹣1或1二、填空题(共10题,共计30分)16、小明在超市买一食品,外包装上印有“总净含量(300±5)g”的字样。
人教版数学七年级上册有理数典型例题分析
1.(2020秋•海淀区校级月考)a、b是有理数,它们在数轴上的对应点的位置如图所示,下列说法正确的有()个.①|a+b|=|a|﹣|b|;②﹣b<a<﹣a<b;③a+b>0;④|﹣b|<|﹣a|.A.1B.2C.3D.4【考点】:数轴;绝对值.【专题】:实数;数感;应用意识.【答案】B【分析】根据有理数a、b在数轴上的对应点的位置,得出a<0,b>0,且|a|<|b|,再根据绝对值、相反数的意义逐项判断即可.【解答】解:根据有理数a、b在数轴上的对应点的位置可知,a <0,b>0,且|a|<|b|,∴a+b>0,因此③正确;∵|a|=|﹣a|,|b|=|﹣b|,而|a|<|b|,∴|﹣a|<|﹣b|,因此④不正确;∵a<0,b>0,且|a|<|b|,∴a+b=|b|﹣|a|>0,因此①不正确,根据绝对值和相反数的意义可得,﹣b<a<﹣a<b;因此②正确,故选:B.【点评】本题考查数轴表示数的意义和方法,理解绝对值、相反数的意义是正确解答的关键.2.(2020春•宁阳县期末)若x的相反数是﹣3,|y|=5,则x+y的值为()A.﹣8B.2C.﹣8或2D.8或﹣2【考点】相反数;绝对值;有理数的加法.【专题】:实数;运算能力.【答案】D【分析】首先根据x的相反数是﹣3,可得:x=3,然后根据|y|=5,可得:y=±5,据此求出x+y的值为多少即可.【解答】解:∵x的相反数是﹣3,∴x=3,∵|y|=5,∴y=±5,(1)x=3,y=5时,x+y=3+5=8.(2)x=3,y=﹣5时,x+y=3+(﹣5)=﹣2.故选:D.【点评】此题主要考查了有理数加法的运算方法,以及相反数、绝对值的含义和求法,要熟练掌握.3.(2019秋•垦利区期末)下列各组数中,相等的是()A.﹣1与(﹣2)+(﹣3)B.|﹣5|与﹣(﹣5)C.与D.(﹣2)2与﹣4【考点】:有理数的混合运算.【专题】:计算题;运算能力.【答案】B【分析】根据有理数的减法法则,绝对值的性质,相反数的定义,有理数的乘方的定义对各选项进行计算,然后利用排除法求解.【解答】解:A、(﹣2)+(﹣3)=﹣5,﹣1≠﹣5,故本选项错误;B、|﹣5|=5,﹣(﹣5)=5,5=5,故本选项正确;C、=,≠,故本选项错误;D、(﹣2)2与=4,4≠﹣4,故本选项错误.故选:B.【点评】本题考查了有理数的混合运算,有理数的乘方,相反数的定义,绝对值的性质,熟记性质是解题的关键,要注意﹣22与(﹣2)2区别.4.(2019秋•新都区期末)已知a、b、c三个数在数轴上对应的点如图所示,下列结论错误的是()A.a+c<0B.b﹣c>0C.c<﹣b<﹣a D.﹣b<a<﹣c 【考点】:数轴.【专题】:实数;几何直观.【答案】C【分析】根据数轴得出c<b<0<a,|c|>|a|>|b|,再逐个判断即可.【解答】解:从数轴可知:c<b<0<a,|a|>|c|>|b|,A、a+c<0,故本选项不符合题意;B、b﹣c>0,故本选项不符合题意;C、c<﹣a<﹣b,故本选项符合题意;D、﹣b<a<﹣c,故本选项不符合题意.故选:C.【点评】本题考查了不等式的性质和数轴,能根据数轴得出正确的结论是解此题的关键.5.(2019秋•贵港期末)下列说法正确的是()A.一个数的绝对值等于它本身,这个数一定是正数B.一个数的绝对值等于它的相反数,这个数一定是负数C.绝对值越大,这个数越大D.两个负数,绝对值大的那个数反而小【考点】:相反数;绝对值.【专题】:实数.【答案】D【分析】根据相反数的定义和绝对值的意义,绝对值和相反数都等于它本身的数为0.【解答】解:A.一个数的绝对值等于它本身,这个数是正数或0,故选项A不合题意;B.一个数的绝对值等于它的相反数,这个数一定是负数或0,故选项B不合题意;C.负数绝对值越大,这个数越小,故选项C不合题意;D.两个负数,绝对值大的那个数反而小.正确.故选:D.【点评】本题考查了绝对值和相反数,解决本题的关键是熟记相反数的定义和绝对值的意义,熟知绝对值和相反数都等于它本身的数为0.6.(2019秋•云冈区期末)下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6.其中,正确的算式有()A.0个B.1个C.2个D.3个【考点】:有理数的混合运算.【专题】:计算题;实数.【答案】C【分析】根据有理数的减法法则、绝对值性质、乘方的运算法则及除法法则计算可得.【解答】解:①﹣2﹣3=﹣5,此计算错误;②2﹣|﹣3|=2﹣3=﹣1,此计算正确;③(﹣2)3=﹣8,此计算错误;④﹣2÷=﹣2×3=﹣6,此计算正确;故选:C.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其绝对值的性质.7.(2020•南海区一模)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【考点】:绝对值;有理数的乘法.【专题】:数与式;模型思想.【答案】B【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.【点评】本题考查了数轴的意义、绝对值的定义及有理数的乘法法则,熟练掌握数轴的有关性质是关键.8.(2019秋•岱岳区期末)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对【考点】:数轴.【分析】根据点A表示的数为﹣10,OB=3OA,可得点B对应的数;分①点M、点N在点O两侧;②点M、点N重合两种情况讨论求解.【解答】解:∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选:C.【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.9.(2020秋•海淀区校级月考)|a|=4,|b|=6,则|a+b|﹣|a﹣b|=.【考点】绝对值;有理数的加法;有理数的减法.【专题】计算题;分类讨论;运算能力.【答案】±8.【分析】根据|a|=4,|b|=6,可以得到a、b的值,然后即可求得所求式子的值.【解答】解:∵|a|=4,|b|=6,∴a=±4,b=±6,当a=4,b=6时,|a+b|﹣|a﹣b|=|4+6|﹣|4﹣6|=10﹣2=8;当a=4,b=﹣6时,|a+b|﹣|a﹣b|=|4+(﹣6)|﹣|4﹣(﹣6)|=﹣8;当a=﹣4,b=6时,|a+b|﹣|a﹣b|=|﹣4+6|﹣|﹣4﹣6|=﹣8;当a=﹣4,b=﹣6时,|a+b|﹣|a﹣b|=|﹣4+(﹣6)|﹣|(﹣4)﹣(﹣6)|=8;由上可得,|a+b|﹣|a﹣b|=±8,故答案为:±8.【点评】本题考查有理数的加减法和绝对值,解答本题的关键是明确它们各自的计算方法.10.(2020•拱墅区模拟)计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.【考点】绝对值.【分析】直接利用绝对值的性质结合有理数混合运算法则计算得出答案.【解答】解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.【点评】此题主要考查了绝对值的性质和有理数混合运算,正确得出x,y的值是解题关键.11.(2019•重庆模拟)阅读材料题:求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91﹣56=3556﹣35=2135﹣21=1421﹣14=714﹣7=7所以,91与56的最大公约数是7请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.【考点】有理数的减法;有理数的除法.【分析】模仿例题求解即可解决问题.【解答】解:(1)∵108﹣45=6363﹣45=1845﹣18=2727﹣18=918﹣9=9∴108与45的最大公约数是9.(2)∵104﹣78=26,78﹣26=52,52﹣26=26,∴104与78的最大公约数是26.∵143﹣104=39,104﹣39=65,65﹣39=26,39﹣26=13,26﹣13=13,∴143与104最大公约数是13.∴78、104、143的最大公约数是13.【点评】本题考查有理数的除法,有理数的减法等知识,解题的关键是理解题意,学会模仿例题解决问题.12.(2018秋•通川区期末)“幸福是奋斗出来的”,在数轴上,若C 到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B 的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N 所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【考点】数轴.【专题】分类讨论;方程思想.【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.13.(2019秋•莱西市期中)【阅读】|4﹣1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4﹣(﹣1)|,表示4与﹣1的差的绝对值,也可以理解为4与﹣1两数在数轴上所对应的两点间的距离.(1)|4﹣(﹣1)|=(2)|5+2|=(3)利用数轴找出所有符合条件的整数x,使得|x+3|=5,则x =.(4)利用数轴找出所有符合条件的整数x,使得|x+3|+|x﹣2|=5,这样的整数是:.【考点】数轴;绝对值;有理数的减法.【分析】(1)根据4与﹣1两数在数轴上所对应的两点之间的距离是5,可得结论.(2)根据绝对值的意义即可得到结论;(3)根据||x+3|=5表示x与﹣3两数在数轴上所对应的两点之间的距离是5,可得结论.(4)因为﹣3与2两数在数轴上所对应的两点之间的距离是5,所以使得|x+3|+|x﹣2|=5成立的整数是﹣3和2之间的所有整数(包括﹣3和2),据此求出这样的整数有哪些即可.【解答】解:(1)|4﹣(﹣1)|=5;(2)|5+2|=7;(3)∵|x+3|=5,∴x+3=±5,∴x=2或﹣8,(4)∵﹣3与2两数在数轴上所对应的两点之间的距离是5,∴使得|x+3|+|x﹣2|=5成立的整数是﹣3和2之间的所有整数(包括﹣3和2),∴这样的整数是﹣3、﹣2、﹣1、0、1、2.故答案为:5;7;2或﹣8;﹣3、﹣2、﹣1、0、1、2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.14.(2019秋•洛宁县期中)已知|m|=4,|n|=6,且|m+n|=m+n,求m ﹣n的值.【考点】绝对值;有理数的加法;有理数的减法.【分析】首先根据绝对值的性质得到m、n的值,然后再根据绝对值的性质确定m、n的值,进而可得m﹣n的值.【解答】解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.【点评】此题主要考查了有理数的减法,以及绝对值的性质,关键是掌握绝对值等于一个正数的数有两个,它们互为相反数.。
重难点解析人教版七年级数学上册第一章 有理数难点解析试题(含答案详解版)
人教版七年级数学上册第一章有理数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是().A.-5 B.-1 C.1 D.52、3的相反数为()A.﹣3 B.﹣13C.13D.33、如果13,5,244a b c==-=-,那么||||a b c+-等于().A.2-B.172C.2 D.172-4、在5-,3-,0,1.7这4个数中绝对值最大的数是()A.5-B.3-C.0 D.1.7 5、若有理数a,b满足2022|3-|+(+2)a b=0,则a+b的值为()A.1 B.﹣1 C.5 D.﹣5 6、下列各组数中,互为相反数是()A .||a 与a -B .||a 与aC .12-与12- D .12与12 7、如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --8、若a 、b 互为相反数,c 、d 互为倒数,m +1的绝对值为5,则式子|m |﹣cd a bm++的值为( ) A .3B .3或5C .3或﹣5D .49、在计算|(-5)+□|的□中填上一个数,使结果等于11,这个数是( ) A .16B .6C .16或6D .16或-610、下列各式,计算正确的是( ) A .|3||2|1--+-=B .311252⎛⎫--÷-= ⎪⎝⎭C .43443433⎛⎫-÷-⨯= ⎪⎝⎭D .23112(2)(2)424⎛⎫---+-÷-= ⎪⎝⎭第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把8.5046用四舍五入法精确到0.01后所得到的近似数是______.2、如图,边长为1的正方形ABCD ,沿数轴顺时针连续滚动.起点A 和2-重合,则滚动2026次后,点C 在数轴上对应的数是______.3、点A 和点B 是数轴上的两点,点A B 表示的数为1,那么A 、B 两点间的距离为_____.4、中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示752-,表示2369,则表示________.5、求-2017的相反数与12的倒数的和是_________ 三、解答题(5小题,每小题10分,共计50分)1、已知a 与b 的差为223,b 与c 互为倒数,c 与d 的和为145,若2d =,求a 、b 、c 的值.2、计算:(1)21571|835|()()26126--+-÷-;(2)5231(1)(35)[1(3)]7-⨯--⨯--.3、计算: (1)计算:117313()(48)126424-+-⨯- (2)11(370)0.2524.5(25%)542⎛⎫⎛⎫-⨯-+⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭(3)15(3)3(811)236⎛⎫-÷-÷---⨯ ⎪⎝⎭(4)(-9)÷(-4)÷(-2)(5)111111(1)(1)(1)(1)(1)(1)234520032004----⋯-- (6)2004×20032003-2003×20042004 4、计算:(1)(6)(13)-+- (2)4354⎛⎫-+ ⎪⎝⎭5、把下列各数填在相应的集合中: 15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6 正数集合{ …}; 负分数集合{ …}; 非负整数集合{ …}; 有理数集合{ …}.-参考答案-一、单选题 1、B 【解析】 【分析】根据数轴上点的坐标特点及平移的性质解答即可. 【详解】解:根据题意:数轴上2所对应的点为A ,将A 点左移3个单位长度,得到点的坐标为2-3=-1, 故选:B .【考点】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识. 2、A 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可. 【详解】解:3的相反数是﹣3. 故选:A . 【考点】此题考查求一个数的相反数,解题关键在于掌握相反数的概念. 3、C 【解析】 【分析】根据有理数的加法,先计算绝对值,再进行混合运算即可. 【详解】13,5,244a b c ==-=-∴||||a b c +-135244=---3342244=-= 故选C . 【考点】本题考查了代数式求值,有理数的加减运算,求一个数的绝对值,正确的计算是解题的关键.4、A 【解析】计算绝对值要根据绝对值的定义分别求出这四个数的绝对值,再进行比较即可. 【详解】解:|- 5|=5, |- 3|=3, |0|=0,|1.7|=1.7, ∵5>3>1.7>0,∴绝对值最大的数为-5, 故选: A. 【考点】本题考查的是绝对值的规律,一个 正数的绝对值是它本身,一个负数的绝对值是它的相反数, 0的绝对值是0. 5、A 【解析】 【分析】根据绝对值和偶次方的非负性求出a ,b 的值,即可得到a +b 的值. 【详解】解:∵|3-|0a ≥,2022(2)0b +≥ ∴3-a =0,b +2=0 ∴a =3,b =-2 ∴a +b =1 故选:A . 【考点】本题考查绝对值和偶次方的非负性,有理数的加法,解题的关键是掌握几个非负数的和为0,则这几个非负数都为0. 6、C 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数,进行逐一判断即可. 【详解】解:A 、||a 与a -,当a 小于0时,||=a a -,则||a 与a -不一定是相反数,此说法不符合题意; B 、||a 与a ,当a 大于0时,||=a a ,则||a 与a 不一定是相反数,此说法不符合题意; C 、11=22-,由12和12-互为相反数可知12-与12-互为相反数,此说法符合题意;D 、11=22-,可知12-与12不是相反数,此说法不符合题意;故选C . 【考点】本题主要考查了相反数的定义,解题的关键在于能够熟练掌握相反数的定义. 7、C 【解析】 【分析】根据数轴上两点的位置,判断,a b 的正负性,进而即可求解. 【详解】解:∵数轴上,A B 两点表示的数分别是,a b , ∴a <0,b >0,∴()b a b a a b -=--=+,【考点】本题考查了数轴,绝对值,掌握求绝对值的法则是解题的关键.8、B【解析】【分析】【详解】【分析】利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.9、D【解析】【分析】根据绝对值的性质和有理数的加法法则即可求得.【详解】解:|(-5)+□|=11,即(-5)+□=11或-11,∴□=16或-6,故选D.本题考查了绝对值以及有理数的加法,关键是得到(-5)+口=-11或11.10、D【解析】【分析】根据绝对值,有理数的乘方和有理数的四则混合运算计算法则求解即可.【详解】解:A.原式321=-+=-,故本选项错误;B.原式12(2)143=--⨯-=-+=,故本选项错误;C.原式4446433327=⨯⨯=,故本选项错误;D.原式11114(8)4842244⎛⎫⎛⎫=---+-⨯-=-++=⎪ ⎪⎝⎭⎝⎭,故本选项正确.故选D.【考点】本题主要考查了有理数的乘除法,含乘方的有理数计算,绝对值,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、8.50【解析】【分析】把千分位上数字4进行四舍五入即可.【详解】解:8.5046≈8.50(精确到0.01).故答案为8.50.【考点】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2、2024【解析】【分析】滚动2次点C第一次落在数轴上,再滚动(2026-2)次,得出点C第506次落在数轴上,进而求出相应的数即可.【详解】解:将起点A和-2重合的正方形,沿着数轴顺时针滚动2次,点C第1次落在数轴上的原点.以后每4次,点C会落在数轴上的某一点,这样滚动2026次,点C第(2026-2)÷4=506次落在数轴上,因此点C所表示的数为2024,故答案为:2024.【考点】本题是利用规律求解问题.解题的关键是要找到规律“正方形ABCD沿着数轴顺时针每滚动一周,B、C、D、A依次循环一次”,同时要注意起点是-2,起始循环的字母为点A.31【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】=,解:本题主要考查数轴上两点间的距离,点A和点B111.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.4、7416-【解析】【分析】根据算筹记数的规定可知,“”表示一个4位负数,再查图找出对应关系即可得表示的数.【详解】解:由已知可得:“”表示的是4位负整数,是7416-.故答案为:7416-.【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定.5、2019【解析】【分析】根据“只有符号不同的两个数互为相反数”和“乘积是1的两个数互为倒数”解答即可.【详解】-2017的相反数是2017,12的倒数是2,故-2017的相反数与12的倒数的和是2019.故答案为:2019 【考点】本题考查的是相反数及倒数,掌握相反数及倒数的定义是关键.三、解答题1、4333,511,115 【解析】【分析】 根据题意可知,223a b -=,1bc =,145c d +=,然后代入计算即可. 【详解】 解:1114225551c =-==,511b =, 5242311333a =+=. 【考点】本题解题的关键是明确倒数的意义.2、(1)0;(2)-8【解析】【分析】根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)21571|835|()()26126--+-÷- 15727()362612=-+-⨯ 27183021=--+0=;(2)5231(1)(35)[1(3)]7-⨯--⨯-- 21(1)(2)(127)7=-⨯--⨯+ 114287=-⨯-⨯ 44=--8=-.【考点】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3、(1)2;(2)100;(3)35;(4)98-;(5)12004-;(6)0 【解析】【分析】(1)根据乘法分配律进行简便计算;(2)将原式中的小数和百分数统一成分数,然后利用乘法分配律进行简便计算;(3)先算乘除,再算加减,有小括号先算小括号里面的;(4)根据有理数除法运算法则进行计算;(5)先算小括号里面的,然后根据数字变化规律进行符号确定和约分计算;(6)将原式中数据进行拆分,然后再计算.【详解】解:(1)原式117313(48)(48)(48)(48)126424=⨯--⨯-+⨯--⨯- 44563626=-+-+=2;(2)原式1111137024544224=⨯+⨯+⨯ 111370245224⎛⎫=++⨯ ⎪⎝⎭ 14004=⨯ =100;(3)原式=6-33+3(3)25⨯⨯--⨯ =18965-++ =35; (4)原式=-9÷4÷2 =11942-⨯⨯ =98-; (5)原式=123420022003()()()234520032004⨯-⨯⨯-⨯⋯⨯-⨯ =-123420022003234520032004⨯⨯⨯⨯⋯⨯⨯ =-12004; (6)原式= 2004×2003×10001-2003×2004×10001=0.【考点】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算)是解题关键.4、(1)-19;(2)1 20 -【解析】【分析】(1)根据有理数的加法法则计算;(2)根据有理数的加法法则计算;【详解】解:(1)(6)(13)-+-=-6-13=-19;(2)4354⎛⎫-+ ⎪⎝⎭=34 45 -=151620 20-=1 20 -【考点】本题考查了有理数的加法运算,解题的关键是注意运算过程中的符号问题.5、15,0.81,227,171,3.14,π,1.6;-12,-3.1;15,171,0;15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6.【解析】【分析】正数就是大于0的数,负数就是小于0的数,有理数是整数与分数的统称,据此即可进行分类.【详解】解:正数集合{15,0.81,227,171,3.14,π,1.6,…};负分数集合{12-,-3.1,…};非负整数集合{15,171,0,…};有理数集合{15,12-,0.81,-3,227,-3.1,-4,171,0,3.14,1.6,…}.【考点】本题主要考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点是解题关键.注意整数和正数的区别,注意0是整数,但不是正数.。
人教版七年级上册数学 第一章《有理数》第1讲 有理数 (答案+解析)
人教版七年级上册数学第一章《有理数》第1讲有理数(答案+解析)数轴。
在数轴上所表示的数,右边的数总比左边的数大,即从数轴的左边到右边所对应的数逐渐变大,所以正数都大于0,负数都小于0,正数大于负数。
概念剖析:①、画数轴时数轴的三要素原点、正方向、单位长度缺一不可;②、数轴的方向不一定都是水平向右的,数轴的方向可以是任意的方向;③、数轴上的单位长度没有明确的长度,但单位长度与单位长度要保持相等;④、有理数在数轴上都能找到点与之对应,一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数a -的点在原点的左边,与原点的距离是a 个单位长度。
⑤、在数轴上求任意两点a 、b 的距离L,则有公式a b L b a L -=-=或,这两个公式选择那个都一样。
知识点四:相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数。
0的相反数是0,互为相反的两个数,在数轴上位于原点的两则,并且与原点的距离相等。
概念剖析:①、“如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数”,不要茫然的认为“如果两个数符号不同,那么其中一个数就叫另一个数的相反数”。
②、显然,数a 的相反数是a -,即a 与a -互为相反数。
要把它与倒数区分开。
③、互为相反数的两个数在数轴上对应的点一个在原点的左边,一个在原点的右边,且离原点的距离相等,也就是说它们关于原点对称。
④、在数轴上离某点的距离等于a 的点有两个。
⑤、如果数a 和数b 互为相反数,则a +b =0;)0(1≠-=ab b a 或)0(1≠-=ab ab ; ⑥、求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是a b -;知识窗口:①一个数前面加上“—”号,该数就成了它的相反数;②一个数前面的符号确定方法:奇数个负号相当于一个负号,偶数个负号相当于一个正号,而与正号的个数无关。
知识点五:绝对值数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
人教版初中七年级数学上册第一单元《有理数》知识点(含答案解析)
一、选择题1.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=- A .1个 B .2个 C .3个 D .4个3.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度4.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 5.2--的相反数是( )A .12-B .2-C .12D .26.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是( )A .7.26×1010B .7.26×1011C .72.6x109D .726×108 7.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B8.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .139.下列关系一定成立的是( )A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b| 10.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± 11.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数 12.当A 地高于海平面152米时,记作“海拔+152米”,那么B 地低于海平面23米时,记作( )A .海拔23米B .海拔﹣23米C .海拔175米D .海拔129米 13.已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2± B .±1 C .2±或0 D .±1或0 14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日 15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__. 17.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 18.若两个不相等的数互为相反数,则两数之商为____.19.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____.20.一个班有45个人,其中45是_____数;大门约高1.90 m ,其中1.90是_____数. 21.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a •a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.22.气温由﹣20℃下降50℃后是__℃.23.在数轴上,距离原点有2个单位的点所对应的数是________.24.若2(1)20a b -+-=,则2015()a b -= _______________.25.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.26.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张. 三、解答题27.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 28.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.29.计算:(1)()()674-+--;(2)()3232--⨯. 30.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?。
七年级数学有理数阅读理解题赏析 人教版
七年级数学有理数阅读理解题赏析人教版本文介绍了与有理数有关的中考题,并以三个例子为主要内容进行了详细解析。
例1讲述了数字“黑洞”的概念,即通过一种运算,满足某种条件的所有数都能被吸进去,最终得到一个固定的数。
通过对数据的操作,可以找到这个数字“黑洞”。
例如,任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,重复运算下去,最终得到的数字就是“黑洞数”,即T=153.例2介绍了二进制数的概念,即计算机使用的数,它只使用32个数字和1,数的进位方法是“逢二进一”。
通过将二进制数转换为十进制数,可以得到正确的结果。
例如,将二进制数1101转换为十进制数,通过式子1×2+1×2+0×2+1可以得到十进制数13.例3讲述了等比数列的概念,即一列数从第2项起,每一项与它前一项的比都等于同一个常数,这个常数叫做等比数列的公比。
通过公比和已知项数,可以求出等比数列中的任意一项。
例如,等比数列5,-15,45,…的第4项是45,而如果一列数a1,a2,a3,a4,…是等比数列,且公比为q,那么可以根据上述规定,得到a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,以此类推。
1.q=(a1.a1q。
an) (用a1与q的代数式表示)解析:这是一个等比数列,可以表示为q=a1q^(n-1),所以an=a1q^(n-1)。
改写:给定等比数列q,可以表示为q=a1q^(n-1),其中an=a1q^(n-1)。
2.一个等比数列的第2项是10,第3项是20,求它的第1项与第4项。
解析:根据等比数列的公式,可以列出方程组:a1q=10,a1q^2=20,解得a1=5,q=2.代入公式得到a4=40.改写:已知等比数列的第2项为10,第3项为20,求第1项和第4项。
解得第1项为5,公比为2,因此第4项为40.3.数轴上两点A、B之间的距离︱AB︱的计算方法。
人教版七年级数学上册第一章 有理数 解答题复习(一)解析版
第1章有理数解答题复习(一)1.计算:﹣5×2+3÷﹣(﹣1).2.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.3.计算:(﹣2)3+×8.4.计算:(﹣6)2×(﹣).5.计算:23×(1﹣)×0.5.6.计算:(﹣2)2×(1﹣).7.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下我们称使等式a﹣b=ab+1成立的一对有理数“a,b”为共生有理数对”,记为(a,b)(1)通过计算判断数对“﹣2,1,“4,”是不是“共生有理数对”;(2)若(6,a)是“共生有理数对”,求a的值;(3)若(m,n)是“共生有理数对”,则“﹣n,﹣m”“共生有理数对”(填“是”或“不是”),并说明理由;(4)如果(m,n)是“共生有理数对”(其中n≠1),直接用含n的代数式表示m.8.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.9.如图,在一条不完整的数轴上从左到右有点A,B.将线段AB沿数轴向右移动,移动后的线段记为A′B′,按要求完成下列各小题(1)若点A为数轴原点,点B表示的数是4,当点A′恰好是AB的中点时,数轴上点B′表示的数为.(2)设点A表示的数为m,点A′表示的数为n,当原点在线段A′B之间时,化简回|m|+|n|+|m ﹣n|.10.阅读材料题:求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:91﹣56=3556﹣35=2135﹣21=1421﹣14=714﹣7=7所以,91与56的最大公约数是7请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数.11.计算2×(﹣5)+22﹣3÷.12.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?14.计算:﹣14﹣×[2﹣(﹣3)2].15.观察下列各式的计算过程:①1+8=32;②1+8+16=52;③1+8+16+24=72;④1+8+16+24+32=92.(1)第6个算式为;(2)用含n的代数式表示第n个等式,并验证其正确性.16.计算:(﹣2)3×8×()3+8÷.17.计算:(1)(﹣2)3÷+3×|1﹣(﹣2)2|(2)﹣12﹣(﹣)÷×[﹣2+(﹣3)2].18.计算6÷(﹣)时,李明同学的计算过程如下,原式=6÷(﹣)+6÷=﹣12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,另用正确方法计算()÷(﹣)+36÷()的值.19.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.20.(﹣1)4﹣{﹣[()2+0.4×(﹣1)]÷(﹣2)2}.第1章有理数解答题复习(一)参考答案与试题解析1.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:原式=﹣10+9+1=0.【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.2.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.3.【分析】先求(﹣2)3=﹣8,再求×8=4,即可求解;【解答】解:(﹣2)3+×8=﹣8+4=﹣4;【点评】本题考查有理数的计算;熟练掌握幂的运算是解题的关键.4.【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.【分析】原式先计算括号中的减法运算,再计算乘方运算,最后算乘法运算即可得到结果.【解答】解:原式=8××=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【分析】直接利用有理数乘方运算法则化简,进而去括号求出答案.【解答】解:(﹣2)2×(1﹣)=4×(1﹣)=4×=1.【点评】此题主要考查了有理数的混合运算,正确掌握运算法则是解题关键.7.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.【解答】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵4﹣=,,∴(4,)是共生有理数对;(2)由题意得:6﹣a=6a+1,解得a=;(3)是.理由:﹣n﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;故答案为:是;(4)∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,即mn﹣m=﹣(n+1),∴(n﹣1)m=﹣(n+1),∴.【点评】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【分析】(1)①根据以B为原点,则A,D,C所对应的数分别为:﹣2,3,4,进而得到p的值;②以D为原点,A,D,C所对应的数分别为:﹣5,﹣3,1,进而得到p的值;(2)用x的代数式分别表示A,D,C所对应的数,根据题意列方程解答即可.【解答】解:(1)①点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,P=﹣3﹣5+1=﹣7;(2)由题意,A,B,C,D表示的数分别为:﹣6﹣x,﹣4﹣x,﹣1﹣x,﹣x,﹣6﹣x﹣4﹣x﹣1﹣x﹣x=﹣71,﹣4x=﹣60,x=15.【点评】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.9.【分析】(1)根据题意可知A′表示的数为2,根据AB的长度即可求解;(2)根据绝对值的定义,分情况讨论解答即可.【解答】解:(1)∵点B表示的数是4,当点A′恰好是AB的中点时,∴点A′表示的数为2,∴数轴上点B′表示的数为2+4=6.故答案为:6;(2)由题意知点A′在点A右侧,即m<n,则m﹣n<0.又原点在线段A'B之间,则点A'在原点的左侧,即m<0,n<0,|m|+|n|+|m﹣n|=﹣m﹣n﹣m+n=﹣2m.【点评】本题考查数轴,有理数的加法等知识,解决此类题目时,能理解题意表示出各点表示的数是关键.10.【分析】模仿例题求解即可解决问题.【解答】解:(1)∵108﹣45=6363﹣45=1845﹣18=2727﹣18=918﹣9=9∴108与45的最大公约数是9.(2)∵104﹣78=26,78﹣26=52,52﹣26=26,∴104与78的最大公约数是26.∵143﹣104=39,104﹣39=65,65﹣39=26,39﹣26=13,26﹣13=13,∴143与104最大公约数是13.∴78、104、143的最大公约数是13.【点评】本题考查有理数的除法,有理数的减法等知识,解题的关键是理解题意,学会模仿例题解决问题.11.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣10+4﹣3×2=﹣10+4﹣6=﹣16+4=﹣12.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】(1)由图可知,点A表示的数a,点B表示的数b,即可求得a+b的值.(2)由B点不动,点A向左移动3个单位长,可得数a,再根据绝对值求得即可.(3)点A不动,点B向右移动15.3个单位长,可知数b,再列式计算解得.【解答】解:(1)由图可知:a=﹣10,b=2,∴a+b=﹣8故a+b的值为﹣8.(2)由B点不动,点A向左移动3个单位长,可得a=﹣13,b=2∴b﹣|a|=b+a=2﹣13=﹣11故a的值为﹣13,b﹣|a|的值为﹣11.(3)∵点A不动,点B向右移动15.3个单位长∴a=﹣10 b=17.3∴b﹣a=17.3﹣(﹣10)=27.3故b比a大27.3.【点评】本题考查了数轴、绝对值,当a是负有理数时,a的绝对值是它的相反数﹣a.13.【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.【点评】本题考查了数轴,根据点与点之间的位置关系找出方程是解题的关键.14.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】此题要注意正确掌握运算顺序以及符号的处理.15.【分析】(1)由已知等式知第6个算式为1+8+16+24+32+40+48=132.(2)根据已知等式的规律得出1+8+16+24+…+8n=(2n+1)2,再利用等式的运算顺序和运算法则计算可得.【解答】解:(1)根据题意,第6个算式为1+8+16+24+32+40+48=132,故答案为:1+8+16+24+32+40+48=132.(2)1+8+16+24+…+8n=(2n+1)2,左边=1+8×(1+2+3+…+n)=1+8×=1+4n(n+1)=1+4n2+4n=(2n+1)2=右边,∴1+8+16+24+…+8n=(2n+1)2.【点评】本题主要考查有理数的混合运算与数字的变化规律,解题的关键是根据已知等式得出1+8+16+24+…+8n=(2n+1)2的规律及整式的运算法则.16.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8×8×+8×8=﹣8+64=56.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣8×+3×3=﹣10+9=﹣1;(2)原式=﹣1+×3×7=﹣1+3.5=2.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】李明的计算过程不正确,应先计算括号中的加法运算,再计算除法运算.【解答】解:不正确,正确计算过程为:6÷(﹣)=6÷(﹣)=﹣36;人教版七年级数学上册第一章有理数解答题复习(一)解析版原式=(﹣+)×(﹣36)+36÷=﹣18+6﹣4+36×=﹣16+81=65.【点评】此题考查了有理数的混合运算,有理数混合运算注意运算顺序.19.【分析】直接利用绝对值的性质结合有理数混合运算法则计算得出答案.【解答】解:∵|x|=,|y|=,且x <y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.【点评】此题主要考查了绝对值的性质和有理数混合运算,正确得出x,y的值是解题关键.20.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=1﹣+(﹣)÷4=+﹣=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.- 11 - / 11。
最新人教版七年级数学上册 有理数(基础篇)(Word版 含解析)
【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点 B 所表示的 数;根据路程=速度×时间可得点 P 运动的距离,再根据平移的点的坐标的性质可得点 P 表 示的数; (2)①由题意可列方程求解;②分两种情况讨论求解: P 与 Q 重合前: 当 2AP=PQ 时,可得关于 t 的方程求解; 当 AP=2PQ 时,可得关于 t 的方程求解; P 与 Q 重合后: 当 AP=2PQ 时,可得关于 t 的方程求解; 当 2AP=PQ 时,可得关于 t 的方程求解。
3.如图,已知数轴上点 A 表示的数为-3,B 是数轴上位于点 A 右侧一点,且 AB=12.动点 P 从点 A 出发,以每秒 2 个单位长度的速度沿数轴向点 B 方向匀速运动,设运动时间为 t 秒.
(1)数轴上点 B 表示的数为________;点 P 表示的数为________(用含 t 的代数式表示). (2)动点 Q 从点 B 出发,以每秒 1 个单位长度的速度沿数轴向点 A 方向匀速运动;点 P、点 Q 同时出发,当点 P 与点 Q 重合后,点 P 马上改变方向,与点 Q 继续向点 A 方向匀 速运动(点 P、点 Q 在运动过程中,速度始终保持不变);当点 P 到达 A 点时,P、Q 停止 运动.设运动时间为 t 秒. ①当点 P 与点 Q 重合时,求 t 的值,并求出此时点 P 表示的数. ②当点 P 是线段 AQ 的三等分点时,求 t 的值. 【答案】 (1)9;-3+2t (2)解:①根据题意,得:(1+2)t=12, 解得:t=4, ∴ -3+2t=-3+2×4=5, 答:当 t=4 时,点 P 与点 Q 重合,此时点 P 表示的数为 5;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数阅读理解题赏析
阅读理解类问题是近几年中考出现的新题型.学生通过阅读,学习新的知识,感悟数学思想和方法,形成科学的思维方式和思维策略。
本文以与有理数有关的中考题为例让读者感受一下这类问题的处理方法。
㈠黑洞数
例1 (2003年山东青岛)探究数字“黑洞”: “黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来,无独有偶,数字中也类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它吸进去,无一能逃脱它的魔掌,譬如:任意找一个3的倍数的数,先把着这个数的每一个数位上的数字都立方,再相加,得到一个新数,求和….重复运算下去,就得到一个固定的数T= ,我们称它为数字“黑洞”.T为何具有如此魔力?通过认真的观察、分析,你一定能发现它的奥秘!
解析: 数字的“黑洞”是一个饶有兴趣的问题.只要按照题意要求对数据进行操作,就会找到这个数字“黑洞”.
3-----27------351-----153----153---153----
所以这个黑洞数T=153 。
㈡二进制数
例2(2003年山东省)日常生活中我们使用的数是十进制数,而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101(2), 1101(2)通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿照上面的转换方法,将二进制数11101(2)转换为十进制数是( )
A29B25C4D33
解析根据二进制数的定义可知:
11101(2)=1×24+1×23+1×22+0×2+1=29,故应选(A)
㈢等比数列
例3(2003年广西)阅读下面一段话,并解决后面的问题.观察下面一列数:1,2,4,8,
我们发现,这一列数从第2项起,每一项与它前一项的比都等于2.一般地,如果一列数从第2项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.
⑴等比数列5,-15,45,…的第4项是;
⑵如果一列数a1, a2, a3, a4,…是等比数列,且公比为q,那么根据上述的规定,有
1
2a a =q,23a a =q,34a a =q,…… 所以a 2=a 1q,a 3= a 2q= (a 1q )q= a 1 q 2, a 4 = a 3 q= (a 1 q 2 )q= a 1 q 3
,…,a n = (用a 1与q 的代数式表示)
⑶一个等比数列的第2项是10 ,第3项是20,求它的第1项与第4项。
解析 ⑴-135; ⑵ a 1q n-1; ⑶ 第一项为5,第4项为40.
㈣渗透新知识
阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为
︱AB ︱。
当两点中有一点在原点时,不妨设点A 在原点,如图(1)
, (A)(1)
︱AB ︱=︱OB ︱=︱b ︱=︱a-b ︱
当A 、B 两点都不在原点时,
① 点A 、B 都在原点的右边,如图
(2),
(2)
︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=b-a=︱a-b ︱;
② 点A 、B 都在原点的左边, 如图
(3),
(3)②(2002年龙岩市中考题)
︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=-b-(-a)=︱a-b ︱;
③ 点A 、B 在原点的两边,如图
(4),
(4)
︱AB ︱=︱OA ︱+︱OB ︱=︱a ︱+︱b ︱=a+(-b)=︱a-b ︱;
总上,数轴上A、B两点之间的距离︱AB︱=︱a-b︱.
回答下列问题:
⑴数轴上表示2和5的两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是。
⑵数轴上表示x和-1的两点A和B之间的距离是,如果︱AB︱=2,那么x为。
⑶当代数式︱X+1︱+︱X-2︱取最小值时,相应的的取值范围是.
解析本题阅读部分将计算数轴上两点A、B之间的距离,先由特殊到一般地展示其发生发展的过程,然后归纳概括出公式︱AB︱=︱a-b ︱.再根据这个公式解答问题.
⑴︱2-5︱=3;︱-2-(-5)︱=3;︱1-(-3)︱=4;
⑵︱AB︱=︱x-(-1)︱=︱X+1︱;
︱AB︱=2, ︱X+1︱=2, X+1=±2,∴x=1或-3
⑶-1≤x≤2
㈤比较大小(2002年龙岩市中考题)
例5(2002年龙岩市中考题)阅读下面材料并完成填空.你能比较两个数
20012002和20022001的大小吗?为了解决这个问题,先把问题一般化,既比较n n+1和
(n+1)n的大小(n≥1的整数)。
然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.
⑴通过计算,比较下列①—③各组两个数的大小(在横线上填>、
=、<号)
①12 21; ②23 32;③34 43;④45>54;⑤56>65;⑥
67>76;
⑦78>87;…
⑵从第小题的结果经过归纳,可以猜想出n n+1和(n+1)n的大小关系
是: .
⑶根据上面归纳猜想得到的一般结论,可以得到20012002 20022001
(填>、=、<号)
解析⑴通过计算知:①12<21; ②23<32;③34>43;
⑵ n n+1<(n+1)n(n≤2)
n n+1>(n+1)n(n≥3)
⑶由⑵的规律可知:20012002>20022001
解阅读理解题基本形式可归纳为:阅读----理解-----应用。
解阅读理解题时抓住两点:⑴读:读懂材料,读懂表格;⑵用:把阅读材料提供的结论正确地套用与解题中。