有理数及整式运算练习题

合集下载

有理数和整式-同步练习题

有理数和整式-同步练习题

有理数及其整式同步练习题一.选择题1.小文买了一支温度计,回家后发现里面有一个小气泡(即不准确了),先拿它在冰箱里试一下,在标准温度是零下7℃时,显示为—11℃,在36℃的温水中,显示为32℃,那么用这个温度计量得的室外气温是23℃,则室外的实际气温应是()A.27℃B.19℃C.23℃D.不能确定2.如果a表示有理数,那么下列说法中正确的是()A.+a和-a一定不相等B.-a一定是负数C.—(+a)和+(—a)一定相等D.|a|一定是正数3.下图数轴上A、B、C、D、E、S、T七点的坐标分别为-2、-1、0、1、2、s、t.若数轴上有一点R,其坐标为|s-t+1|,则R会落在下列哪一线段上?A.AB B.BC C.CD D.DE4.若实数a满足a-|a|=2a,则()A.a>0 B.a<0 C.a≥0D.a≤05.若有理数x,y满足2(x-1)2+|x—2y+1|=0,则(xy)xy=()A.1 B.4 C.9 D.166.为了解决迫在眉睫的环境问题,中国2013年预算案显示,中央和地方政府2013年将向节能和环境保护相关领域投入约32860000万元,将大力改善发电站的电力供应结构.近似数32860000用科学记数法可表示为()A.3.286×105 B.3.286×106 C.3.286×107 D.3。

286×1087.观察下面的一列单项式:-x、2x2、—4x3、8x4、—16x5、…根据其中的规律,得出的第10个单项式是()A.—29x10 B.29x10 C.-29x9 D.29x98.单项式35xy-的系数和次数分别是()A.3,25-B.-3,2 C.35,3 D.35-,39.多项式5a3-6a3b+3a2b—3a3+6a3b—5—2a3—3ba2的值()A.只与a有关B.只与b有关C.与字母a,b都有关D.与字母a,b都无关10.当k取何值时,多项式x2—3kxy—3y2+13xy-8中,不含xy项()A .0B .13C . 19D .19-11.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是( )A .(a+ 54b)元B .(a — 54b )元 C .(a+5b )元 D .(a —5b )元 12.a 表示一个一位数,b 表示一个两位数,把a 放到b 的左边组成一个三位数,则这个三位数可以表示为( )A .AbB .10a+bC .100a+bD .a+b13.已知单项式-3x 2m-n y 4与 x 3y m+2n 是同类项,则m n 的值为( )A . 12B .3C .1D .2 14.—[x-(2y —3z )]去括号应得( )A .—x+2y-3zB .-x-2y+3zC .—x —2y-3zD .—x+2y+3z二.填空题15.若n 为自然数,那么(-1)2n +(-1)2n+1=16.已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是17.如图,在长方形草地内修建了宽为2米的道路,则草地面积为18.0.1252007×(—8)2008=19.把多项式2xy 2-x 2y-x 3y 3—7按x 作升幂排列是20.化简:(x 2+y 2)-3(x 2-2y 2)=21.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品都以每件2a b + 元的价格出售,在这次买卖中,张师傅赚 元钱25.已知3x a—2y2z3和—4x3y b—1z3是同类项,求3a2b-[2ab2—2(a2b+2ab2)]的值.26.已知A=2a2—a,B=-5a+1.(1)化简:3A—2B+2;(2)当a=−12时,求3A-2B+2的值.27.已知:|x-2|+|y+1|=0,求5xy2—2x2y+[3xy2—(4xy2-2x2y)]的值.28.若a,b,c为整数,且|a—b|19+|c—a|99=1,试计算|c-a|+|a—b|+|b—c|的值.29.小明在研究数学问题时发现一个有趣的现象:请你用不同的三位数再做做,发现什么有趣的现象?用您所学过的知识解释.。

七年级上计算专项(有理数混合运算、整式加减)

七年级上计算专项(有理数混合运算、整式加减)

计算专项练习完成日期:1.计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.2.计算:|+×(﹣12)÷6﹣(﹣3)2|+|24+(﹣3)2|×(﹣5)3.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.4.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣];(2)(﹣24)×(﹣+)+(﹣2)3.5.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.完成日期:1.计算:(1)(﹣12)+(+30)﹣(+65)﹣(﹣47)(2)(﹣1)2×7+(﹣2)6+8.2.计算:(1)﹣22+[(﹣4)×(﹣)﹣|﹣3|](2)﹣32+16÷(﹣2)×﹣(﹣1)2015.3.4.计算:﹣14﹣[2﹣(﹣3)2]÷()3.完成日期:1.计算:+(﹣)÷(﹣)2.计算:(1)(﹣12)×(﹣)(2)﹣2.3. [(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2| 4.计算:﹣23﹣(﹣1)2×+(﹣1)2005.5.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].1.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).2.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7)3.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.1.计算÷[32﹣(﹣2)2].29.计算:(1)﹣3﹣(﹣4)+2 (2)(﹣6)÷2×(﹣)(3)(﹣+﹣)×(﹣24)(4)﹣14﹣7÷[2﹣(﹣3)2]30.计算①(﹣6)×﹣8÷|﹣4+2|②(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.1.计算:(1)(2)2.计算:﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)3 3.﹣10+8÷(﹣2 )2﹣(﹣4)×(﹣3)4..5.计算与化简:(1)计算:(2)25×.1.计算:(1)﹣(﹣)+(﹣0.75)(2)﹣2.5÷×(﹣)(3)﹣22﹣6÷(﹣2)×﹣|﹣9+5|.2.计算:.3.计算下列各式(1)﹣(﹣1)4+(1﹣)÷3×(2﹣23)(2)(﹣+)×(﹣12)4.计算:0.752﹣×+0.52.5.计算:(﹣1)3﹣×[2﹣(﹣3)2].1.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.2.25×﹣(﹣25)×+25×(﹣)3.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)4.计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].5.计算:(﹣4)2×(﹣2)÷[(﹣2)3﹣(﹣4)].1.计算:﹣12+3×(﹣2)3+(﹣6)÷(﹣)2.2.计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)3.计算:(﹣1)2003+(﹣3)2×|﹣|﹣43+(﹣2)4.4.a与b互为相反数,c与d互为倒数,求的值.5.计算:(1)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](2)﹣24÷(﹣2)2+5×(﹣)﹣0.25.1.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.3.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.4.先化简,再求值:﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣.5.先化简,再求值:(1)(5x+y)﹣(3x+4y),其中x=,y=;(2)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.1.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.2.去括号,合并同类项(1)﹣3(2s﹣5)+6s (2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)3.化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.4.已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.5.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.6.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)1.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.2.已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.3.先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.4.4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.5.化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中1.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.2.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.3.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.4.先化简,再求值:(x+y)2﹣2x(x+2y)+(x+3y)(x﹣3y),其中x=﹣1,y=2.5.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.1.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B 的值.2.化简求值:5ab﹣2a2b+[3ab﹣2(4ab2﹣a2b)],其中a、b、c满足|a﹣1|+(b﹣2)2=0.3.9a2﹣[7a2+2a﹣(a2+3a)],其中a=﹣1.4.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,.5.若单项式a3b n+1和2a2m﹣1b3是同类项,求3m+n的值.6.a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是﹣2,求代数式4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3]的值.1.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.2.为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)3.合并同类项①3a﹣2b﹣5a+2b ②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)4.已知A=2x2﹣3x,B=x2﹣x+1,求当x=﹣1时代数式A﹣3B的值.1.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.2.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.3.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.4.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.5.化简(1)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)(2)5ab2﹣[a2b+2(a2b﹣3ab2)]6.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.1.先化简再求值:(x+y)(x﹣y)﹣x(x﹣y)﹣xy,其中x=2016,y=﹣1.2.(1)已知(x+2)2+|y+1|=0,求x,y的值(2)化简:.3.化简:(1)2x2﹣3x+1﹣(5﹣3x+x2)(2).4.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.5.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.6.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.1.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.2.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.3.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.5.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式a2﹣2b+4ab的值.1.先化简,再求值:,其中.2.化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].。

初一数学专项练习题

初一数学专项练习题

初一数学专项练习题一、有理数及其运算1. 计算下列各题:(3) + 7 24 (5) + 63 × 5 ÷ (2)8 ÷ (4) × (2)2. 简化下列各题:5 3 + 2 42 × (3) ÷ 67 ÷ (7) × (7)二、整式及其运算1. 计算下列各题:(3x 5) + (2x + 7)(4x + 6) (5x 2)2(x 3) + 3(2x + 1)5(2x 3) 2(3x + 4)2. 化简下列各题:3x^2 2x^2 + 5x 4x4a^2b 3ab^2 + 2a^2b 5ab^2(x + 3)(x 2) (x 1)(x + 4)三、一元一次方程1. 解下列方程:3x 7 = 2x + 55(x 2) = 3(2x + 1)4 2(x + 3) = 3x 12. 解决实际问题:某数的3倍减去5等于这个数的2倍加7,求这个数。

四、平面几何1. 计算下列图形的周长和面积:一个长为8cm,宽为6cm的长方形。

一个边长为5cm的正方形。

一个半径为4cm的圆。

2. 判断下列说法是否正确:对角线互相垂直的四边形是矩形。

有一组对边平行的四边形是平行四边形。

三个角都是直角的三角形是等边三角形。

五、数据初步认识1. 下列数据中,哪个是众数?哪个是中位数?2, 3, 3, 4, 5, 5, 5, 6, 72. 计算下列各题的平均数:8, 10, 12, 14, 1615, 18, 21, 24, 27六、二元一次方程组1. 解下列方程组:\(\begin{cases} 2x + 3y = 8 \\ x y = 1 \end{cases}\)\(\begin{cases} 4x 5y = 12 \\ 3x + 2y = 9\end{cases}\)\(\begin{cases} 7x + y = 21 \\ 2x 3y = 6\end{cases}\)七、不等式与不等式组1. 解下列不等式:\(3x 5 > 2x + 1\)\(4 2(x 1) \geq 3x 3\)\(5(x 2) < 2(x + 4)\)2. 解下列不等式组:\(\begin{cases} x + 2y > 6 \\ 2x y \leq 4\end{cases}\)\(\begin{cases} 3x y < 3 \\ x + 4y \geq 8\end{cases}\)八、分式及其运算1. 计算下列各题:\(\frac{3}{4} + \frac{1}{6} \frac{2}{3}\)\(\frac{5}{8} \times \frac{2}{3} \div \frac{1}{4}\) \(\frac{2}{5} \frac{1}{3} + \frac{3}{10}\)2. 化简下列各题:\(\frac{4x}{6} \frac{2x}{3}\)\(\frac{3a}{5} + \frac{2a}{3} \frac{a}{15}\)九、图形的性质1. 判断下列图形是否为轴对称图形:一个等边三角形一个矩形一个任意四边形2. 下列图形中,哪个是中心对称图形?一个正方形一个等腰三角形一个圆十、概率初步1. 计算下列事件的概率:从一副去掉大小王的普通扑克牌中随机抽取一张牌,抽到红桃的概率。

初一数每天三道数学题有理数和整式的计算

初一数每天三道数学题有理数和整式的计算

初一数每天三道数学题有理数和整式的计算一、有理数部分 【有关概念】1.下列各数中,-3的相反数是 ( )A .3B .-3C .31D .-312.2的相反数是 ( )A. -2B.2C.21-D.213.下列四个负数中-313,-3.14,-523 ,-3,最小的负数是 ( )A .-313B .-3.14C .-523 D .-34.在太阳系中,木星的表面积约61419000000平方千米,把61419000000这个数字用科学计数法表示应是( )A. 910419.61⨯B.10101419.6⨯C.1010419.61⨯D.11101419.6⨯5.下列由四舍五入法得到的近似数,精确到的位数说法正确的是 ( ) A.2102.1⨯是精确到十位 B.13亿是精确到个位 C.25.4是精确到4位 D.2.01是精确到0.16.在数轴上到原点距离等于8个单位长度的点表示的数是 ( ) A.8 B.-8 C.8± D.07.如图,b a ,是数轴上的两个数,那么下列不等式正确的是 ( )A. b a ≥-2B.b a >-2C.b a <-2D.b a ≤-28.数轴上点A ,B ,C ,D 对应的有理数都是整数,若点A 对应有理数a ,点B 对应有理数b ,且b﹣2a=7,则数轴上原点应是( )A .D 点B .C 点 C .B 点D .A 点 9.被誉为“天路”的青藏铁路是中国新世纪四大工程之一,2013年9月入选“全球百年工程”,它全长1956千米,用科学记数法表示青藏铁路的长度为米.10.2017年冬季某日,广州最低气温是5 ℃,呼和浩特最低气温是-8 ℃,这一天呼和浩特的最低气温比广州的最低气温低 ℃【计算】1.计算:=-⨯)(18.2.计算:2-1=.3.计算:=⨯÷2211.4.下列计算正确的是 ( ) A.5-3=-2 B.(+3)+(-1)=+4 C.(-6)÷(-3)=-2 D.(-3)×(+2)=-65.下列计算正确的是 ( ) A.12)4(3-=- B.1)1(100=- C.422=- D.9)3(3-=-6.下列等式不成立的是 ( ) A.55=- B.55--=- C.55=- D.55=--7.计算题(1))1.2()7.0(2.1)8.0(---++; (2))31(3)11(95-⨯÷-⨯-;(3)[])23(4)5.01()5(503322--⨯---÷+-.8.计算:(1))2()4()5()8(+---++- (2)[]25)24()4(51⨯+-⨯--+-(3))4(221)53(+⨯+÷- (4)36)187436597(⨯-+-(5)242)2()53()1(32-÷+---⨯+-9. 一快递小哥,在快递站A 处的东西向街道上收发快递,如果他向东走为正,下列是他收快递时所走的路程(单位为:km ).-5,+7,-2,+6,+1,+4,-3,+7,-2,-2 (1)他在上述过程中,走过的总路程是多少km ?(2)在上述过程中,走到最后一站时,他在A 处东边,还是西边,离A 处有多远?二、整式部分 【有关概念】1 .若代数式422--x x 的值为2,则代数式20632--x x 的值是 ( )A .2B .-2C .-38D .382.已知3=a ,5=b ,且b a b a +=+,则b a -值等于 ( )A .-2或8B .2或-8C .-2或-8D .±2或±83.多项式ab ab b a --222的项数及次数分别是 ( )A.3,3B.3,2C.2,3D.2,24.下列说法正确的是 ( )A .-32b 2的次数是2,系数是-3B .21-x 是单项式 C .ab π51-的系数是-51 D .数字0也是单项式5.下列各组中的两个项不属于同类项的是 ( )A .3x 2y 和-22x 2y B.-xy 和2yx C.35和53 D.a 2b 和ab 2 6.下列合并同类项正确的是 ( )A .a 2+3a=5a 3B .2a -3a=-1 C.ab b a =+2121 D .2222121yx yx y x =-7.计算:=-x x 35( )A.x 2B.22xC.x 2-D.-28.下列各式去括号后错误的是 ( ) A. 532)5()32(-++-=-++-a a a a B.b a a b a a +-=+-+2)2( C.b a a b a a -+=+--2)2( D.b a b a b a b a +---=----23)()23(9.对代数式)2()3(222ab b ab a ----进行去括号,合并同类项,最后结果正确的是 ( ) A.2282b ab a +- B.2252b ab a +- C.222b ab a +- D.2242b ab a +- 10.“数a 的2倍与10的和”用代数式表示为. 11.计算:3x -7x=.12.计算:=---+1)212(2)2(222x x x .13.请在括号中填上适当的项:-+=--++b a b a ab b a 22222( ). 14.把多项式523322--+-xy x y x 按x 的降幂排列结果是.16.若022)23(2=-++b a ,则b a =.17.对于有理数a 、b ,如果ab<0,a+b<0.则下列各式成立的是 (只填序号). ①a<0,b<0;②a>0,b<0且|b|>a ;③a>0,b<0且|b|<a ;④a<0,b>0且|a|<b ;⑤a<0,b>0且|a|>b ;⑥a>0,b>0.【化简求值】1.化简:4x 2+2(x 2-y 2)-3(x 2+y 2)2.先化简,再求值:3x 2y -[2x 2y -(xy 2-x 2y)-4xy 2],其中x=-4,y=214.先化简,再求值:[])3(2)52(52222a a a a a a --+--,其中2-=a .5.先化简,再求值 24)2(5)35(222-++--+a a a a a a ,其中2-=a .7.某同学做一道数学题:“两个多项式A、B,B=42x-5x-6,试求“A-B”,这位同学把“A-B”看成“A+B”,结果求出答案是72x-10x-12,那么A-B的正确答案是多少?三、一次方程部分 【有关概念】1 .下列方程中,属于一元一次方程的个数有 ( )①2x -3y=12;②x2+3=5;③﹣8x+4=13x ;④x 2+5x -1=0A .1个B .2个C .3个D .4个(5)3=x ;(6)8=+y x .其中一元一次方程的个数是 ( )A.2B.3C.4D.53.下列等式变形正确的是 ( )C.如果33-=-y x ,那么o y x =-D.如果my mx =,那么y x =【解一元一次方程】1.解方程:5x -2=0,则x=.2.把下列方程去分母,结果正确的是 ( )A.1512223=+--+x x 去分母后,得:11223=+-+x x B.1512223=+--+x x 去分母后,得11223=-++x xC.1512223=+--+x x 去分母后,得:10)12(2)23(5=--+x xD.1512223=+--+x x 去分母后,得:10)12(2)23(5=+--+x x3.方程312=-x 的解是 ( )A.-1B.-2C.1D.2( )5.解方程:(1)x x -=+736; (2))2(4153+=-x x ;(3)3221423x x x =--+(5)52221+-=--x x x .【应用题】1.某商场年末促销,一件衣服标价a 元,经两次降价后售价为115元,第一次降价打了“七折”,第二次降价每件又减25元,则得到方程.2.某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为.往返都步行,则需 小时.4.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有_____只,兔有_____只.5.一个两位数,个位数字为a ,十位数字比个位数字大1,则这两位数可表示为 ( )A.111-aB.1011-aC.111+aD.1011+a6.某企业今年1月份产值为x 万元 ,2月份减少了10%,3月份比2月份增加了15%,则3月份的产值是 ( )A.(1-10%)(1+15%)x 万元B.(1-10%+15%)x 万元C.(x -10%)(x +15%)万元D.(1+10%-15%)x 万元7.李叔叔5年前把一笔钱作为奶奶定期存款存入银行,年利率是5.5%。

八年级上数学练习题

八年级上数学练习题

八年级上数学练习题一、有理数及其运算1. 计算下列各题:(1) (3) + 7 5(2) 4 (9) + 6(3) 5 × (4) ÷ 2(4) 15 ÷ (3) × (2)2. 化简下列各题:(1) (2)^3 + 5^2 1(2) 3 × (4) + 2^5 7(3) 4 × (3)^2 + 6 ÷ 2(4) 8 ÷ (2)^3 + 9 × 5二、整式及其运算1. 计算下列各题:(1) 3x 2y + 4x 5y(2) 5a^2 3a^2 + 7a^2 2a^2(3) 4m^2n 2mn^2 + 3m^2n 5mn^2(4) 6ab^2 3a^2b + 2ab^2 4a^2b2. 化简下列各题:(1) (2x 3y)(x + 4y)(2) (a + 3b)(a 2b)(3) (4m 5n)(2m + 3n)(4) (3x^2 + 2y^2)(x^2 y^2)三、一元一次方程1. 解下列方程:(1) 3x 7 = 5(2) 2x + 5 = 9(3) 4x 15 = x + 8(4) 5x 3(x 2) = 72. 解决实际问题:(1) 某数的3倍减去5等于这个数的2倍加1,求这个数。

(2) 甲、乙两人年龄之和为45岁,甲的年龄是乙的2倍,求甲、乙的年龄。

四、二元一次方程组1. 解下列方程组:(1)\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\](2)\[\begin{cases}4x 5y = 7 \\3x + 2y = 11\end{cases}\]2. 解决实际问题:(1) 甲、乙两人共生产零件120个,甲每天生产5个,乙每天生产8个,求甲、乙各生产多少天。

(2) 某商店同时卖出两件商品,每件售价80元,其中一件盈利20%,另一件亏损20%,求这两件商品的成本价。

初中数学单元测试卷有理数整式练习题含答案

初中数学单元测试卷有理数整式练习题含答案

(2)
5、化简求值:
,其中
五、解答题。根据题目要求解答,并写出解题步骤。(共 5 题,每题 1 分,共 5 分) 1、求代数式的值:2x2﹣3x+ 1,其中 x=3;
2、(每小题 6 分,共 12 分)解方程
(1)解方程:
(2)先化简,再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中 a=
5、答案:化简得
,.
(3)
B.
,故原选项错误;
C.
,该选项正确;
D.
,错误.
故选 C.
考点:合并同类项.
8、答案:A.试题分析:A、x3?x2=x5,故本选项正确; B、(x3)3=x9,故本选项错误; C、x5+x5=2x5,故本选项错误; D、x6-x3≠x3,故本选项错误. 故选 A. 考点:1.合并同类项;2.同度数幂的乘法;3.幂的乘方.
27、下列各式中,运算正确的是(

A.3a-4a+a=0 B.x3 +x3 =2x6 C.5x2 -2xy2 =3xy D.5m-m=4
28、下列计算中,结果正确的是( ▲)
A.2x2+3x3=5x5 B.2x3·3x2=6x6 C.2x3÷x2=2x D.(2x2)3=2x6
29、已知:
,那么
的值为(

3、(5 分) 先化简,再求值:
,其中
4、图 1 是一个长为 2 ,宽为 2 的长方形,沿图中虚线剪开,可分成四块小长方形. (1)求出图 1 的长方形面积;
(2)将四块小长方形拼成一个图 2 的正方形.利用阴影部分面积的不同表示方法,直接写出代数式

)2、(

七年级数学复习有理数与整式

七年级数学复习有理数与整式

复习测试(满分120)一选择题(每题1分)1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg2.飞机上升了-80米,实际上是()A.上升80米B.下降-80米C.先上升80米,再下降80米D.下降80米3.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了-20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处5.若a<b<0<c<d,则以下四个结论中,正确的是()A.a+b+c+d一定是正数B.c+d-a-b可能是负数C.d-c-a-b一定是正数D.c-d-a-b一定是正数7.下列说法正确的是()①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确 B.仅③正确 C.仅③④正确D.①②④正确8.下列说法中不正确的是()A.零是整数,也是自然数B.有最小的正整数,没有最小的负整数C.-(+3)是负数,也是正数D.一个整数不是奇数,就是偶数9.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数10.下列说法中,正确的是()A.没有最大的正数,但有最大的负数B.有绝对值最小的数,没有绝对值最大的数C.有理数包括正有理数和负有理数D.相反数是本身的数是正数11.如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间12.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:(1)x3=3;(2)x5=1;(3)x108<x104;(4)x2007<x2008;其中,正确结论的序号是()A.(1)、(3)B.(2)、(3)C.(1)、(2)、(3)D.(1)、(2)、(4)13.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或200614.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c-2a=7,则原点应是()A.A点B.B点C.C点D.D点15.已知数轴上A、B两点坐标分别为-3、-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列何者不可能为C与D的距离()A.0 B.2 C.4 D.616.如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>-y>-x B.-x>y>-y>x C.y>-x>-y>x D.-x>y>x>-y17.如图数在线的O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置,下列各数的絶对值的比较何者正确()A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|18.在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为何()A.13 B.14 C.16 D.1719.若0<x<1,则x,1/x,x2的大小关系是()A.1/x<x<x2B.x<1/x<x2C.x2<x<1/x D.1/x<x2<x20.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=-(|a|+|b|)C.a+b=-(|a|-|b|)D.a+b=-(|b|-|a|)21.把-1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.22.下表是某电台本星期的流行歌曲排行榜,其中歌曲J是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是()A.D,E,H B.C,F,I C.C,E,I D.C,F,H23.若x<0,y>0,且|x|>|y|,那么x+y是()A.正数B.负数C.0 D.正、负不能确定24.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中()A.最多有4个是0 B.最多有2个是0C.最多有3个是0 D.最多有1个是025.下列判断:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③两个负数的和的绝对值一定等于它们的绝对值的和;④两个正数的和一定是正数.其中正确的个数有()A.4个B.3个C.2个D.1个26.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B .a 1+ a 4+ a 7+ a 3+ a 6+ a 9=2(a 2+ a 5+ a 8)C .a 1+ a 2+ a 3+ a 4+ a 5+ a 6+ a 7+ a 8+ a 9=9a5D .(a 3+ a 6+ a 9)-(a 1+ a 4+ a 7)=(a 2+ a 5+ a 8)27.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,328.2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909260000000元,将909260000000用科学记数法表示为表示(保留3个有效数字),正确的是( )A .909×1010B .9.09×1011C .9.09×1010D .9.0926×101129.任意有理数a ,式子1-|a|,|a+1|,|-a|+a ,|a|+1中,值不能为0的是( )A .1-|a|B .|a+1|C .|-a|+aD .|a|+130.当式子|x-1|+|x-2|+|x-3|+…+|x-1997|取得最小值时,实数x 的值等于( )A .999B .998C .1997D .031.已知x 为实数,且|3x-1|+|4x-1|+|5x-1|+…+|17x-1|的值是一个确定的常数,则这个常数是( )A .5B .10C .15D .7532.若|m-3|+(n+2)2=0,则m+2n 的值为( )A .-4B .-1C .0D .433.若|a-2|与(b+3)2互为相反数,则b a 的值为( )A .-6B .-8C .8D .934.下列说法错误的是( )A .3a+7b 表示3a 与7b 的和B .7x2-5表示x2的7倍与5的差C .1a-1b 表示a 与b 的倒数差D .x2-y2表示x ,y 两数的平方差35.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元36.在代数式,3x 2-2x-3,abc ,0,,π,x+yz ,中,下列结论正确的是( )A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式37.若-3x 2m y 3与2xy 2n 是同类项,则|m-n|的值是( )y x a+b ab 1 2 b 2A.0 B.1 C.7 D.-1二、填空题(每题2分)1.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定P n(x,y)=P1(P n-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).则P2011(1,-1)=2.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是3.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是5.已知x、y是实数,且满足(x+4)2+|y-1|=0,则x+y的值是6.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是(填图形的名称)▲■★■▲★▲■★■▲★▲…7.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是8.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是9.若|a-b|=b-a,且|a|=3,|b|=2,则(a+b)3的值为10.有理数a,b,c在数轴上的位置如图,则化简|a+c|+|b+c|+|c-1|+|a-2c|-|b-c|的结果是11. 若a、b、c为非零的有理数,则|a|/a+b/|b|+|c|/c的值是12.若m=x3-3x2y+2xy2+3y3,n=x3-2x2y+xy2-5y3,则2x3-7x2y+5xy2+14y3的值为13.计算(-3)3+52-(-2)2之值为14.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d的值为15.甲,乙,丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是16..若a ,b ,c 均为整数,且|a-b|2001+|c-a|2000=1,则|a-c|+|c-b|+|b-a|的值为17.已知1+x+x 2+x 3+x 4=0,则多项式1+x+x 2+x 3+…+x 2004的值等于18.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是19.化简5(2x-3)-4(3-2x )之后,可得20.已知A=3a 2+b 2-c 2,B=-2a 2-b 2+3c 2,且A+B+C=0,则C=三、解答题(1到3每题8分,4题9分 第5题10分)1. 阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…, 不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到: 因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.2. 试求出所有的整数n ,使是整数.3. 图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是多少;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.24n 2+15 3n+2 n(n+1)24.如图,是一张面积为630cm2的矩形张贴广告,它的上、下、左、右空白部分的宽度都是2cm.设印刷部分(矩形)的一边为x cm,印刷面积为y cm2.(1)试用x的代数式表示y;(2)若印刷面积为442 cm2时,求张贴广告的长和宽.5.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.。

有理数及整式测试题)

有理数及整式测试题)

有理数及整式测试题一、选择题(下列的四个选项中只有一个是正确的,请选择出最佳选项)1、计算(-6)×(-3)+(-7)的值为()A、-11B、0C、11D、-252、-(-6)的相反数是()A、-6B、0C、6D、1/63、(-2)³为()A、-8B、-6C、6D、84、2的倒数与(-2)的绝对值的和为()A、0B、-4C、2.5D、45、绝对值大于2而不大于4的整数有()A、1个B、2个C、3个D、4个6、有理数在数轴上的位置如图所示,则(), , , ,A、a>b>c>0B、a>c>b>0 a 0 b cC、c>a>b>0D、c>b>0>a7、如果a/b>0,则a与b()A、同为正数B、同为负数C、同号D、异号8、若6a4b3-m与-4a2-n b3互为同类项,则m,n的值为()A、3,0B、0,2C、0,-2D、3,-29、- a - b + c的相反数为()A、a + b + cB、a - b + cC、a + b - cD、c - b – a10、若式子x²+ x-2的值为3,则式子2x²+2x +(-6)的值为()A、2B、3C、4D、5二、填空题11、|-3|-|-5|=_________;12、-6y+2x²y-3+4xy³是_____次______项式,最高项式_________,一次项系数为________;13、已知a与b互为相反数,且|m|=2,则m+a+b=_______;14、化简(a + b)+2(a + b)-4(a + b)结果是_________;15、若-7xy n+1与3x m y是同类项,则m + n=________;三、计算题16、在数轴上标出下列各点。

-6,0,2.5,-3,4,1.517、计算:-7²+2×(-3)²+(-6)÷(-1/3)²18、将多项式5x²+ 4 - 4x²-5x + 6x³+3x -3x²合并同类项19、先化简,再求值-3a²b-2(-a b + a²b -2ab)+a b²-a²b,其中a=2,b=1/2。

初一有理数+整式练习(含答案)

初一有理数+整式练习(含答案)

9. 分 ) ( 据 资3料 显 示 , 地 球 的 海 洋 面 积 约 为 360000平0方00十 米 , 请 用 科 学 记 数 法 表 示 地 球 海 洋 面 积 面 积 约
为 ( “ 平 方于 米
A. 36x 107
B. 3.6x 108
C. 0.3x610°
D. 3.x610°
10.(3 分 )2017 年 能 源 汽 车 销 量 达 77.7 万 辆 , 市 场 占 比 2.7%,77.7
鲍坻4分)如果吾凰伽俨钊与_:妻z6燮2n′皇同蒙宴工亘i, 那 么 mn 的 值 为 51.(4 分 ) 苞 多 项 式 z8 + (2m 十 2) 22 — 3z - 1 不 含 二 汀 项 , 则 m = 52〉斛分〉如果]个单项式一萼的系数和次数分别为m、 几 , 那么 2mn =
53.(4分 ) 已 知 z — 4y 二 2, 那 么 一 5 十 2z — 8y 的 值 为
35.分()5当 5m — 3n = --4时 ,求代 数 式 2 (m — n) 十 4(2m — n) 十 2 的 值
36分.) 已(知5a = 2, 求 出 下 列 代 数 式 的 值 a 一 2a 一 5 十 3 (2a2 —a) .
37.分 )(先5化 简 , 后 求 值 :
(DM 二 (-2m2 十 z 一 切 一 〈一2z2 - 暑## 十 1〉 , 其 中 z 万 2;
人 , 一 21
B. 35
7.G 分 )a 十 1 的 相 反 数 是 C
A 一Q 十 工
B. —(a+1)
8.G 分 ) 下 列 说 法 正 确 的 是 ( )
A 非 负 数 包括 零 和 整 数 C. 零 是 最 小 的 整 数

七年级数学第一章 有理数、第二章整式加减复习题

七年级数学第一章 有理数、第二章整式加减复习题

秋季期段考复习练习题(第一、第二章内容)一、选择题:1. 2011的倒数是 ( )A 、B 、2011C 、﹣2011D 、2. -0.125 ( )A 是负数;但不是分数B 不是分数;是有理数C 是分数;不是有理数D 是分数;也是负数3.在数轴上距 -2有3个单位长度的点所表示的数是( ) A 、-5 B 、1 C 、-1 D 、-5或14、a 、b 为有理数;它们在数轴上的对应点的位置如图所示;把a ;-a ;b ;-b 按照从小到大的顺序排序是 ( )A 、-b ﹤-a ﹤a ﹤bB 、-a ﹤-b ﹤a ﹤bC 、-b ﹤a ﹤-a ﹤bD 、-b ﹤b ﹤-a ﹤a5.小明做题时;画了一个数轴;在数轴上原有一个点A ;其表示的数是-3;由于粗心;把数 轴的原点标错了位置;使点A 正好落在了-3的相反数的位置;想想;要把数轴画正确;原 点要向哪个方向移动几个单位长度?( )。

6. 如图;a 、b 两个数在数轴上的位置如图所示;则下列各式正确的是( ). A .0<+b a B .0<ab C .0<-a b D .0>ba7.若实数a 、b 互为相反数;则下列等式中恒成立的是( ) A .0a b -= B .0a b += C . 1ab = D .1ab =- 8.()[]n m ---去括号化简得( )(A )n m -- (B )n m +- (C )n m - (D )n m + 9. 去括号:()a b c --+=( ).A .a b c -++B .a b c -+-C .a b c --+D .a b c ---10.下列各题去括号所得结果正确的是( )A.z y x x z y x x 2)2(22++-=+--B. 132)132(22+-+=-+--y x x y x xC. 23)2(322+-=--x x x xD. 2212)4(21222--=--x x x x11.若3-=b a ;则a b -=( ). A .3 B .3- C .0 D .6,2,3=+=-d c b a 则)()(d a c b --+的值是( ) .A . 1-B .1C .-5D .1513、已知33-=-y x ;则y x 35+-的值是( ) A .0 B .2C .5D .814.代数式722++y y 的值是6;则5842-+y y 的值是( ) A .9 B .9- C .18 D .18- 15.已知代数式y x 2+的值是3;则代数式142++y x 的值是( )(A )1 (B )4 (C )7 (D )不能确定 16、已知代数式 的值为2;那么142+-a a 值为 ( ) A 、61 B 、59 C 、13 D 、117.如果1-=x 时;那么)52(222x x x ---的值是( ). A .4 B .-4 C .-2 D .2 18.当x =-1时;多项式ax 5+bx 3+cx -1的值是5;则当x =1时;它的值是( ).A .-7B.-3C .-17D.719. 下列各式正确的是( )A .358-=--B .ab b a 734=+C .54x x x -= D .()572=--- 20.下列计算正确的是( ).A .235xx x B . 2242x x x C .xy y x 32=+ D . 2222y y y 21.下列计算正确的是( )A. 2233x x -=B.85332x x x =+C. x x x 325-=--D. 2222xy xy xy -=+-22.下列运算正确的是( ).A .3-(x -1)=2-xB .3-(x -1)=2+xC .3-(x -1)=4-xD .3-(x -1)=4+x 23.下列计算正确的是( ).A. 246x x x += B.2242x x x += C. 222-2x x x -=- D.22254x x x -+=- 24.将()()()y x y x y x +-+++42合并同类项得( )(A )y x + (B )y x -- (C )y x +- (D )y x -b a 2和y b a 23-是同类项时( )A 、0=y B 、1=y C 、2=y D 、3=y26.如果n m y x 2和qp y x -是同类项;则( )(A )pq mn = (B )q p n m +=+ (C )p n q m ==, (D )q p n m ==,27.若多项式32281xx x -+-与多项式323253x mx x +-+的和不含二次项;则m 等于( ). A .2 B .-2 C .4 D .-4 28.一个多项式与2x -2x +1的和是3x -2;则这个多项式为( )A.2x -5x +3B.-2x +x -1C.-2x +5x -3D.2x -5x -1329、已知一个多项式与239x x +的和等于2341x x +-;则这个多项式是( )A .51x --B .51x +C .131x --D .131x +30. 若2(2)10x y -++=;则x y +等于( ).A .1 B .1- C .3 D .3- 31. 下列说法正确的是( ) .A .0.600有4C .6.610精确到千分位D .410708.2⨯有5个有效数字 32.在下面所给的2008年12月份的日历表中;任意圈出一竖列上相邻的三个数的和不可能是A .69.B .54.C .27.D .40. 33、下列一组按规律排列的数:1;2;4;8;16;… A 、22011 B 、22011-1 C 、22010 D 、 以上答案都不对34、一个容器装有1升水;按照如下要求把水倒出:第1次倒出12升水;第2次倒出的水量是12升的13;第3次倒出的水量是13升的14;第4次倒出的水量是14升的15;…按照这种倒水的方法;倒了10次后容器内剩余的水量是( )A 、1011升 B 、19升 C 、110升 D 、111升 二、填空题:1、国家游泳中心——“水立方”是2008年奥运会标志性建筑之一;其工程占地面积为62828m 2;将62828用科学记数法表示为(保留两个有效数字) 。

初一数学课后练习题

初一数学课后练习题

初一数学课后练习题一、有理数及其运算1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) (4) × 25(4) 18 ÷ 3(5) (5 3) × 22. 化简下列各题:(1) 2 + 3 5(2) 4 (3) + 7(3) 4 × (3) ÷ 2(4) (8 5) × (2)二、整式的加减1. 计算下列各题:(1) 3a 2a(2) 4b + 5b 2b(3) 7x 3x + 2x(4) 5m 4n + 2m n2. 化简下列各题:(1) 2a 3a + 4a(2) 5b 2b 3b(3) 6x 4x + 7x(4) 8m 5m 2m三、一元一次方程1. 解下列方程:(1) 3x 7 = 11(2) 5 2y = 1(3) 4a + 9 = 7a(4) 6b 3 = 3b + 122. 求下列方程的解:(1) 2(x 3) = 8(2) 3(y + 4) 7 = 2y(3) 5(a 2) + 3 = 2(a + 1)四、几何图形初步1. 判断下列说法是否正确:(1) 对顶角相等。

(2) 平行线的同旁内角互补。

(3) 钝角大于直角。

2. 画出下列图形:(1) 一个等边三角形。

(2) 一个直角边长分别为3cm和4cm的直角三角形。

(3) 一个边长为5cm的正方形。

五、数据初步认识1. 计算下列各题:(1) 众数:2,3,3,4,5,5,5,6(2) 中位数:7,8,9,10,11,12,13(3) 平均数:15,18,21,22,25,28,302. 下列数据中,哪个是极差?(1) 10,12,14,16,18(2) 5,7,9,11,13,15,17六、平面图形的对称性1. 判断下列图形是否是轴对称图形:(1) 等腰三角形(2) 长方形(3) 正五边形2. 找出下列图形的对称轴:(1) 正方形(2) 等边三角形(3) 半圆七、概率初步1. 计算下列事件的概率:(1) 从一副去掉大小王的扑克牌中随机抽取一张红桃。

有理数的运算&整式的加减

有理数的运算&整式的加减

有理数的运算&整式的加减 (一)有理数的运算 一、有理数加法 法则:1、同号两数相加,取相同的正负号,并把绝对值相加;2、绝对值不等的异号两数想加,取绝对值较大的加数的正负号,并用较大的绝对值减去较小的绝对值;3、互为相反数的两个数相加得零;4、一个数与零相加,仍得这个数。

(有理数的加法仍满足加法交换律和结合律)例1:1.)2.0(3.1)9.0()7.0()8.1(-++-+++- 2.)326()434()313(41-+++-+二、有理数减法法则:减去一个数,等于加上这个数的相反数。

例2: 1.)5()]7()4[(--+-- 2.]12)3[(3---三、有理数加减混合运算 例3: 1.2111)43(412--+--- 2.)61(41)31()412(213+---+--练一练1:计算。

1、[1.8-(-1.2+2.1)-0.2]-(-1.5)2、-︱-32-(-23)︱-︱(-51)+(-52)︱四、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

注:1、几个不等于零的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

2、几个数相乘,有一个因数为零,积就为零。

例4:1.53)8()92()4()52(8⨯-+-⨯---⨯ 2.)8(12)11(9-⨯-+⨯-五、有理数除法法则:两数相除,同号得正,异号得负,并把绝对值相除。

零除以任何一个不等于零的数,都得零。

例5: 2411)25.0(6⨯-÷- )21(31)32(-÷÷-六、有理数的乘方(一)概念:求几个相同因数的积的运算叫作乘方,乘方的结果叫作幂。

在23=8中,底数是2,指数是3。

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

(二)同底数幂同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

专题08(有理数运算及整式加减的应用题)(20道)七年级数学上学期期中考黄金200题(北师大版)

专题08(有理数运算及整式加减的应用题)(20道)七年级数学上学期期中考黄金200题(北师大版)

专题08(有理数运算及整式加减的应用题)(20道)1.(2020湘西州月考)矩形的周长为30,若一边长用字母x表示,求此矩形的面积.【答案】x(15﹣x).【分析】根据周长是30,一边是x,求出另一边是15﹣x,再根据长方形的面积公式即可求解.【解析】∵周长是30,∴相邻两边的和是15,∵一边是x,∴另一边是15﹣x.∴面积是:x(15﹣x).【点睛】本题考查了列代数式,用到的知识点是矩形的周长和面积公式,关键是根据矩形的周长和一边的长,求出另一边的长.2.(2020鄂州期中模拟)根据实验测定,高度每增加100米,气温大约下降0.6℃.小张是一名登山运动员,他在攀登山峰的途中发回信息,说他所在位置是﹣16℃,如果当时地面温度是8℃,那么小张所在位置离地面的高度是多少米?【答案】小张所在位置离地面的高度是40米.【分析】根据题意列出算式,计算即可得到结果.【解析】根据题意得:[8﹣(﹣16)]÷0.6=24÷0.6=40(米),则小张所在位置离地面的高度是40米.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2020荆州月考)文具店、书店和玩具店依次座落在一条东西走向的九龙山大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了﹣60米,此时小明的位置在什么地方.【答案】小明的位置在文具店.【分析】由题意知,可看作书店为原点,文具店在书店西边20米处,即﹣20米,玩具店位于书店东边100米处,即+100米,解答出即可.【解析】根据题意得:文具店在书店西边20米处,玩具店位于书店东边100米处,∴书店看作原点时,玩具店为100米,文具店为﹣20米,∴小明的位置为:40﹣60=﹣20,∴小明的位置为:﹣20米,∴小明的位置在文具店.【点睛】本题考查了数轴,规定了原点、正方向、单位长度的直线叫做数轴,学生掌握数轴的定义,是解答本题的关键.4.(2020焦作期中模拟)一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2℃,小红此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?【答案】这座山峰的高度大约是700米.【分析】根据题意,找到等量关系式:山顶温度=山脚温度﹣山高÷100×1.【解析】设这个山峰的高度大约是x米,根据题意得:5﹣x÷100×1=﹣2,解得:x=700.故这座山峰的高度大约是700米.【点睛】本题主要考查了有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.5.(2020昆明一中月考)如果a、b互为相反数(a、b均不为0),c、d互为倒数,|m|=3,求+m2﹣mcd+()2021的值.【答案】5 或11.【分析】由题意得a+b=0,cd=1,m=±3,可得=﹣1,再分m=3和m=﹣3分别计算可得.【解析】由题意得a+b=0,cd=1,m=±3,∴=﹣1,当m=3时,原式=+32﹣3×1+(﹣1)2021=5;当m=﹣3时,原式=﹣(﹣3)×1+(﹣1)2021=11;∴原式的值为5 或11.【点睛】本题主要考查代数式的求值,根据题意得出a+b、cd、m的值是解题的关键.6.(2020湘西州期中模拟)老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【答案】(1)所挡的二次三项式为x2﹣8x+4;(2)所挡的二次三项式的值13.【分析】(1)根据题意确定出所挡的二次三项式即可;(2)把x的值代入计算即可求出值.【解析】(1)所挡的二次三项式为x2﹣5x+1﹣3(x﹣1)=x2﹣5x+1﹣3x+3=x2﹣8x+4;(2)当x=﹣1时,原式=1+8+4=13.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7.(2020张家界月考)某一出租车一天下午以一中为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地,出租车离一中出发点多远?在一中的什么方向?(2)若每千米的价格为1元,司机一个下午的营业额是多少?【答案】(1)向东走为正,向西走为负;出租车在一中出发点;(2)司机一个下午的营业额是58元.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解析】(1)根据题意有:向东走为正,向西走为负;则将最后一名乘客送到目的地有+9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+10=0(km).故出租车在一中出发点.(2)司机一个下午共走了+9+3+5+4+8+6+3+6+4+10=58(km),若每千米的价格为1元,有58×1=58(元).故司机一个下午的营业额是58元.【点睛】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.8.(2020株洲月考)“十一”黄金周期期间,我市某风景区在7天假期中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1日2日3日4日5日6日7日人数变化(万人)+1.5 +0.7 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2(1)请判断七天内游客最多的是日,最少的是日,相差万人.(2)如果最多一天有游客3万人,那么9月30日游客有万人.【答案】(1)3,7,2.2;(2)0.4.【分析】(1)分别计算出游客相对于9月30日的人数即可求解;(2)根据(1)的计算结果就可求得.【解析】(1)1日:+1.5;2日:1.5+0.7=+2.2;3日:+2.2+0.4=+2.6;4日:+2.6﹣0.4=+2.2;5日:+2.2﹣0.8=+1.4;6日:+1.4+0.2=+1.6;7日:+1.6﹣1.2=+0.4,故七天内游客人数最多的是3日,最少的是7日,它们相差2.6﹣0.4=2.2(万人);(2)3﹣2.6=0.4(万人).故答案为:3,7,2.2;0.4.【点睛】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.9.(2020常州期中模拟)如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【答案】(1)从正面看有21个正方形,表面积为126cm2;(2)从正面看到的正方形个数有个,表面积为3n(n+1)cm2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n)个正方形,即可得出其表面积.【解析】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n)=个,表面积为:×6=3n(n+1)cm2.【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.10.(2020淮安期中模拟)某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分;第二种是包月制,69元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.02元/分.(1)若小明家今年三月份上网的时间为x小时,请你分别写出两种收费方式下小明家应该支付的费用;(2)若小明估计自家一个月内上网的时间为20小时,你认为采用哪种方式较为合算?【答案】(1)采用计时制应付的费用为4.2x元,采用包月制应付的费用为(69+1.2x)元;(2)采用计时制合算.【分析】(1)首先统一时间单位,(第一种)计时制:每分钟(0.05+0.02)元×时间=花费;(第二种)包月制:69元+每分钟0.02元×时间=花费;(2)把x=20代入(1)中的代数式计算出花费,进行比较即可.【解析】(1)采用计时制应付的费用为:0.05x×60+0.02x×60=4.2x元,采用包月制应付的费用为:69+0.02x×60=(69+1.2x)元(2)若一个月内上网的时间为20小时,则计时制应付的费用为4.2×20=84 (元)包月制应付的费用69+1.2×20=93(元)∵84<93,∴采用计时制合算.【点睛】此题主要考查了列代数式,并比较哪种花费便宜的问题,关键是弄清题意列出式子.11.(2020宜昌期中模拟)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【答案】(1)方案①需付费为(40x+3200)元;方案②需付费为(3600+36x)元;(2)选择方案①购买较为合算.【分析】(1)方案①需付费为:西装总价钱+20条以外的领带的价钱,方案②需付费为:西装和领带的总价钱×90%;(2)把x=30代入(1)中的两个式子算出结果,比较即可.【解析】(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.12.(2020天门期中模拟)某储蓄所,某日办理了7项储蓄业务:取出9.6万元,存入5万元,取出7万元,存入12万元,存入22万元,取出10.25万元,取出2.4万元,求储蓄所该日现金增加多少万元?【答案】储蓄所该日现金增加9.75万元.【分析】根据有理数的加法、有理数的减法的运算方法,用3次一共存入的钱数减去4次一共支出的钱数,求出储蓄所该日现金增加多少万元即可.【解析】(5+12+22)﹣(9.6+7+10.25+2.4)=39﹣29.25=9.75(万元)答:储蓄所该日现金增加9.75万元.【点睛】此题主要考查了有理数的加法、有理数的减法,要熟练掌握,解答此题的关键是要明确:(1)同号相加,取相同符号,并把绝对值相加.(2)绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.(3)减去一个数,等于加上这个数的相反数.13.(2020武汉一中期中模拟)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【答案】(1)该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天比最少的一天多生产26个;(3)该工艺厂在本周实际生产工艺品的数量是2110个.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解析】(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.14.(2020公安月考)已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长(2)当a=2,b=3时,求此三角形的周长(3)当a=2,三角形的周长为27时,求此三角形各边的长.【答案】(1)该三角形的周长=3a+4b+1;(2)该三角形的周长=19;(3)第一条边长= 12;第二条边长= 9;第三条边长= 6.【分析】(1)根据题意列出各边长的式子,再把各整式相加即可;(2)把a=2,b=3代入(1)中的式子即可;(3)把a=2代入(1)中的式子求出b的值,进而可得出结论.【解析】(1)∵第一条边长为(a+2b)厘米,第二条边比第一条边短(b﹣2)厘米,∴第二条边长=(a+2b)﹣(b﹣2)=a+b+2;∵第三条边比第二条边短3厘米,∴第三条边长=a+b+2﹣3=a+b﹣1,∴该三角形的周长=(a+2b)+(a+b+2)+(a+b﹣1)=3a+4b+1;(2)∵由(1)知该三角形的周长=3a+4b+1,∴当a=2,b=3时,该三角形的周长=3×2+4×3+1=19;(3)∵当a=2时,三角形的周长为27,∴3×2+4b+1=27,解得b=5,∴第一条边长=a+2b=2+10=12;第二条边长=a+b+2=2+5+2=9;第三条边长=a+b﹣1=2+5﹣1=6.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.15.(2020四会二模)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【答案】(1)12﹣x,10﹣x;(2)公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为﹣20x+1060;(3)总费用=980.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解析】(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点睛】根据题意列代数,再求代数式的值.16.(2020江苏月考)刚上中学的小颖,星期天到爸爸单位参观,发现一位叔叔在检验一批同一包装的产品时,对抽取的5件产品分别称重,记录如下:﹣1,﹣2,+3,+1,+2(单位为千克)(1)如果产品说明书注明每件产品标准质量是a千克,则根据你所学知识,叔叔记录的“+2”表示什么意思?(2)如果每件产品标准质量是a千克,则这5件产品称重的总质量是多少?市场上该产品售价是每千克n 元,则抽取的这5件产品总价多少?(均用代数式表示)(3)小颖通过叔叔了解到该产品标准质量a=100千克,市场上这种产品售价是n=15元每千克,则抽取的这5件产品总价多少元?【答案】(1)“+2”表示超过标准质量2千克;(2)这5件产品称重的总质量是5a+3(千克),抽取的这5件产品总价(5a+3)n元;(3)抽取的这5件产品总价为7545元.【分析】(1)根据正负数的意义解答即可;(2)求得5件产品的标准质量和,再加上超出或不足的质量即可,进一步利用单价×数量算出这5件产品总价;(3)把数值代入(2)中的代数式求得答案即可.【解析】(1)“+2”表示超过标准质量2千克(2)这5件产品称重的总质量是5a﹣1﹣2+3+1+2=5a+3(千克),抽取的这5件产品总价(5a+3)n元;(3)当a=100千克,n=15元时,抽取的这5件产品总价(5×100+3)×15=7545元.【点睛】此题考查列代数式,代数式求值,理解正负数的意义,掌握基本数量关系是解决问题的关键.17.(2020云梦期中)(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①;②;③;④.(2)通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表示:;(3)利用(2)的结论计算992+2×99×1+1的值.【答案】(1)①a2;②2ab;③b2;④(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)10000.【分析】(1)根据图形可以求得各个图形的面积;(2)通过观察可以得到前三个图形的面积与第四个图形面积之间的关系,从而可以用式子进行表示;(3)根据问题(2)发现的结论可以得到992+2×99×1+1的值.【解析】(1)由图可得,图①的面积是:a2;图②的面积是:ab+ab=2ab;图③的面积是:b2;图④的面积是:(a+b)(a+b)=(a+b)2;故答案为:①a2;②2ab;③b2;④(a+b)2;(2)通过拼图,前三个图形的面积与第四个图形面积之间的关系是前三个图形的面积之和等于第四个图形的面积,用数学式子表示是:a2+2ab+b2=(a+b)2;(3)992+2×99×1+1=(99+1)2=1002=10000.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出正确的代数式,会求代数式的值.18.(2020恩施州期中)商店进了一批货,出售时要在价格的基础上加一定的利润,其数量x与销售c的关系如表.数量x(千克)售价c(元)1 4+0.22 8+0.43 12+0.64 16+0.8……(1)写出售价c与x关系式;(2)计算5.5千克货的售价.【答案】(1)c=4.2x;(2)5.5千克货售价23.1元.【分析】本题主要考查从表格中看出所要的信息,列出相应的关系式,方便进一步的计算.【解析】(1)c=(4+0.2)x=4.2x.(2)当x=5.5时c=23.1(元).答:5.5千克货售价23.1元.【点睛】本题需要从给出的数据中得到一般规律,写出表达式,再由表达式求出需要的结果.19.(2020宜昌期中)台湾是我国美丽的宝岛,为了促使台湾的水果很快运往大陆,现有一批水果包装质量为每筐50千克,现抽取8筐样品进行检测,结果称重记录如下(单位:千克):52,49,48,53,46,51,47,52.为了求得8筐样品的平均质量,我们可以选取一个恰当的基准数进行简化计算.(1)你选取的基准数为.(2)据你选取的基准数,用正、负数填表:(3)求出这8筐水果的平均质量.原质量52 49 48 53 46 51 47 52与基准数的差【答案】(1)50;(2)填表见解析;(3)这8筐水果的平均质量是49.75kg.【分析】(1)选取包装质量作为基准数即可.(2)将8筐样品的质量分别减去基准数,将所得的结果填入表中即可.(3)利用基准数求和,可根据和=基准数×个数+浮动数,来得出8筐水果的总重量,再除以8即可求解.【解析】(1)选取的基准数为50;(2)填表如下:原质量52 49 48 53 46 51 47 52与基准数的差 2 ﹣1 ﹣2 3 ﹣4 1 ﹣3 +2(3)[50×8+(2﹣1﹣2+3﹣4+1﹣3+2)]÷8=(40﹣2)÷8=38÷8=49.75(kg).故这8筐水果的平均质量是49.75kg.故答案为:50;2,﹣1,﹣2,3,﹣4,1,﹣3,2.【点睛】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,弄清基准数、原数、浮动数之间的关系.20.(2020随州模拟)淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n(n>1)盆花,每个图案花盆的总数为S,当n=2时,S=3;n=3时,S=6;n=4时,S=10.(1)当n=6时,S=;n=100时,S=.(2)你能得出怎样的规律?用n表示S.【答案】(1)21;5050;(2)用n表示S得S=.【分析】结合图形分析n和s的关系.当n=2时,S=1+2=3,当n=3时,S=1+2+3=6,当n=4时,S=1+2+3+4=10,则当n=6时,S=1+2+3+4+5+6,当n=100时,S=1+2+3+…+99+100.总结得规律为:当S=1+2+3+…+n.【解析】(1)由分析得:当n=6时,s=1+2+3+4+5+6=21;当n=100时,s=1+2+3+…+99+100=5050;(2)用n表示S得:S=.【点睛】本题属于规律型的,由上图可以看出有2行时,第一行是1盆,第二行是2盆;有3行时,第一行是1盆,第二行是2盆,第3行是3盆,依此类推有n行时,共有S=1+2+3+4+…+n=盆.。

有理数、整式、数列

有理数、整式、数列

希望杯第一届初中一年级第一试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B.没有最小的正有理数.C.没有最大的负整数. D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号. B.a,b异号.C.a>0. D.b>0.5.大于-π并且不是自然数的整数有 ( )A.2个. B.3个.C.4个. D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A.0个. B.1个.C.2个. D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了. D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多. B.减少.C.不变. D.增多、减少都有可能.二、填空题(每题1分,共10分)1. ______.2.198919902-198919892=______.3. =________.4. 关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的 .如果工作4天后,工作效率提高了 ,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第二届初中一年级第一试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是 ( )A.最小整数. B.最小正数.C.最小自然数. D.最小有理数.2.若a>b,则 ( )A. ; B.-a<-b.C.|a|>|b|. D.a2>b2.3.a为有理数,则一定成立的关系式是 ( )A.7a>a. B.7+a>a.C.7+a>7. D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+ ;C.(-13579)× ;D.(-13579)÷6.3.1416×7.5944+3.1416×(-5.5944)的值是 ( )A.6.1632. B.6.2832.C.6.5132. D.5.3692.7.如果四个数的和的是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于- 且小于- 的是( )A.- ;B.- ;C.- ;D.- .9.方程甲: (x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以 x;C. 甲方程的两边都乘以 ;D. 甲方程的两边都乘以 .10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则的大小关系是( )A. ;B. > > ;C. > > ;D. > > .11.方程的根是( )A.27. B.28. C.29. D.30.12.当x= ,y=-2时,代数式的值是( )A.-6. B.-2. C.2. D.6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( ) A.225. B.0.15.C.0.0001. D.1.14.不等式的解集是( )A.x<16. B.x>16.C.x<1. D.x>- .15.浓度为p%的盐水m公斤与浓度为q%的盐水n公斤混合后的溶液浓度是 ( )A. ;B. ;C. ;D. .二、填空题(每题1分,共15分)1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______.2.计算:-32÷6× =_______.3.计算: =__________.4.求值:(-1991)-|3-|-31||=______.5.计算: =_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算: =_______.8. 计算: [(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5, , 中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程12.求值: =_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是 ,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则 =____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数及整式运算练习题(一)
命题人:于曼 审题人:张晓娴 使用时间 10.26
一、选择题:
1、有理数 -3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,负数有( ) A 、1 个 B 2 个 C 3 个 D 4个
2、比1小2的数是( )
A .3-
B .1-
C .1
D .3
3、规定向北为正,某人走了+5米,又继续走了﹣10米,那么,他实际上( )
A 向北走了15km
B 向南走了15km
C 向北走了5km
D 向南走了5km 4、下列说法正确的是( )
A .有理数的绝对值为正数
B .只有正数或负数才有相反数
C .如果两数之和为0,则这两个数的绝对值相等( )
D .如果两个数的绝对值相等,则这两个数之和为0 5、在代数式
x x 32
52
-,y x 22π,x 1,5-,a ,0中,单项式的个数是( )
A 1
B 2
C 3
D 4 6、下列代数式中,符合书写格式的是( )
A b
a
2 B k ⨯-1 C y x ÷2 D %10⨯a
7、某校初一新生入学考试的总人数是a ,其中不及格人数是b ,则及格率等于( )
A %100⨯b
a B %100⨯a
b C
%100⨯-b b a D %100⨯-a b
a 8、已知当x =-1时,代数式│5x +2│和代数式1-3x 的值分别为M 、N ,则M 、N 之间的关系为( ) A M >N ; B M =N ; C M <N ; D 以上三种情况都有可能。

二、填空题:
9、数a 在数轴上的对应点在原点左边,且│a │=3,则a=___________.
10、某地某日中午的温度为10℃,而夜间温度为—2℃,则中午比夜间温度高_________℃。

11、3
2-倒数是 __ ;相反数是 ,绝对值是 ;3
2-平方是 。

12、当a =-4,b =-12时,代数式a 2-
a
b
的值为 。

13、若a -2b =1,则代数式5(a -2b)2-2(a -2b)+1的值为 。

14、观察下列数:4、7、10、13…从左边第一个数算起,第10个数是 。

15、若|a-2|+|b+3|=0,则3a+2b= . 16、(-1)2n +(-1)2n+1=______(n 为正整数).
17、比x 的5倍多20的数_____________,比x 多20的数的5倍是_______________。

18、单项式3
23
2b a - 的系数是_________,次数是_________。

19、定义a*b =ab
b
a +,则2*(2*2)= 。

三、计算题:
1、(+4.7)―(―8.9)-(+7.5)+(―6)
2、(-18)÷241×9
4÷(-16);
3、-63
×(-6
1)2-72; 4、4+3×(-2)3+33;
5、⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⨯-854342 6、
7、1])2(4[)12
11
1413(
124---⨯---
四、解答题:
1、下图是一个正方体的展开图,请在六个正方形中各添入一个数,使得折叠成正方体后,相对面上的两数互为相反数.
2、某检修小组乘汽车检修公路道路。

向东记为正,向西记为负。

某天自A 地出发。

所走路程(单位:千米)为:+22,-3,+4,-2,-8,-17,-2,+12,+7,-5;
问:①,最后他们是否回到出发点?若没有,则在A 地的什么地方?距离A 地多远? ②,若每千米耗油0.05升,则今天共耗油多少升?
3、一辆汽车,每小时行驶a 千米,上午行驶4小时,下午行驶了b 千米。

(1)用式子表示这辆汽车行驶的千米数。

(2)当a=80、b=200时,这辆汽车行驶了多少千米?
4、如右图:图中的阴影部分的周长为 ;面积为 ;
当x =7.5,y =6时,阴影部分的周长是 ;面积是 。

教学目标:巩固练习有理数的混合运算及体会用字母表示数,会列简单的代数式,熟练掌握有理数的混合运算。

参考答案:
一、CBDCDADC
二、9、-3 10、12 11、9
4
,32,32,23-
12、13 13、4 14、31 15、0 16、0 17、5x+20,5(x+20) 18、3
2-,5 19、23
三、计算题: 1、 0.1 2、
9
2
3、-55
4、7
5、22
6、13.34
7、-2 四、解答题: 1、略
2、1)和为+8,没有回到原点,在正东8千米处。

2)耗油4.1升。

3、1)b+4a 2)520
4、1)4x+3y ,xy xy 4
12- 2)48,4
315。

相关文档
最新文档