压力管道的水力计算和直径的确定.
浅谈市政污水压力管道的设计
浅谈市政污水压力管道的设计韩猛摘要传统的重力管道排水技术虽然历史悠久、技术成熟,但是对于目前市政污水管道排水来说,由于受到地面高程、软土地基等不利自然环境因素影响,单纯依靠污水重力管道排水变得很不现实。
因此,污水压力管道的建设势在必行。
本文主要从污水压力管道及其附属构筑物的设计、管道跨越桥梁等障碍物几个方面对污水压力管道系统的总体设计进行深入论述。
关键词市政;污水压力管道;设计0引言传统的重力流污水管道技术成熟,使用广泛,但在设计中有时会遇到污水由地势低洼处排向地势高处,此时依靠重力流排水就变得很不现实,一是过深的管沟开挖增加了人工及物资成本,还存在着施工过程中深基坑的安全问题。
二是对于已建成的高处污水管道而言,低洼处污水管道的标高较低,无法接入已建管道。
同时,重力流污水管道通过检查井连接,不可避免地存在渗漏污水的现象。
因此,在城市中仅仅依靠重力流来实现城市污水转输是不够的。
此时,就有必要进行污水压力管道的建设,以弥补重力流管道在污水输送方面的不足。
1污水压力管道的特点污水压力管道是以压力管道输送污废水的排水系统,相对于重力流污水管道,具有如下几个方面的特点:(1)可以避免重力流污水管道因铺设距离长、埋深大而造成的在复杂地质条件下施工困难的问题;污水压力管道铺设不受土质地形限制,可适用于各种复杂地质、地形条件下施工的特殊要求。
(2)各个不同企业所排出的污水共同使用一条排水压力污水干管,可以有效简化污水管网。
(3)对现代城市快速发展的环境适应性强,在排水管径不能满足远期水量要求的特殊情况下,可进行延伸而无须过分担心高程污水接入的问题。
2污水压力管道设计污水压力管道设计中,管材选择是基础环节,直接关系后续的设计与计算,因此,应该予以特别重视,本文对几种常见管材的优缺点进行了分析总结,便于根据实际情况进行选择。
污水压力管道设计需要先对其进行平面定线、划分产污区的面积,从而精确地计算污水压力管道设计管段的设计流量、确定压力管道管径,然后根据污水排入干管的曲线走向及附近地形及标高,确定系统的各个控制点,再根据每个控制点的设计高程、设计管段管径、设计流量等因素进行计算,可得出系统沿程压力高程曲线,该压力高程曲线为系统实现压力平衡的基础,同时也是污水压力泵选择的重要依据。
水电站压力管道
PPT文档演模板
2020/10/29
水电站压力管道
第八章 水电站压力管道
v 作用:从水库、前池或调压室向水轮机输送水量。 v 特点:坡度陡、内水压力大,承受动水压力,且
靠近厂房,失事后果严重,所以必须安全可靠。
PPT文档演模板
水电站压力管道
第一节 压力管道的类型
按布置方式分
按材料分
易于制作,无岔管。 v 缺点:造价高。 v 适用:(1) 单机流量大、长度短的地下埋管或明管;
(2)混凝土坝内管道和明管道。
PPT文档演模板
水电站压力管道
2.联合供水: 一根主管,向多台机组供水。设下阀门。
v 优点:造价低 v 缺点:结构复杂(岔管)、灵活性差
v 适用:机组少、单机流量小、引水道长的地下埋管 和明管。
明管:
钢管(大中型水电站),钢筋
暴露在空气中(无压引水式电站) 混凝土管、木管(小型电站)
地下埋管(隧洞埋管) : 埋入岩体。(有压引水电站)
不衬砌、锚喷或混凝土衬 砌、钢衬混凝土衬砌,聚 酯材料管等
混凝土坝身埋管: 依附于坝身(混凝土重力坝及 钢筋混凝土管道、钢衬钢 重力拱坝),包括:坝内管道、 筋混凝土管道 坝上游面管、坝下游面管
2. 经验公式法:简化条件推导公式。精度较低,初 步设计时采用
Qmax——压力管道设计流量,H—设计水头
3. 经济流速法:压力管道经济流速一般为4~6m/s,
最大不超过7m/s,Ae= Qmax/Ve
PPT文档演模板
水电站压力管道
第四节 钢管的材料和管身构造
PPT文档演模板
水电站压力管道
一、钢管的材料
➢ 路线尽可能短、直。(经济,hf和ΔH小)。 ➢ 地质条件好。山体稳定、地下水位低、避开山崩、
6水电站压力管道a详解
2. 布置:在水管转弯处,直线段不超过150m。 3. 类型:一般由混凝土浇制,靠自重维持稳定。
➢ 封闭式:应用广泛。结构简单,节约钢村,固 定效果好。
➢ 开敞式:采用较少。易于检修,但受力不均匀。
镇墩的两种形式
(2) 滚动式(rolling ring girder support)
❖ 在支承环与墩座之间加圆柱形辊轴,摩擦系数f小, 适用于D>2m。
(3) 摆动式(rocking ring girder support)
❖ 在支承环与墩座之间设一摆动短柱。摩擦系数f很 小,适用于大直径管道。
三、镇墩(anchor block)
2. 经验公式法:简化条件推导公式。精度较低,初
步设计时采用
D 7 5.2Qm3 ax H
Qmax——压力管道设计流量,H—设计水头
3. 经济流速法:压力管道经济流速一般为4~6m/s,
最大不超过7m/s,Ae= Qmax/Ve
第四节 钢管的材料和管身构造
一、钢管的材料
❖ 钢管所用钢材应根据钢管结构型式、钢管规模、使用 温度、钢材性能、制作安装工艺要求以及经济合理等 因素选定。
❖ 适用:压力水管较长,机组台数多,单机流量较 小的情况。地下埋管和明管。
第三节 水力计算和经济直径的确定
一、水力计算 ❖ 恒定流计算:确定管道的水头损失,包括沿程和
局部两部分。 ➢沿程损失:处于紊流,可按曼宁公式计算。 ➢局部损失:进口、门槽、渐变段、弯段、分岔
等部位,按水力学公式计算。 hw→电能→装机容量→管径选择
二、压力管道引进厂房的方式
1. 正向引近:低水头电站。水流平顺、水头损失小, 开挖量小、交通方便。钢管发生事故时直接危机 厂房安全。
水电站压力管道设计
2.附件
❖ (2)通气孔和通气阀
作用:当阀门紧急关闭时,向管内充气,以消除管中负压; 水管充水时,排出管中空气。即:放空时补气,充水时排 气。
位置:阀门之后 当进水口较深时,可采用通气阀,在正常运行时保持关闭
❖ (3)钢衬钢筋混凝土管:应用:水头较高的情况 ❖ (4)玻璃钢管:水流摩阻系数小,重量轻。应用:水
头不高、流量较小的中小型水电站。
4.1 压力管道的功用和类型
4.1.2 压力管道的类型及适用条件
1.按管壁材料分类
钢管管节
钢筋混凝土管
4.1 压力管道的功用和类型
4.1.2 压力管道的类型及适用条件
4.3 明钢管的构造、附件及铺设方式
4.3.1 明钢管的构造
5.支承环:
❖ 钢管与支座之间起支承、加固作用的环状结构。 ❖ 作用:防止支墩直接接触管壁,加强支承处钢管的
强度和刚度。 ❖ 支承环沿管周箍设,断面可为工字形、T形、矩形、
槽形等。
4.3 明钢管的构造、附件及铺设方式
4.3.4 明钢管的支承结构
原则:
❖ 1.尽可能短而直 ❖ 2.选择良好的地形、地质条件 ❖ 3.应满足运行安全要求 ❖ 4.应满足施工要求
4.2 压力管道的线路选择和布置方式
4.2.2 压力管道的布置型式
1.压力管道的供水方式
单元供水
联合供水
分组供水
Next
单元供水
每台机组都有一根水管供水。 优点:结构简单,运行方便可靠,一根故障或检
Next
正向引近
管道的轴线与厂房的纵轴线垂直。 特点:水流平顺、水头损失小,开挖量小、交通
方便。钢管发生事故时直接危机厂房安全。 适用:低水头电站。
水电站压力管道设计
图 4:分布电容充放电特性曲线 5.3.2 装置参数设置 该带分布电容测量绝缘监测装置是一个兼顾系统母线电压、正 负对地电压、正负对地电阻、系统分布电容等检测的多功能装置, 配置真彩 7 寸液晶屏,对各项参数设置进行检测均正常。
5.3.3 分布电容测量结果
通过多次测试后得出下表中最大的误差情况。
电容标称值(uF) 10 20
2016 年 12 期︱141︱
Power Technology
化平台。 5.2 运行情况测试
5.3 测试内容及结果 5.3.1 系统分布电容充放电特性参数 当检测桥启动时,由于检测桥的投入,打破了原来的电压平衡, 但电压的变化并不是瞬间达到稳定的,由于系统存在分布电容的原 因,电压变化会存在延时。记录电压平稳到变化再到平稳的过程所需 的时间,以及在该过程中采用 lOOHz 采样频率对电压进行采样并存储, 然后根据电压采样和记录的时间绘制电容的充放电曲线,如图 4 所示。
t= pr · 0 rd f
式中:t——钢管管壁计算厚度(mm),
p ——内水压力(N/mm2),含水锤压力, r ——钢管半径
γ0——结构重要性系数,γ0=1.0 ψ——设计状况系数,ψ=1.0 rd——结构系数,rd=1.6 f——钢 材强 度设 计值 (N/mm2 ),20R 为225N/mm2 ,16MnR 为 300N/mm2。
X 式中:ΣY—作用在镇墩上的垂直合力; ΣX—作用在镇墩上的水平合力; G—镇墩自重; f—镇墩与地基间的摩擦系数; K—稳定安全系数,K>1.5~2.0。 经计算:K>1.5即满足规范要求。 基底应力校核按下式:
Y W (1 6e)
BL
B
式中: σ——镇墩基底应力,(N/mm2);
07第七章引水建筑物qba
(二)渠道线路选择
(1)地形条件。
(2)地质条件。
(3)施工条件。
(4)管理要求。
(三)渠道的纵横断面设计
合理的渠道断面设计,一般应满足以下几方面具体要求: ①有足够的输水能力,以满足用户对用水水量的需要;②有 足够的水位,以满足自流灌溉的要求;③有适宜的渠道水流 流速,以满足渠道不冲、不淤或周期性冲淤平衡的要求;④ 有稳定的边坡,以保证渠道安全运用;⑤有合理的断面形式, 以减少渗漏等损失,提高水利用系数;⑥尽量满足综合利用 要求,做到一专多能;⑦尽量使工程量最少,以有效降低工 程总投资,发挥最大工程效益。
二、渡槽的型式及组成
1、渡槽的类型 按槽身断面形式分为U形槽、矩形槽、抛物
线形槽及圆管槽等。 按支承结构分为梁式渡槽、拱式渡槽、桁架
式渡槽、斜拉式渡槽、组合式渡槽等。
2、渡槽的组成 渡槽一般由进口段、出口段、槽身及支承结
构等部分组成。
三、渡槽的总体布置
(一)槽址选择 (1)应选择在地形、地质条件有利的地方。 (2)跨越河流的渡槽,槽址应稳定,水流顺直。 (3)便于泄水闸等建筑物的布置。 (4)施工、管理及应用方便。
第六节 倒虹吸管
一、倒虹吸管的特点和使用条件
倒虹吸管属于渠系交叉建筑物,是指设置在渠道与河 流、山沟、谷地、道路等相交叉处的压力管道。其特点是 两端与渠道相接,而中间向下弯曲。与渡槽相比,具有结 构简单、造价较低、施工方便等优点。但是,输水时水头 损失较大,运行管理不如渡槽方便。
5、排水
设置排水,可以降低作用在衬砌上的外水压力。
(三)出口段
有压隧洞出口,绝大多数设有工作闸门、启闭机室、 渐变段、消能设施等。
四、水工隧洞的衬砌计算
(一)荷载及其组合
压力管道供水方式
b 自动强化阶段,承受较高荷载;
破坏阶段
第四节 钢管的材料、容许应力和管身构造
2 加工性能
辊扎、冷弯、焊接等方面的性能
冷 弯 塑性变形 发生冷强 时效硬化 钢材变脆 焊 接 焊缝不开裂,不降低焊缝及相邻母材的机械性能
(如强度、延伸率、冲击韧性等)。
后处理 进行消除内应力处理
第二节 压力管道的布置和供水方式
一、压力管道的供水方式
11
单 元 供 水
第二节 压力管道的布置和供水方式
一、压力管道的供水方式
12
集 中 供 水
第二节 压力管道的布置和供水方式
一、压力管道的供水方式
13
分
组
调压室
供
厂房
水
第三节 压力管道的水力计算和经济直径的确定
第三节 压力管道的水力计算 和经济直径的确定
第四节 钢管的材料、容许应力和管身构造
第四节 钢管的材料、容许应力 和管身构造
第四节 钢管的材料、容许应力和管身构造
一、钢管的材料
受力构件和加强构件: 管壁、加劲环、支承环:A3、16Mn,和经过
正火的15MnV和15MnTi
支座的滚轮和支承板等:A3、A4、A5、16M35、 45 屈服点为60~80kgf/mm2的高强度钢材
第三节 压力管道的水力计算和经济直径的确定
一、水力计算
1、恒定流计算
确定管道的摩阻损失和局部损失两种。
2、非恒定流计算
确定最高和最低压力线
第三节 压力管道的水力计算和经济直径的确定
二、管径的确定
压力管道的直径应通过动能经济计算确定
彭德舒公式:
D 7 5.2Qmax 3 H
V经 5 ~ 7m / s
第三章_压力管道总论及明钢管1
适用:广泛应用于地下埋管和明管。压力水管
较长,机组台数多,单机流量不大的情况。
压力管道直径的选择
供接着应对管道直径进行
选择。
由于管道费用较高,直径越小,管道用
材及造价越低,但管中流速越大,水头 损失与发电损失也越大。因此管道直径 应进行经济比较选定。
取大值,即[σ]取小值;
② 对特殊荷载组合,对埋藏式钢管和钢管的局部 应力区,K取小值,即[σ]取大值; ③ 对于屈强比大的钢材,试用新钢材和弯管、岔 管或特别重要的部位,[σ]需适当降低;
另外,焊缝强度的折减系数 ,应根据焊缝类别
和探伤要求,取为0.90~0.95。
钢材的强度校核
第四强度理论:
2 x r2 2 x r r x 3( xr 2 r 2 x 2 ) [ ]
其中: 焊缝系数一般可取0.9 - 0.95, 与焊缝方法、 探伤标准、建筑物等级有关。
, r , x 钢管环向,径向和轴向应力; x , xr , r 钢管各方面剪应力;
加工成型和焊接。宁可强度低而保证塑韧性高。 举例来说:A3 钢塑韧性好,但容许应力(240)低; 16Mn钢强度较高(330),但塑韧性差。 当HD值不够大时,选择 A3钢;
只有当 HD>600m2,δ=32mm~40mm, A3 钢不易
加工时采用16Mn。
钢材的容许应力
水电站钢管多按允许应力设计,允许应力常以钢 [ 材屈服强度百分比表示。 ] s k ,安全系数 K可参考 有关规范。
明 管 示 意 图
为了使管壁受力 均匀,支座处管 壁加支承环; 为保持钢管抗外 压稳定,有时在 支承环间加设加 劲环。
流体力学第5章节压力管路的水力计算
目录
• 引言 • 压力管路的基本概念 • 压力管路的水力计算基础 • 压力管路的水头损失计算 • 压力管路的压力分布计算 • 压力管路的优化设计 • 结论与展望
01 引言
主题简介
压力管路水力计算是流体力学中的一 个重要章节,主要涉及压力管道中流 体流动的水力学特性及计算方法。
本章节将介绍压力管路的基本概念、 水力学原理以及相关的水力计算方法 ,为实际工程应用提供理论支持。
章节目标
掌握压力管路的基本概念 和原理。
学习并掌握压力管路的水 力计算方法。
理解流体在压力管路中的 流动特性。
了解实际工程中压力管路 的设计与优化。
02 压力管路的基本概念
压力管路的定义
压力管路是指输送液体介质并承受一定压力的管道系统。 它广泛应用于石油、化工、水处理、能源等领域。
压力分布的影响因素
01
02
03
管路几何参数
管径、管长、管壁粗糙度 等都会影响压力分布。
流体性质
流体的密度、粘度、压缩 性等对压力分布有显著影 响。
流体流动状态
层流、湍流等不同的流动 状态对压力分布有不同的 影响。
06 压力管路的优化设计
优化设计的方法
数学模型法
通过建立压力管路的数学模型,包括流体动力学方程、管路材料 属性和边界条件等,进行数值模拟和优化求解。
局部水头损失的计算
局部阻力系数
根据局部障碍物的形状和尺寸,以及流体的物理性质,确定局部阻力系数,用 于计算局部水头损失。
经验公式
根据实验数据和经验,总结出一些常用的计算局部水头损失的经验公式,如谢 才公式等。
05 压力管路的压力分布计算
有压管道中的恒定流5-1简单管道水力计算的基本公式名师公开课获奖课件百校联赛一等奖课件
(
0.8
)
1 6
1
54.62m 2
/s
n
0.014 4
故 8g 8 9.8 0.0263
C 2 54.622
又因 c
1
l d
e
2 b
0
1 0.0263 50 0.5 2 0.2 1
0.8
1 0.531 3.54
可求得 d
43
0.97m 与假设不符。
0.531 3.14 2 9.8 3
管道出口淹没在水下称为淹没出流。
取符合渐变流条件旳
断面1-1和2-2,列能量
方程
z 1v02
2g
2v22
2g
hw12
因 v2 0
则有
z0
z 1v12
2g
hw12
在淹没出流情况下,涉及行进流速旳上下游水位差 z0 完全 消耗于沿程损失及局部损失。
11
因为 hw12 h f
hj
(
所需水塔高度为
H zc Hc h f zb 110.0 25 19.3 130.0 24.3m
22
3.管线布置已定,当要求输送一定流量时, 拟定所需旳断面尺寸(圆形管道即拟定管道直径)
这时可能出现下述两种情况:
1.管道旳输水能力、管长l及管道旳总水头H均已拟定。 若管道为长管 ,流量模数 K Q H l 由表4-1即可查出所需旳管道直径。
25
解:倒虹吸管一般作短管计算。
本题管道出口淹没在水下;而且上下游渠道中流
速相同,流速水头消去。
因
Q c A
2 gz
c
d 2
4
2 gz
所以 d
而 c
水电站压力钢管-8 介绍
(1) 滑动式支墩
鞍式(saddle support):包角: 90~120°,结构简单,造价 低,摩擦力大,支承部位受 力不均匀,适用于D<1m。 支承环式(slidding ring girder support):在支墩处
管身四周加刚性支承环。摩
擦力小,支承部位受力较均 匀,D<2m
15MnV、15MnTi。滚轮可采用A3、A4、A5、
16Mn或35、45等优质钢材。
二、钢材性能的要求
(一 ) 压力管道的工作特点与制作程序
工作特点:内水压力大,并经常承受冲击荷载
的作用;低温状态下工作(水温在4℃左右)对
钢材的工作条件不利。
制作过程:
板裁:冷卷、辊压成形;
现场焊接(自动焊、手焊);
当于一个多跨连续梁.
一、敷设方式
连续式布置: 管身在两镇墩间连续,不设伸缩节。温度应力大, 一般较少采用。 分段式:
两镇墩之间设置伸缩节 (在上镇墩的下游侧)。
温度应力小。
二、支墩(support)
1. 功用:承受水重和管重的法向分力。相当于连 续梁的滚动支承,允许水管在轴向自由移动(温 度变化时)。 2. 布置:间距L=6~12m,D特别大时,L取3m。L 小→M、Q小→支墩造价高。 3. 类型:滑动式、滚动式、摆动式。
(2) 滚动式(rolling ring girder support)
在支承环与墩座之间加圆柱形辊轴,摩擦系数f小, 适用于D>2m。
(3) 摆动式(rocking ring girder support)
在支承环与墩座之间设一摆动短柱。摩擦系数f很小,适 用于大直径管道。
三、镇墩(anchor block)
关于如何确定管径的问题
关于如何确定管径的问题
管道输水工程设计最关键最主要的问题就是管径大小的选择。
在压力管道输、供水工程中无论采用什么材质的管材,其管径大小直接影响到工程造价。
那么,如何确定管径呢?
管网设计的终极目的其实就是选择经济合理的管径。
影响管径大小的有四个要素:管道设计流量、流速、水损及节点之间的高差。
在流量、节点之间的高差为定值的前提下,如何选择流速就是关键了。
根据目前较成熟的且得到广范应用的理论就是根据经济流速试算。
什么是经济流速呢?满足工程设计输水流量要求、且符合不淤、不冲的流速。
如果是大流量、长距离、高落差的项目,要选得一个经济合理的管径,往往要经过数学模型分析计算。
我们接触的这些小项目,经济流速在规范提供的范围选择一下就行了。
计算步骤如下:
根据我上传的“管道水力计算表”把管长、流量、节点高程填入相应的单元格,拟定1个流速值填好,看最后一栏末端自由水压是多少,如果是单纯的输水管(水源到蓄水池),只要满足自由水压不为负数就行了(如果自由水压太大,说明流速值选得太小,不经济)。
如果是配水管网请按树枝状管网计算方法计算,确保各节点水压满足要求。
不同压力等级管材壁厚不一样,为方便,现把1.25Mpa 的PE管实际内径统计如下:(供大家选择公径外径使用)
DN20-15.4;DN25-19.9;DN32-26;DN40-32.6;DN50-40. 8;
DN63-51.4;DN75-61.4;DN90-73.6;DN110-90;DN125-1 02.2;。
工程流体力学压力管道水力计算
水力计算的基本原理
伯努利方程
流体在管道中流动时,遵循伯努利方程,即流体在某一封 闭管道中的压强、位能和动能之和保持不变。
流量与流速
流量是单位时间内流过管道某一截面的流体量,流速是流 体在管道中的速度。通过水力计算可以确定管道的流速和 流量。
流体阻力损失
流体在管道中流动时,会受到阻力损失,包括沿程阻力损 失和局部阻力损失。水力计算需要确定这些阻力损失,以 确定泵或风机的功率要求。
AutoCAD
常用的二维绘图软件,可用于绘制管道布置图和进行简单的水力 计算。
Flowmaster
专业的流体仿真软件,可以进行复杂的管道水力计算和流体动力 学分析。
Aspen HYSYS
化工流程模拟软件,可用于模拟管道系统中的流体流动和热力学 行为。
04
工程实例分析
某城市给水管网水力计算
计算模型
系统优化
根据系统的流量和扬程需求,合理选型和 配置水泵,确保供水效率和水泵的安全运 行。
根据计算结果,对给水系统进行优化改造 ,降低能耗和运行成本,提高供水效率。
05
压力管道水力计算的优化 与改进
优化设计理念在水力计算中的应用
01
02
03
节能减排
通过优化设计,降低管道 系统的能耗和排放,减少 对环境的影响。
流量分配
水头损失计算
根据给水管网的布局和设计 参数,建立水力计算模型, 包括管道长度、管径、流速、 水头损失等。
根据用户需求和管网布局, 合理分配各管段的流量,确 保供水压力和流量的稳定性。
根据管网的实际情况,计算 各管段的沿程损失和局部损 失,为管网的水力平衡提供 依据。
水力平衡调整
根据计算结果,对管网的水 力平衡进行调整,确保供水 压力的稳定性和各用户的用 水需求。
压力管道水力计算汇总
3 按照终点流量要求,确定各段流量 4 以经济流速确定各段管径 5 取标准管径后,计算流速和摩阻 6 按长管计算各段水头损失hw
1
z2 2
3
z1
J
z3
7 按串联管道计算起点到控制点的总水头损失。
285井站:282、283、284
安县
罗浮山温泉 秀水
24
塔水站
花街镇 Φ159×6,L34Km 93
(xq81站:81、95 xq52站:52、52-2、52-1、 xq43站:43、35、36、51、54)
Φ325×6,L=37.5Km
L=0Φ.859Km×4
135阀室
68
135井站:135-2、q30、q31
L=Φ0.19559K×m 6
xp17井站:xp17、xp13、xp20、 xp21、xp22、xp3、290
工程流体力学
第五章 压力管路的水力计算 主 讲:刘恩斌
2011年10月
压力管道计算原理
有压管道:管道被水充满,管道周界各点受到液体压强作用,
其断面各点压强,一般不等于大气压强。
管壁
管壁
液体
液体自由面
有压管道
无压管道
工程中,常用各种有压管道输送液体,如水电站压力引水 钢管;水库有压泄洪隧洞或泄水管;供给的水泵装置系统及 管网;输送石油的管道。
的关系曲线( qV ~ H, qV ~, qV
~ N曲线)。
其中:水泵的qV ~ H关系曲线
称为水泵的水力性能曲线
3.泵与管路系统的水力耦合工况
M点工况为设计工况; qVm为设计流量; Hm为设计水头。 Hg = Hz +(zt―z0)
•工况点M变,则服务水头Hz变; •水泵水力性能曲线越平坦则供水越稳定;
高清图文+水电站的压力管道
的 球
重量大,造价高。
阀
适用:高水头电站。
四、钢管上的闸门、阀门和附件
2、伸缩节 (expansion joint)
功用:消除温 度应力,且适 应少量的不均 匀沉陷
位置:常在上 镇墩的下游侧
伸缩节
(a)套筒式伸缩节
(b)波纹密封套筒式伸缩节
(c)压盖式限拉伸缩节
(d)波纹管伸缩节
伸缩节动画
第六节 明钢管的管身应力分析
结构设计状况:持久状况、短暂状况、偶 然状况
三种设计状况均应进行承载能力极限状态 设计。
持久状况还应进行正常使用极限状态设 计,短暂状况可根据需要进行正常使用极 限状态设计。
承载能力极限状态:指钢管结构或构件,
第六节 明钢管的管身应力分析
结构设计状况分为持久状况、短暂状况和偶 然状况三种。
法 向 力 引 起 的 弯 矩 和 剪 力
(一) 跨中段面(1)-(1)的管壁应力 (1) 法向力作用引起的管壁轴向x1 应力
x1
M W
cos
M
r 2
cos
M——水重和管重的法向分力作用下连续梁
的弯矩;
W r2
W——连续梁(空心圆 x环2 )的断面模数, (2) 轴向力引起的轴向应力
在轴向力的合力∑A作用下,管壁中产生
迅速,体积小,重量轻,造 价低。 缺点:开启状态时,阀体对 水流有扰动,水头损失较 大;关闭状态止水不严。 动水中关闭,在静水中开启
四、钢管上的闸门、阀门和附件
(2) 球阀:球形外壳+可旋
转的圆筒形阀体+附件。
世
优点:开启状态时没有水
界
头损失,止水严密,能承
上 最
受高压。
有压隧洞的水力计算(自编)
一、有压隧洞的水力计算1、沿程水头损失:h f =Lv²/(C²R)=λLv²/(d2g)=Ln²Q²/(F²R^4/3)R=A/χi上游调压室的设置条件λ=8g/C²C=R^(1/6)/n2、局部水头损失:hj=ζv²/(2g)3、有压隧洞的基本计算公式:①自由出流:Q=μω√(2g(T 0-h p ))式中,Tw—压力水道中水流惯性h p =0.5a+p ′/γLi—压力水道及蜗壳和压②淹没出流:Q=μω√(2g(T 0-h s ))vi—压力水道内各分段流 Hp—水轮机设计水头,m 4、①自由出流:μ=1/(1+∑ζj *(ω/ωj )^2+∑2gl i *(ω/ωi )^2/(C i ²*R i ))^0.5; [Tw]—Tw 的允许值,一般②淹没出流:μ=1/((ω/ω2)^2+∑ζj *(ω/ωj )^2+∑2gli*(ω/ωi)^2/(C i ²*R i ))^0.5,式中:ω2—隧洞出口下游渠道断面面积 ω—隧洞出口断面面积 ζj —几部水头损失系数ωj —与 ζj 相应流速之断面面积L i 、ωi 、R i 、C i —某均匀洞段之长度、面积、水力半径、谢才系数压力钢管经济直径D=1.128(Q/v e )^0.5= 或 压力钢管经济直径D=(5.2*Q max ^[]w w T T >iw i pL vT gH =∑二、阻抗式调压室(一)、托马断面计算:A=K*A th =K*L*A 1/(2g*(α+1/(2g))*(H 0-h w0-3*h wm ))式中:A th —托马临界稳定断面面积 L—压力引水道长度 A 1—压力引水道断面面积H 0—发电最小静水头(电站上下游水位差)α—自水库至调压室水头损失系数,α=h w0/v²,(包括局部水头损失与沿程摩擦水头损失),在无连接管 v—压力引水道流速h w0—压力引水道水头损失 h wm —压力管道水头损失K—系数,一般可采用1.0~1.1(二)、最高涌波计算(《水电站调压室设计规范》计算公式):A=K*A th =K*L*A 1/(2g*(α+1/(2g))*(H 0-h w0-3*1、阻抗孔水头损失计算:h c =(Q/(Ψs)^2)/(2g)式中: h c —通过阻抗孔的水头损失 S—阻抗孔断面面积0.6~0.8之间选用2、丢弃全负荷时的最高涌波计算(《水电站调压室设计规范》计算公式):λ′=2gA(h c0+h w0)/(LA 1v 0²)(1+λ′Z max )-ln(1+λ′Z max )=(1+λ′h w 0)-ln(1-λ′h c 0)(λ′|Z max -1|)+ln(λ′|Z max |-1)=ln(λ′h c 0-1)-(λ′h w 0+1)34、增加负荷时的最低涌波计算:1+(((0.5ε-0.275m ′^0.5)^0.5)+0.1/ε-0.9)×(1-m ′)(1-m ′/(0.65ε^0.62))m ′=Q/Q 03、甩负荷时的第二振幅Z2m′=Q/Q0ε=LA1v0²/(gAh w0²)上游调压室的设置条件式中,Tw—压力水道中水流惯性时间常数,s;i—压力水道及蜗壳和压力尾水道各分段长度,m ;i—压力水道内各分段流速,m/s ;Hp—水轮机设计水头,m ;Tw]—Tw 的允许值,一般取2~4s式中: v e —经济流速,明钢管和地下埋管为4~6m ∕s ;管经济直径D=1.128(Q/v e )^0.5= 3.140219≈3.1 钢筋砼管为2~4m/s ;坝内埋管为3~7m/s 压力钢管经济直径D=(5.2*Q max ^3/H)^(1/7)=3.434174≈3.4Q max —管道的最大流量[]w w T T >iw i pL vT gH =∑二、阻抗式调压室水力计算程摩擦水头损失),在无连接管时用α代替(α+1/(2g))A1/(2g*(α+1/(2g))*(H0-h w0-3*h wm))141216441618 m′)(1-m′/(0.65ε^0.62))管为4~6m∕s;埋管为3~7m/s。
压力管道设计技术规定
目录1 总则2 一般规定工艺计算站、场、库及石油化工装置设备和管道布置输油、输气管道线路工程材料选用管道应力设计管道和设备隔热管道和设备涂漆压力管道支吊架设计规定压力管道强度计算规定聚乙烯管道设计规定3 压力管道设计遵循的标准和规范1 总则目的: 为了统一压力管道设计技术要求,提高压力管道设计水平,确保压力管道设计质量,特制定本规定。
遵守的原则:优化设计方案,确定经济合理的工艺及最佳工艺参数;做到技术先进,经济合理,安全适用。
适用范围:本规定适用于输油、输气管道工程、给排水及消防工程、热力工程、城市燃气工程及石油化工工程。
2 一般规定工艺计算2.1.1 输油、输气管道需要进行管道的水力计算、温降计算。
其计算公式按《输油管道工程设计规范》(GB50253-2014)、《输气管道工程设计规范》(GB50251-2015)《城镇燃气设计规范》(GB50028-2006)执行。
2.1.2 对于特殊的管道穿跨越工程按《油气输送管道穿越工程设计规范》(GB 50423-2007)和《油气输送管道跨越工程设计规范》(GB 50459-2009)执行。
站、场、库及石油化工装置设备及管道的布置2.2.1 设备布置2.2.1.1 装置的总体布置应根据装置在工厂总平面上的位置以及与有关装置、罐区、主管廊、道路等相对位置确定,并与相邻装置的布置相协调。
2.2.1.2 装置的竖向布置应根据装置生产特点,充分考虑操作、检修要求,满足交通运输要求;考虑装置内外地坪标高的协调及其内外道路、排水的合理衔接,尽量减少土方工程量;装置场地应采用平坡式布置,并采用有组织排水,所有的雨水经过暗管排入地下排水管网。
2.2.1.3 设备布置应满足工艺流程、安全生产、环境保护的要求,并应便于操作、维护、检修、防爆及消防,并注意节约用。
2.2.1.4 设备布置应按工艺流程顺序和同类设备适当集中相结合的方式,并结合风向条件确定设备、建筑物与其它设施的相对位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力管道的水力计算和经济直径的确定
一、水力计算
压力管道的水力计算包括恒定流计算和非恒定流计算两种。
(一)恒定流计算恒定流计算主要是为了确定管道的水头损失。
管道的水头损失对于
水电站装机容量的选择、电能的计算、经济管径的确定以及调压室稳定断面计算等都是不可缺少的。
水头损失包括摩阻损失和局部损失两种。
1、摩阻损失
管道中的水头损失与水流形态有为。
水电站压力管道中的水流的雷诺数Re一般都超过3400,因而水流处于紊流状态,摩阻水头损失可用曼宁公式或斯柯别公式计算。
曼宁公式应用方便,在我国应用较广。
该公式中,水头损失与流速平方成正比,这对于钢筋混凝土管和隧洞这类糙率较大的水道是适用的。
对于钢管,由于糙率较小,水流未、能完全进人阻力平方区,但随着时间的推移,管壁因锈蚀糙率逐渐增大,按流速平方关系计算摩阻损失仍然是可行的。
曼宁公式因一般水力学书中均可找到,此处从略。
斯柯别根据198段水管的1178个实测资料,推荐用以下公式计算每米长钢管的摩阻损失
(13-1式中a-水头损失系数,焊接管用0.00083。
为考虑水头损失随使用年数t的增加而增大的系数,清水取K=0.01,腐蚀性水可取K=0.015。
2.局部损失
在流道断面急剧变化处,水流受边界的扰动,在水流与边界之间和水流的内部形成旋涡,在水流质量强烈的混掺和大量的动量交换过程中,在不长的距离内造成较大的能量损失,这种损失通常称为局部损失。
压力管道的局部损失发生在进口、门槽、渐变段、弯段、分岔等处。
压力管道的局部损失往往不可忽视,一尤其是分岔的损失有时可能达到相当大的数值。
局部损失的计算公式通常表示为
系数可查有关手册。
(二)非恒定流计算
管道中的非恒定流现象通常称为水锤。
进行非恒定流计算的目的是为了推求管道各点i的动水压强及其变化过程,为管道的布置、结构设计和机组的运行提供依据。
非恒定流计算的内容见第九章。
二、管径的确定
压力管道的直径应通过动能经济计算确定。
在第七章中我们已经研究了决定渠道和隧洞经济断面的方法,其基本原理对压力管道也完全适用,可以拟定几个不同管径的方案,进行誉比较,选定较为有利的管道直径,也可以将某些条件加以简化,推导出计算公式,直接求解。
在可行性研究和初步设计阶段,可用以下彭德舒公式来初步确定大中型压力钢管的经济直径
式中Qmax-钢管的最大设计流量,;
H-设计水头,m。