《因式分解---待定系数法、换元法、添项拆项法》知识点归纳
因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)
因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。
解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。
原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
《因式分解---待定系数法、换元法、添项拆项法》知识点归纳
因式分解—待定系数法、换元法、添项拆项法1. 知识点概述因式分解是初等代数中的基础知识之一。
它指的是将一个多项式表示为两个或多个乘积的形式。
在因式分解过程中,我们可以使用不同的方法,如待定系数法、换元法和添项拆项法。
这些方法在因式分解中起到关键的作用。
本文将介绍待定系数法、换元法和添项拆项法这三种因式分解的方法,并对其应用进行归纳总结。
2. 待定系数法待定系数法是一种常用的因式分解方法,适用于形如ax2+bx+c的二次多项式。
待定系数法的基本思想是假设待分解式可以表示为(px+q)(rx+s)的形式,然后通过比较系数求得未知数 p、q、r 和 s。
具体步骤如下:2.1. 假设分解形式首先假设待分解的多项式为(px+q)(rx+s)。
2.2. 展开并比较系数将假设的分解形式展开,得到prx2+(ps+qr)x+qs,然后将其与原多项式的表达式进行系数比较。
2.3. 求解未知数根据比较系数的结果,列出方程组,并求解未知数 p、q、r 和 s。
最终得到待分解多项式的因式分解形式。
待定系数法的核心是通过比较系数来确定未知数的值,因此需要注意每个系数的对应关系,并合理选择分解形式以便于求解。
3. 换元法换元法是一种通过引入新的变量来进行因式分解的方法。
通过合理选择新的变量,可以将原多项式转化为更易于分解的形式。
具体步骤如下:3.1. 选择合适的变量首先根据多项式的结构和特点,选择一个合适的变量进行替代,使得新的多项式更容易进行因式分解。
3.2. 进行变量替换将选定的变量代入原多项式,进行变量替换。
这样可以得到一个新的多项式。
3.3. 因式分解根据替换后的新多项式的特点和结构,选择合适的因式分解方法进行分解。
换元法的关键在于合理选择变量,通过变量替换将原多项式转化为更易分解的形式,进而进行因式分解。
4. 添项拆项法添项拆项法是一种通过添加或拆分项来进行因式分解的方法。
在这种方法中,我们通过合理地添加或拆分多项式的项,使其具备因式分解的特性。
因式分解方法归纳
因式分解定义:把一个多项式在一个范围内化成几个最简整式乘积的的形式。
说明:(1) 因式分解是与整式乘法互逆的恒等变形。
(2) 因式分解可以限定范围,有有理数范围内,实数范围内,复数范围内。
(3) 所有三次或三次以上的一元多项式在实数范围内都可以因式分解;所有二次或二次以上的一元多项式在复数范围内都可以因式分解。
方法一、提取公因式法若多项式的各项含有相同的因式,该因式为多项式的公因式,则可以直接提取公因式。
方法二、运用公式法常用的公式有:平方差公式、完全平方公式、立方和公式、立方差公式等。
方法三、分组分解法若多项式的其中几项可以提取公因式或运用公式,则可适当的分组,使得分成的几组在分解之后能提取公因式或运用公式。
方法四、十字相乘法形如2ax bx c ++的二次多项式,如果有,mn a pq c ==,且mq np b +=,则有 ()()2ax bx c mx p nx q ++=++。
说明:判别式240b ac =-≥且是一个完全平方数。
也就是方程2ax bx c ++有根。
图示为:方法五、拆项、添项法把多项式的某一项拆开成几项和的形式,也可以添加几项和为0的多项式,通过拆项和添项使原多项式可以利用公式或提取公因式。
(1) 拆分含未知数的项,拆成的两部分分别和其余的项组合在一起,分别运用公式,在提取公因式;(2) 拆分常数项,通过合理的拆分常数项,构造公式。
例题:分解因式330x x ++解:把30分成333+,再与其余项组合,有, ()()()()()()()33322303333933310x x x x x x x x x x x ++=+++=+-+++=+-+。
类似的“3x x c ++”的模型有32x x ++,39x x ++ 。
方法六、配方法将一个多项式通过配方,添项减项处理,构造成完全平方式,剩下的部分再进行平方差公式。
说明:(1)为方便计算,可以先提取最高次项系数,使最高次项系数为1;(2)对形如2x bx c ++的二次三项式,有222222b b x bx c x bx c ⎛⎫⎛⎫++=+++- ⎪ ⎪⎝⎭⎝⎭ (3)对于齐次多项式22x bxy cy ++,将,x y 其中之一当作常数处理。
八年级数学:《因式分解-待定系数法、换元法、添项拆项法》知识点归纳
初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 八年级数学教案编订:XX文讯教育机构《因式分解-待定系数法、换元法、添项拆项法》知识点归纳教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
知识体系梳理◆添项拆项法有的多项式由于“缺项”,或“并项”因此不能直接分解。
通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。
一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。
如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。
◆待定系数法有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。
然后再把积乘出来。
用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。
◆换元法所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫。
换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。
(1)、使用换元法时,一定要有意识,即把某些相同或相似的部分看成一个。
(2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。
(3)、利用换元法解决问题时,最后要让原有的数或式“回归”。
★★典型例题、方法导航◆方法一:添项拆项法【例1】分解因式:分析:此多项式是三次三项式,缺项不能直接分解。
可考虑添项拆项法分解。
从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或 ,但的中间项是 ,因此是不可能的,因此只可能是前面两种的其中一种。
因式分解的常用方法(方法最全最详细)
因式分解的经常使用方法之迟辟智美创作第一部份:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步伐是:(1)通常采纳一“提”、二“公”、三“分”、四“变”的步伐.即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步伐都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行欠亨,可以检验考试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;.注意:将一个多项式进行因式分解应分解到不能再分解为止.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中经常使用的公式,例如:(1) (a+b)(a-b) =a2-b2-----------a2-b2=(a+b)(a-b);(2)(a±b)2=a2±2ab+b2---------a2±2ab+b2=(a±b)2;(3)(a+b)(a2-ab+b2)=a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4)(a-b)(a2+ab+b2) =a3-b3--------a3-b3=(a-b)(a2+ab+b2).下面再弥补两个经常使用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);,,是ABCa b c∆的三边,且222++=++,a b c ab bc ca则ABC∆的形状是()A.直角三角形B等腰三角形 C 等边三角形D等腰直角三角形解:222222++=++⇒++=++a b c ab bc ca a b c ab bc ca222222三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn++am+anbm分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系.解:原式=)++anam+)(bn(bm=)nma+++每组之间b()(nm还有公因式!=)m+n+)((ba例2、分解因式:bx-5102+byayax-解法一:第一、二项为一组;解法二:第一、四项为一组;第三、四项为一组. 第二、三项为一组.解:原式=)ax-5(-原式ay+)102(bxby=)ayax+-+-bx510()2(by=)5xya-b--5()(2yx=)ax-2(-b-y)5a2(b=)2(y)(x-a-b-=)5(b2x-5)(ay练习:分解因式1、bc22、-+aca-abxxy-y+-1(二)分组后能直接运用公式例3、分解因式:ay2+-2x+axy分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组.解:原式=)()(22ay ax y x ++-=)())((y x a y x y x ++-+=))((a y x y x +-+例4、分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=))((c b a c b a +---练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解.特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和.思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项式ax2+bx+c ,都要求24b ac ∆=->0而且是一个完全平方数.于是98a ∆=-为完全平方数,1a =例5、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要即是5.由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5. 1 2解:652++x x =32)32(2⨯+++x x 1 3=)3)(2(++x x 1×2+1×3=5用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要即是一次项的系数.例6、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1-1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习5、分解因式(1)24142++x x (2)36152+-a a(3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y(3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a =1a 1c(2)21c c c =2a 2c(3)1221c a c a b +=1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -23 -5(-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解.1 8b1 -16b8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++=)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1-2(-3y)+(-4y)= -7y (-1)+(-2)= -3解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++(9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法.(1)、换单项式例1 分解因式x6 + 14x3 y + 49y2.分析:注意到x6=(x3)2,若把单项式x3换元,设x3 = m ,则x6= m2,原式变形为m2 + 14my + 49y2= (m + 7y)2 = ( x3 + 7y)2.(2)、换多项式例2 分解因式(x2+4x+6) + (x2+6x+6) +x2.分析:本题前面的两个多项式有相同的部份,我们可以只把相同部份换元,设x2 +6= m,则x2+4x+6= m+4x,x2+6x+6= m+6x,原式变形为(m+4x)(m+6x)+x2= m2 +10mx+24x2+x2= m2 +10mx+25x2= (m+5x)2= ( x2 +6+5x)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.以上这种换元法,只换了多项式的一部份,所以称为“局部换元法”. 固然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”. 比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为m(m+2x)+ x2 = m2+2mx+x2= (m+x)2= ( x2+4x+6+x)2= ( x2+5x+6)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算. 对本例,设m= 1 2[(x2+4x+6) + (x2+6x+6)]= x2+5x+6,则x2+4x+6=m-x,x2+6x+6=m+x,(m+x)(m-x)+x2= m2-x2+x2 = m2= (x2+5x+6)2= [(x+2)(x+3)]2= (x+2) 2 (x+3)2.例3 分解因式(x-1)(x+2)(x-3)(x+4)+24.分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积. 无论如何分组,最高项都是x2,常数项不相等,所以只能设法使一次项相同. 因此,把(x-1)(x+2)(x-3)(x+4)分组为[(x-1) (x+2)][(x-3)(x+4)] = (x2+x-2) (x2+x-12),从而转化成例2形式加以解决.我们采纳“均值换元法”,设m= 12[ (x2+x-2)+(x2+x-12)]=x2+x-7,则x2+x-2=m+5,x2+x-2= m-5,原式变形为(m+5)(m-5)+24=m2-25+24=m2-1=(m+1)(m-1)=( x2+x-7+1)( x2+x-7-1)= ( x2+x-6)( x2+x-8)= (x-2)(x+3)( x2+x-8).(3)、换常数例1 分解因式x2(x+1)-2003×2004x.分析:此题若依照一般思路解答,很难奏效. 注意到2003、2004两个数字之间的关系,把其中一个常数换元. 比如,设m=2003,则2004=m+1. 于是,原式变形为x2(x+1) –m(m+1)x= x[x(x+1)-m(m+1)] = x(x2+x-m2-m)= x[(x2 -m2) +(x-m)]= x[(x+m) (x-m)+(x-m)]= x(x-m)(x+m+1)= x(x-2003)(x+2003+1)= x(x-2003)(x+2004).例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++解:(1)设2005=a ,则原式=a x a ax ---)1(22 =))(1(a x ax -+=)2005)(12005(-+x x(2)型如的多项式,分解因式时可以把四个因式两两分组相乘.原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x(3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x 观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,而且系数成“轴对称”.这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保管系数,然后再用换元法. 解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x x x x 设t x x =+1,则21222-=+t xx ∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x =)2)(12()1(2--+x x x(2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x 设y x x =-1,则21222+=+y xx ∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----xx x x x =()()13122----x x x x 练习14、(1)673676234+--+x x x x(2))(2122234x x x x x +++++六、添项、拆项、配方法.例15、分解因式(1)4323+-x x解法1——拆项.解法2——添项.原式=33123+-+x x 原式=444323++--x x x x=)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x =)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x=2)2)(1(-+x x =2)2)(1(-+x x(2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x=)1()1)(1()1)(1(333363-++-+++-x x x x x x=)111)(1(3363+++++-x x x x=)32)(1)(1(362++++-x x x x x练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x(3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++(6)444222222222c b a c b c a b a ---++七、待定系数法.例16、分解因式613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式肯定可分为)2)(3(n y x m y x +-++解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++ ∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622 ∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622比较左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231m n m n n m ,解得⎩⎨⎧=-=32n m ∴原式=)32)(23(+--+y x y x例17、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式.(2)如果823+++bx ax x 有两个因式为1+x 和2+x ,求b a +的值.(1)分析:前两项可以分解为))((y x y x -+,故此多项式分解的形式必为))((b y x a y x +-++解:设6522-++-y mx y x =))((b y x a y x +-++则6522-++-y mx y x =ab y a b x b a y x +-+++-)()(22比力对应的系数可得:⎪⎩⎪⎨⎧-==-=+65ab a b m b a ,解得:⎪⎩⎪⎨⎧==-=132m b a 或⎪⎩⎪⎨⎧-=-==132m b a∴那时1±=m ,原多项式可以分解;那时1=m ,原式=)3)(2(+--+y x y x ;那时1-=m ,原式=)3)(2(--++y x y x(2)分析:823+++bx ax x 是一个三次式,所以它应该分成三个一次式相乘,因此第三个因式必为形如c x +的一次二项式.解:设823+++bx ax x =))(2)(1(c x x x +++则823+++bx ax x =c x c x c x 2)32()3(23+++++∴⎪⎩⎪⎨⎧=+=+=82323c c b c a 解得⎪⎩⎪⎨⎧===4147c b a ,∴b a +=21练习17、(1)分解因式2910322-++--y x y xy x(2)分解因式6752322+++++y x y xy x(3)已知:p y x y xy x +-+--1463222能分解成两个一次因式之积,求常数p 而且分解因式.(4)k 为何值时,253222+-++-y x ky xy x 能分解成两个一次因式的乘积,并分解此多项式.第二部份:习题年夜全经典一:一、填空题1. 把一个多项式化成几个整式的_______的形式,叫做把这个多项式分解因式.2分解因式: m3-4m= .3.分解因式: x2-4y2= _______.4、分解因式:244x x ---=_________________.5.将xn-yn 分解因式的结果为(x2+y2)(x+y)(x-y),则n 的值为 .6、若5,6x y xy -==,则22x y xy -=_________,2222x y +=__________.二、选择题7、多项式3222315520m n m n m n +-的公因式是( )A 、5mnB 、225m nC 、25m nD 、25mn8、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭ 10.下列多项式能分解因式的是()(A)x2-y (B)x2+1 (C)x2+y+y2 (D)x2-4x+411.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1)B.(y-x)(x-y -1)C.(y-x)(y-x-1)D.(y-x)(y-x +1)12.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)2-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b +c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)13.若k-12xy+9x2是一个完全平方式,那么k应为()A.2B.4 C三、把下列各式分解因式:14、nx ny - 15、2294n m -16、()()m m n n n m -+- 17、3222a a b ab -+ 18、()222416x x +- 19、22)(16)(9n m n m --+;五、解答题20、如图,在一块边长a =的正方形纸片中,挖去一个边长b =的正方形.求纸片剩余部份的面积.21、如图,某环保工程需要一种空心混凝土管道,它的规格是内径45d cm =,外径75D cm =,长3l =方米的混凝土?(π取3.14字)22、观察下列等式的规律,并根据这种规律写出第(5)个等式.经典二:1. 通过基本思路到达分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式酿成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式酿成三项式,提取公因式后再进行分解.解一:原式=-+--+()()x x x x x 54321解二:原式=()()()x x x x x 54321-+-+-2. 通过变形到达分解的目的例1. 分解因式x x 3234+-解一:将32x 拆成222x x +,则有解二:将常数-4拆成--13,则有3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值.本题要证明这个多项式是非负数,需要变形成完全平方数.证明:()()x x x 2241021100--++设y x x =-25,则4. 因式分解中的转化思想例:分解因式:()()()a b c a b b c ++-+-+2333分析:本题若直接用公式法分解,过程很复杂,观察a+b ,b+c 与a+2b+c 的关系,努力寻找一种代换的方法.解:设a+b=A ,b+c=B ,a+2b+c=A+B说明:在分解因式时,灵活运用公式,对原式进行“代换”是很重要的.中考点拨∆ABC 中,三边a,b,c 满足a b c ab bc 222166100--++= 求证:a c b +=2证明: a b c ab bc 222166100--++=说明:此题是代数、几何的综合题,难度不年夜,学生应掌握这类题不能丢分.例2. 已知:x x x x +=+=12133,则__________ 解:x x x x x x 3321111+=+-+()() 说明:利用x x x x 222112+=+-()等式化繁为易.题型展示1. 若x 为任意整数,求证:()()()7342---x x x 的值不年夜于100.解:100)4)(3)(7(2----x x x说明:代数证明问题在初二是较为困难的问题.一个多项式的值不年夜于100,即要求它们的差小于零,把它们的差用因式分解等方法恒等变形成完全平方是一种经常使用的方法.2. 将a a a a 222222216742++++++()()分解因式,并用分解结果计算。
因式分解专题复习及讲解(很详细)
因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a 2-b 2=(a+b)(a -b);(2) a 2±2ab+b 2=(a ±b)2;(3) a 3+b 3=(a+b)(a 2-ab+b 2);(4) a 3-b 3=(a -b)(a 2+ab+b 2).(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6) a 3±3a 2b+3ab 2±b 3=(a±b)3.例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解的常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a 2-b 2 -----------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a-b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a bc ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
【数学知识点】因式分解的方法和口诀
【数学知识点】因式分解的方法和口诀
初中数学因式分解的方法有待定系数法、提公因式法、十字相乘法等等,接下来分享具体的初中数学因式分解的方法和口诀。
(一)十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
(二)提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
(三)待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
口诀一
首先提取公因式,其次考虑用公式。
十字相乘排第三,分组分解排第四。
几法若都行不通,拆项添项试一试。
口诀二
先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。
感谢您的阅读,祝您生活愉快。
因式分解的常用方法方法最全最详细
因式分解的常用方法 (方法最全最详细 )因式分解的常用方法第一局部:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式, 主 要有提公因式法,公式法,十字相乘法,分组分解法,换元法等 因式分解的一般步骤是:1〕通常采用一“提〞、二“公〞、三“分〞、四“变〞的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或 可利用公式法继续分解;2〕假设上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项〔添项〕等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过假设干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b)=a 2-b 2-----------a2-b 2=(a+b)(a -b);(2) (a ±b)2=a 2±2ab+b 2---------a2±2ab+b 2=(a±b)2;(3) (a+b)(a22 333 322-ab+b)=a+b---------a +b=(a+b)(a-ab+b);(4) (a2 2 )=a3 3 --------a 3 32 2-b)(a+ab+b -b -b =(a-b)(a +ab+b).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3 3 3 2 2 2+b+c -3abc=(a+b+c)(a +b+c -ab-bc-ca);例.a ,b ,c 是ABC 的三边,且a 2b 2c 2abbcca ,那么 ABC 的形状是〔 〕A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解:a2b2c2ab bc ca2a22b22c22ab2bc2ca (ab)2(bc)2(ca)20abc1因式分解的常用方法(方法最全最详细)三、分组分解法.〔一〕分组后能直接提公因式例1、分解因式:amanbmbn分析:从“整体〞看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部〞看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
因式分解常用方法(方法最全最详细)
因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不能再分解为止。
一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a-b) = a2-b2 -----------a2-b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2 ---------a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3---------a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3-b3 --------a3-b3=(a-b)(a2+ab+b2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
《因式分解---待定系数法、换元法、添项拆项法》知识点归纳
因式分解—待定系数法、换元法、添项拆项法引言因式分解是初中数学中的一个重要知识点,也是解决代数式化简、解方程等问题的基础方法。
在因式分解中,待定系数法、换元法和添项拆项法是常用的三种方法。
本文将分别介绍这三种方法的基本思想、操作步骤和应用场景。
一、待定系数法1. 基本思想待定系数法是一种通过猜测待定系数的方法来进行因式分解的技巧。
在待定系数法中,我们假设因式分解的结果中存在未知系数,并通过代数运算和方程求解的方法确定这些未知系数的值,从而完成因式分解过程。
2. 操作步骤待定系数法的操作步骤如下:1.根据给定的代数式,猜测待定系数的形式,通常选择简单的常数作为待定系数;2.将猜测出的待定系数带入原代数式中,得到待定系数的方程组;3.解方程组,确定待定系数的值;4.将确定的待定系数带入原代数式中进行验证;5.若验证正确,将原代数式分解为因式的乘积,其中包含待定系数。
3. 应用场景待定系数法常用于分解小数项的平方差式、三项立方差式等情况。
通过猜测待定系数的形式,可以简化复杂的因式分解过程,并在解题过程中培养学生的逻辑思维和方程求解能力。
二、换元法1. 基本思想换元法是一种通过引入新的变量来进行因式分解的方法。
通过适当选择新的变量,可以将原代数式转化为较简单的形式,从而便于因式分解。
2. 操作步骤换元法的操作步骤如下:1.分析原代数式的结构和特点,选取适当的新变量;2.对原代数式进行变量替换,将原代数式转化为新变量的代数式;3.对新的代数式进行因式分解;4.将因式分解的结果转化回原变量,得到最终的因式分解形式。
3. 应用场景换元法常用于分解含有平方根、分数等特殊形式的代数式。
通过适当的变量替换,可以将原代数式转化为一次方程、二次方程等常见形式,从而简化因式分解的过程。
三、添项拆项法1. 基本思想添项拆项法是一种通过添加、拆分代数式中的项来进行因式分解的方法。
通过适当添加一些项,并进行合并和拆分,可以将原代数式转化为更简单的形式,从而便于因式分解。
因式分解常用方法
( )
⑧ 4 x 31x 15
3
分组分解法
拆项添项法
配方法
待定系数法
求根法
„„
一、提公因式法 只需找到多项式中的公因式, 然后用原多项式除以公因式,把所 得的商与公因式相乘即可。往往与 其他方法结合起来用。 提公因式法随堂练习:
1)15(m–n)+13(n–m)
2)4(x+y)+4( 将符合其形式的公式套进去即可 完成因式分解,有时需和别的方 法结合或多种公式结合。
五、常用到的式子:
a b c 2ab 2ac 2bc (a b c) 2
2 2 2
a3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ac)
二、公式法 公式法随堂练习:
1)(a2–10a+25)(a2–25)
方法四、换元法
对结构比较复杂的多项式,若把其中某些 部分看成一个整体,用新字母代替(即换 元),则能使复杂问题简单化、明朗化, 在减少多项式项数,降低多项式结构复杂 程度等方面有独到作用。
例题:(分解因式) (第12届“五羊杯” 竞赛题)
( x x 4)(x x 3) 10
x 4 2 x 3 3x 2 2 x 1
六*、待定系数法 试因式分解 2x2+3xy–9y2+14x–3y+20。
通过十字相乘法得到 (2x–3y)(x+3y)
设原式等于(2x–3y+a)(x+3y+b)
a 2b 14 通过比较两式同类项的系数可得: 3a 3b 3 a 4 解得: b 5 ,∴原式 = (2x–3y+4)(x+3y+5)
(完整版)初中数学解题方法归纳总结
初中数学知识点归纳总结一、基本运算方法 (2)1、配方法 (2)2、因式分解法 (2)3、换元法 (2)4、判别式法与韦达定理 (2)5、待定系数法 (3)6、构造法 (3)7、反证法 (3)8、面积法 (3)9、几何变换法 (4)10、客观性题的解题方法 (4)二、基本定理 (5)三、常用数学公式 (10)基本运算方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0 (a、b、c属于R, a W0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
因式分解的常用方法方法最全最
文档根源为 :从网络采集整理.word 版本可编写 .支持.因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)往常采纳一“提”、二“公”、三“分”、四“变”的步骤。
即第一看有无公因式可提,其次看可否直接利用乘法公式;如前两个步骤都不可以实行,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法持续分解;(2)若上述方法都行不通,能够试试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。
注意:将一个多项式进行因式分解应分解到不可以再分解为止。
一、提公因式法.: ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,比如:(1) (a+b)(a -b) = a2 2-----------a2 2=(a+b)(a -b) ;-b -b(2) (a ± b) 2 = a 2± 2ab+b2 ---------a 2±2ab+b2=(a ± b) 2;(3) (a+b)(a 2 2) =a3 3 3 3 2 2 -ab+b +b ---------a +b =(a+b)(a -ab+b ) ;(4) (a -b)(a 2 2) = a3 3--------a3 3 2 2 +ab+b -b -b =(a -b)(a +ab+b ) .下边再增补两个常用的公式:(5)a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;(6)a 3+b3+c3-3abc=(a+b+c)(a 2+b2+c2-ab-bc-ca) ;例 .已知a,b,c是ABC 的三边,且a2 b2 c2 ab bc ca ,则ABC 的形状是()A. 直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解: a2 b2 c2 ab bc ca 2a2 2b2 2c2 2ab 2bc 2ca三、分组分解法 .(一)分组后能直接提公因式例 1、分解因式:am an bm bn剖析:从“整体”看,这个多项式的各项既没有公因式可提,也不可以运用公式分解,但从“局部”看,这个多项式前两项都含有 a,后两项都含有b,所以能够考虑将前两项分为一组,后两项分为一组先分解,而后再考虑两组之间的联系。
(完整版)因式分解方法大全
因式分解方法大全(一)因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中。
因式分解是将一个多项式转化成几个整式的积的形式,叫因式分解或分解因式。
它与整式乘法是方向相反的变形,是有效解决许多数学问题的工具。
因式分解方法灵活,技巧性强。
初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。
因式分解的主要方法:⑴提公因式法;⑵运用公式法;⑶分组分解法;⑷十字相乘法;⑸添项折项法;⑹配方法;⑺求根法;⑻特殊值法;⑼待定系数法;⑽主元法;⑾换元法;⑿综合短除法等。
一、提公因式法: ()ma mb mc m a b c ++=++二、运用公式法: ⑴平方差公式:22()()a b a b a b -=+-⑵完全平方公式:2222()a ab b a b ±+=±⑶立方和公式:3322()()a b a b a ab b +=+-+(新课标不做要求)⑷立方差公式:3322()()a b a b a ab b -=-++(新课标不做要求)⑸三项完全平方公式:2222222()a b c ab ac bc a b c +++++=++⑹ 3332223()()a b c abc a b c a b c ab bc ac ++-=++++---三、分组分解法.㈠分组后能直接提公因式例:分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+- =)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --㈡分组后能直接运用公式或提公因式例:分解因式:2222c b ab a -+-解:原式=222)2(c b ab a -+-=22)(c b a --=()()a b c a b c -+--四、十字相乘法.凡是能十字相乘的二次三项式2ax bx c ++,都要求240b ac ∆=->而且是一个完全平方数。
《因式分解---待定系数法、换元法、添项拆项法》知识点归纳
《因式分解---待定系数法、换元法、添项拆项法》知识点归纳知识体系梳理◆添项拆项法有的多项式由于“缺项”,或“并项”因此不能直接分解。
通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。
一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。
如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。
◆待定系数法有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。
然后再把积乘出来。
用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。
◆换元法所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫。
换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。
(1)、使用换元法时,一定要有意识,即把某些相同或相似的部分看成一个。
(2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。
(3)、利用换元法解决问题时,最后要让原有的数或式“回归”。
★★典型例题、方法导航◆方法一:添项拆项法【例1】分解因式:分析:此多项式是三次三项式,缺项不能直接分解。
可考虑添项拆项法分解。
从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或,但的中间项是,因此是不可能的,因此只可能是前面两种的其中一种。
下面请看:其结果是我们猜想中的第一种。
此题还有其他分解方法吗?在注意到分解结果中有和的因式,因此还有其他更多的分解方法。
方法二:方法三:方法四:方法五:方法六:(余下过程同学自己完成)方法点金:拆项、添项法分解因式的关键是通过拆项、添项达到分组或运用公式的目的,一般可考虑添多项式中所缺的项,或考虑常数项可分解的因数有关的因式。
因式分解的十大方法讲解
因式分解的十大方法讲解因式分解就像是给数学式子做一场奇妙的拆解游戏,那可是相当有趣的。
提公因式法是最基本的一种方法。
比如说你有一堆苹果和一堆橘子,要把它们分别放在不同的篮子里,公因式就像是那些共同的篮子。
比如式子3x + 6,3就是公因式,就像能把所有苹果和橘子分类装的那个公共的工具,提出来就变成3(x + 2)。
这多简单明了啊,把式子中大家都有的那部分先拎出来,式子一下子就变得清爽多了。
要是你看到一个式子,你不会想着就这么乱糟糟地放着吧,肯定得把公因式找出来整理一下呀。
再来说公式法。
这就像是你有一些特定形状的积木,你知道它们按照某种公式就能组合或者拆分。
平方差公式a² - b² = (a + b)(a - b),就像一个魔法公式。
你看,x² - 9,这9不就是3²嘛,那按照公式就可以直接分解成(x + 3)(x - 3)。
还有完全平方公式,a² + 2ab + b² = (a + b)²或者a² -2ab + b² = (a - b)²。
这就好比是你有一些特定的拼图块,按照特定的方式就能拼成完整的一块。
比如说x² + 6x + 9,这里面3²是9,2×3×x是6x,那它就可以分解成(x + 3)²。
分组分解法就像是给一群小动物分组。
有时候一个式子你直接分解不好办,那就把它们分成小组。
比如ax + ay + bx + by,你可以把有a的放在一组,有b的放在一组,就变成a(x + y)+b(x + y),然后再提公因式就得到(a + b)(x + y)。
这就好比把一群动物按照颜色或者习性分成小组,然后再进行下一步的安排,不然它们混在一起乱糟糟的怎么处理呀?十字相乘法可是很神奇的一种方法。
这就像是在搭一座小桥梁。
比如说x² + 5x + 6,你要找到两个数,它们相乘等于6,相加等于5,那不就是2和3嘛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解---待定系数法、换元法、添项拆项法》知识点归纳
知识体系梳理
◆
添项拆项法
有的多项式由于“缺项”,或“并项”因此不能直接分解。
通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。
一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。
如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。
◆
待定系数法
有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。
然后再把积乘出来。
用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。
◆
换元法
所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂
的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫。
换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。
(1)、使用换元法时,一定要有
意识,即把某些相同或相似的部分看成一个。
(2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。
(3)、利用换元法解决问题时,最后要让原有的数或式“回归”。
★★
典型例题、方法导航
◆
方法一:添项拆项法
【例1】分解因式:
分析:此多项式是三次三项式,缺项不能直接分解。
可考虑添项拆项法分解。
从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或,但的中间项是,因此是不可能的,因此只可能是前面两种的其中一种。
下面请看:
其结果是我们猜想中的第一种。
此题还有其他分解方法吗?在注意到分解结果中有和的因式,因此还有其他更多的分解方法。
方法二:
方法三:
方法四:
方法五:
方法六:
(余下过程同学自己完成)
方法点金:拆项、添项法分解因式的关键是通过拆项、添项达到分组或运用公式的目的,一般可考虑添多项式中所缺的项,或考虑常数项可分解的因数有关的因式。
◎变式议练一:
分解下列各式的因式
(1)
(2)
(3)
◆
方法二:待定系数法
【例2】分解因式:
解:
展开后左右两边比较系数求出、即可。
分解结果:
【例3】已知多项式能被整除,请分解前者的因式。
分析:设,利用多项式的恒等求出、即可。
◎变式议练二:
、已知是的一个因式,则
;
2、用待定系数法分解因式:
【例4】在实数范围内分解因式
(1)
(2)
(3)
◎变式议练三:
求的算术平方根。
◆
方法三:换元法
◆
直接换元法
【例】用换元法分解因式:
方法点金:设,
注意:换元法分解因式最后要回归。
◎变式议练四
、用换元法分解因式:
2、用换元法分解因式:
方法点金:当两括号中的二次项,一次项的系数对应成比例可考虑用换元法分解因式。
【例6】分解因式:
分析:两括号中二次项、一次项系数的比为,可以换元。
◆
组合换元法
【例7】分解因式:
分析:观察第一、四括号内的常数项和第二、三括号内的常数的和为,因此也可用组合换元法分解因式。
◎变式议练五
证明四个连续正整数的积与1的和是一个完全平方。
◆
能力与创新
把下列各式分解因式:
①、
②、
③、
◆◆◆◆
快乐体验
、若多项式和多项式有公因式,则
;
2、若能被整除,则
;
3、分解因式:
(1)
(2)
4、已知多项式有一个因式是,把这个多项式分解因式。
、甲、乙两同学分解多项式时,甲看错了,分解结果为,乙看错了,分解结果为,请分析一下,、的值分别为多少?并写出正确的分解过程。
6、已知一个三角形的三边、、满足,试判断这个三角形的形状,并证明你的结论。