土力学期末知识点总结教学内容

合集下载

期末土力学复习资料

期末土力学复习资料

期末土力学复习资料
土力学是土木工程中的重要学科,研究土体的力学性质和行为。

学习土力学对于理解土壤的力学行为和土壤力学参数的计算具有重
要意义。

为了帮助大家复习土力学知识,本文将从土力学的基本概
念和理论开始,介绍土体的力学行为、土壤参数的计算方法以及一
些常见的土力学实验方法。

一、土力学的基本概念和理论
1.土力学的定义和研究对象
土力学是研究岩土体的力学性质和行为的学科,它主要研究土
壤的力学特性、力学参数和应力应变关系等。

2.土壤的基本性质
土壤是由固体颗粒、水分和空气组成的多相多孔介质。

土壤的
基本性质包括颗粒密实度、含水率、孔隙度等。

3.土壤力学的基本假设
在土力学中,常用的基本假设包括孔隙水压力均衡假设、线弹
性假设和等效应力原理等。

二、土体的力学行为
1.土体力学参数
土体力学参数主要包括弹性模量、剪切模量、泊松比、内摩擦角、内聚力等。

这些参数对于描述土体的力学性质和行为至关重要。

2.土壤的压缩性行为
土壤在受到外加压力时会发生压缩行为,这是由于土壤颗粒重
排和水分压缩引起的。

了解土壤的压缩性行为对工程设计和土地利
用具有重要的影响。

3.土体的剪切行为
土体的剪切行为是指土壤在受到剪切应力时的变形和破坏过程。

了解土体的剪切行为对于土方工程的设计和施工至关重要。

三、土壤参数的计算方法
1.黏塑性土壤的力学参数计算。

《土力学》知识点总结

《土力学》知识点总结

第一章 土的物理性质一 思考题1 土是如何生成的?它与其他材料的最大区别是什么?答:土是地壳岩石经受强烈风化的产物,是各种矿物颗粒的集合体。

与其他材料的最大区别是:①一般的建筑材料可由设计人员指定品种或型号,品种或型号一旦确定,力学性质参数也就确定;土则不同,建筑物以天然土层作为地基。

拟建地点是什么土,设计人员就以这种土作为设计对象,且由于土是自然历史的产物,性质很不均匀,而且复杂多变。

②土的应力-应变关系是非线形的,而且不唯一; ③土的变形在卸荷后一般不能完全恢复; ④土的强度也是变化的; ⑤土对扰动特别敏感。

2 土是由哪几部分组成的?答:自然界的土体由固相(固体颗粒)、液相(土中水)和气相(土中气体)组成,通常称为三相分散体系。

3 什么叫土粒的颗粒级配?如何从级配曲线的陡缓判断土的工程性质?答:天然土体中包含大小不同的颗粒,为了表示土粒的大小及组成情况,通常以土中各个粒组的相对含量来表示,称为土的颗粒级配。

根据曲线的坡度和曲率可判断土的级配情况。

如果曲线平缓,表示土粒大小都有,即级配良好;如果曲线较陡,则表示颗粒粒径相差不大,粒径较均匀,即级配不良。

级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因而土的密实度较好。

4 何谓土的结构?土的结构有几种?答:土的结构是指土在成土过程中所形成的土粒的空间排列及其联结形式,与组成土的颗粒大小、颗粒形状、矿物成分和沉积条件有关。

一般可归纳为单粒结构、蜂窝结构和絮状结构三种基本类型。

5 土的物理性质指标有几个?哪些是直接测定的?如何测定?答:土的物理性质指标有:土的密度、土粒相对密度、土的含水量、土的干密度、土的饱和密度、土的有效密度、土的孔隙比和孔隙率等。

土的密度(通过环刀法测定)、土粒相对密度(通过比重瓶法测定)和土的含水量(通过烘干法测定)是直接测定的物理性质指标。

6 土的物理状态指标有几个?答:土的物理状态,对于无粘性土是指土的密实程度,对于粘性土则是指土的软硬程度,也称为粘性土的稠度。

土力学知识总结[大全]

土力学知识总结[大全]

土力学知识总结[大全]第一篇:土力学知识总结[大全]1、地基与基础设计必须满足三个基本条件: 1.作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力或地基承载力特征值,保证建筑物不因地基承载力不足造成整体破坏或影响正常使用,具有足够防止整体破坏的安全储备;2.基础沉降不得超过地基变形容许值,保证建筑物不因地基变形而损坏或影响其正常使用;3.挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。

2、土体三相:固相、液相、气相土中水:液态水(自由水和结合水)、固态水、气态水3、土的颗粒级配是否良好 Cu>5和Cu=1—3级配良好。

4、毛细水是受到水与空气交界面处表面张力的作用存在于地下水位以上的透水层中自由水。

5、颗粒分析试验:>0.75:筛分法,<0.75:水分法6、土的结构分类:絮凝结构(粘性土)、蜂窝结构(粉土)、单粒结构(无粘性土)。

7、土的物理性质指标:1.土的天然密度ρ2.土的含水量ω3.土的相对密实度d8、e<0.6的土是密实的,土的压缩性小;e>1.0的土是疏松的,压缩性高。

9、大小:ρsat>ρ>ρd>ρ°10、土的毛细现象是指土中水在表面张力作用下沿着细的孔隙向上及向其他地方移动的现象11、土的冻胀影响:土、水、温度的因素12、判断无粘性土密实度最简便的方法,是用孔隙比e来描述,e 大,土中孔隙大,土疏松13、指标:相对密实度Dr(标准贯入试验)14、液限与塑限之差值定义为塑性指数;Ip>17 粘土1015、Ip越大,土颗粒愈细,比表面积愈大,黏粒或亲水矿物愈高,可塑状态的含水量变化范围愈大。

塑性指标能综合反映土的矿物成分和颗粒大小的影响。

(是粘性土分类的依据)16、影响击实效果的因素:1.含水量的影响2.击实功的影响3.土类及级配的影响17、只有当含水量控制为某一适宜值即最优含水量时,土才能得到充分压实,得到土的最大干密度。

土力学复习资料总结

土力学复习资料总结

第一章土的组成1、土力学:是以力学和工程地质为基础研究与土木工程有关的土的应力、应变、强度稳定性等的应用力学的分支。

2、地基:承受建筑物、构筑物全部荷载的那一部分天然的或部分人工改造的地层。

3、地基设计时应满足的基本条件:①强度,②稳定性,③安全度,④变形。

4、土的定义:①岩石在风化作用下形成的大小悬殊颗粒,通过不同的搬运方式,在各种自然环境中形成的沉积物。

②由土粒(固相)、土中水(液相)和土中气(气相)所组成的三相物质。

5、土的工程特性:①压缩性大,②强度低,③透水性大。

6、土的形成过程:地壳表层的岩石在阳光、大气、水和生物等因素影响下,发生风化作用,使岩石崩解、破碎,经流水、风、冰川等动力搬运作用,在各种自然环境下沉积。

7、风化作用:外力对原岩发生的机械破碎和化学风化作用。

风化作用有两种:物理风化、化学风化。

物理风化:用于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解,碎裂的过程。

化学风化:岩体与空气,水和各种水溶液相互作用的过程。

化学风化的类型有三种:水解作用、水化作用、氧化作用。

水解作用:指原生矿物成分被分解,并与水进行化学成分的交换。

水化作用:批量水和某种矿物发生化学反映,形成新的矿物。

氧化作用:指某种矿物与氧气结合形成新的矿物。

8、土的特点:①散体性:颗粒之间无黏结或一定的黏结,存在大量孔隙,可以透水透气。

②多相性:土是由固体颗粒、水和气体组成的三相体系。

③自然变异性:土是在自然界漫长的地质历史时期深化形成的多矿物组合体,性质复杂,不均匀,且随时间还在不断变化的材料。

9、决定土的物理学性质的重要因素:①土粒的大小和形状,②矿物组成,③组成。

10、土粒的个体特征:土粒的大小、土粒的形状。

11、粒度:土粒的大小。

12、粒组:介于一定粒度范围内的土粒。

13、界限粒经:划分粒组的分界尺寸。

14、土的粒度成分(颗粒级配):土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示。

土力学期末知识点总结

土力学期末知识点总结

土力学期末知识点总结第一章土的物理性质和工程分类在地基设计中,需要满足地基的强度条件和变形条件这两个条件。

土是由完整坚固岩石经过风化、剥蚀、搬运和沉积而形成的。

根据成因的不同,第四纪沉积物可以分为残积物、坡积物、洪积物、冲积物、海相沉积物、湖沼沉积物、冰川沉积物和风积物。

与其他材料(如钢材)相比,土具有强度低、压缩性大和透水性大的特性。

与一般建筑材料相比,土具有散体性、多相性、成层性和变异性等特性。

土的三相组成包括固体、液体和气体。

它们的比例与土的物理力学性质有关系。

当含水量增加时,土的抗剪强度会降低。

粒度成分是工程上常用来描述土的颗粒组成情况的指标,它是不同粒径颗粒的相对含量。

土中的水可以按静电引力的不同分为结合水和自由水。

结合水包括强结合水和弱结合水,自由水包括重力水和毛细水。

在粒度分析累计曲线法中,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好。

土的毛细现象是指土在表面张力作用下,沿着细小孔隙向上或其它方向移动的现象。

它会对工程产生不利的影响,如路基冻害、地下室潮湿和土地的沼泽化等,从而引起地基承载力下降。

土粒间的连接关系包括接触连接、胶结连接、结合水连接和冰连接。

土的结构包括单粒结构、蜂窝结构和絮状结构。

土的构造包括层状构造、分散构造、结核状构造和裂隙构造。

土的基本指标测定方法包括土的密度测定方法(环刀法)、土的含水量测定方法(烘干法)和土的相对密度测定方法(比重瓶法)。

土的三相比例指标包括土的密度、土粒密度、含水量、干密度、饱和密度、浮重度、孔隙比、孔隙率和饱和度。

它们的计算公式分别为ρ=m/v、ρ=ms/vs、ω=mω/ms、ρd=ms/v、ρsat=(mw+ms)/v、γ’=γsat-γw、e=vv/vs、n=vv/v和XXX。

例如,试验土样体积为60cm3,质量为300g,烘干后质量为260g,则该土样的干密度为4.35g/cm3.粘性土的可塑性大小可以用塑性指数来衡量,而液性指数可以用来描述土体的状态。

土力学知识点总结

土力学知识点总结

土力学知识点总结土力学是土木工程中的重要学科之一,研究土壤的力学性质及其在工程中的应用。

它涉及到一系列的知识点,包括土壤力学、地基基础、岩土工程等。

在本文中,我将对土力学的一些重要知识点进行总结和概述。

一、土壤的物理性质土壤是工程建设中最常见的材料之一,了解土壤的物理性质对于设计和施工至关重要。

土壤的物理性质包括颗粒形状、大小、密度、孔隙度等。

颗粒形状对土壤的组织结构和机械性质具有重要影响。

土壤颗粒之间的间隙称为孔隙,孔隙度是指孔隙体积与全体积的比值,它可以影响土壤的自由排水、渗透性等性质。

二、土壤的力学性质土壤力学是土力学的核心内容之一。

土壤的力学性质主要包括固结、压缩、塑性、强度等。

固结是指土壤体积随着应力的增大而减小的现象,它直接影响土壤的压缩性质和承载力。

压缩是指土壤在受到应力作用下体积发生减少的现象,它是由于土壤颗粒重排和孔隙变形引起的。

塑性是土壤特有的性质之一,它是指土壤能够在一定条件下发生塑性变形而不破裂的能力。

强度是指土壤抵抗外部应力破坏的能力,即土壤抗剪强度。

三、地基基础工程地基基础工程是土力学在工程领域中的应用之一,它涉及到土体的承载能力、变形特性以及稳定性等问题。

地基基础工程包括测定地基土的物理性质和力学性质,评估地基承载力和变形性能,设计地基基础结构以及施工过程中的监测和控制等。

地基的选择和设计对于工程的安全和稳定性具有至关重要的作用,因此地基基础工程在土木工程中占据着重要的地位。

四、岩土工程岩土工程是土力学的一个分支学科,它研究土壤和岩石在工程中的应用。

岩土工程涉及到土壤与岩石的工程性质、地下水对工程的影响、岩土体的稳定性以及地下工程等问题。

在岩土工程中,我们需要了解土壤和岩石的物理性质、力学性质以及岩土体的工作状态,从而进行设计和施工。

土力学作为土木工程的重要学科,它不仅关注土壤的力学性质,还涉及到土壤的物理性质、地基基础工程以及岩土工程等内容。

理解和掌握土力学的知识点对于工程的设计、施工和安全至关重要。

土力学复习资料(整理)知识讲解

土力学复习资料(整理)知识讲解

土力学复习资料第一章绪论1.土力学的概念是什么?土力学是工程力学的一个分支,利用力学的一般原理及土工试验,研究土体的应力变形、强度、渗流和长期稳定性、物理性质的一门学科。

2.土力学里的"两个理论,一个原理"是什么?强度理论、变形理论和有效应力原理3.土力学中的基本物理性质有哪四个?应力、变形、强度、渗流。

4. 什么是地基和基础?它们的分类是什么?地基:支撑基础的土体或岩体。

分类:天然地基、人工地基基础:结构的各种作用传递到地基上的结构组成部分。

根据基础埋深分为:深基础、浅基础5.★地基与基础设计必须满足的三个条件★①作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力特征值,挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。

即满足土地稳定性、承载力要求。

②基础沉降不得超过地基变形容许值。

即满足变形要求。

③基础要有足够的强度、刚度、耐久性。

6.若地基软弱、承载力不满足设计要求如何处理?需对地基进行基础加固处理,例如采用换土垫层、深层密实、排水固结、化学加固、加筋土技术等方法进行处理,称为人工地基。

7.深基础和浅基础的区别?通常把埋置深度不大(3~5m),只需经过挖槽、排水等普通施工程序就可以建造起来的基础称为浅基础;反之,若浅层土质不良,须把基础埋置于深处的好地层时,就得借助于特殊的施工方法,建造各种类型的深基础(如桩基、墩基、沉井和地下连续墙等。

)8.为什么基础工程在土木工程中具有很重要的作用?地基与基础是建筑物的根本,统称为基础工程,其勘察、设计、施工质量的好坏直接影响到建筑物的安危、经济和正常使用。

基础工程的特点主要有:①由于基础工程是在地下或水下进行,施工难度大②在一般高层建筑中,占总造价25%,占工期25%~30%③隐蔽工程,一旦出事,损失巨大且补救困难,因此基础工程在土木工程中具有十分重要的作用。

第二章土的性质与工程分类1.土:连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。

土力学总结

土力学总结

′+ u σ =σ
(2)土的压缩变形和强度变化都 只取决于有效应力的变化. 只取决于有效应力的变化.
活塞
弹簧
渗流固结模型
钢筒 饱和土的渗流固结模型
(太沙基)
地基变形计算
一,土的压缩性
(一)土的压缩性指标 1. 每级荷载下的孔隙比
hi ei = e0 - (1 + e0 ) h0
2. 压缩系数(单位:kPa-1) 压缩系数(单位:
e e1 - e2 a= = p p2 - p1
判断土的压缩性的标准 低压缩性土 高压缩性土 a1-2 < 0.1MPa
-1 -1 -1
中等压缩性土 0.1MPa ≤a1-2 < 0.5MPa a1-2 ≥0.5MPa
-1
3. 压缩指数
e1 - e2 Cc = lg p2 - lg p1
4. 压缩模量:侧限条件下受压时压应 压缩模量: 力与相应应变的比值. 力与相应应变的比值.
n
S =∑ i S
i =1
三,饱和土体渗流固结理论
饱和土的渗流固结模型(太沙基) 饱和土的渗流固结模型(太沙基)
(一)渗流固结微分方程
u u Cv 2 = z t
2
k (1 + e1 ) 其中 Cv = aγ w
Cv称为固结系数,单位为 2/a或cm2/a. 称为固结系数,单位为m 或 . 上式称为一维固结微分方程. 上式称为一维固结微分方程.
细粒土多用塑性指数 p或液限 L加塑 细粒土多用塑性指数I 或液限w 细粒土多用塑性指数 性指数I 进行细分. 性指数 p进行细分. 土的工程分类原则:(1)按粒度成 土的工程分类原则:( ) 土的工程分类原则:( ;(2)按塑性特征. 分;( )按塑性特征. 熟悉水利部土质分类标准: 熟悉水利部土质分类标准: GBJ145-90 熟悉建设部的土质分类标准: 熟悉建设部的土质分类标准: GB50021-94
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土力学期末知识点总结第一章土的物理性质和工程分类石经风化、剥蚀、搬运、沉积而形成的;第四纪沉积物有:残积物;坡积物;洪积物;冲积物;海相沉积物;湖沼沉积物;冰川沉积物;风积物。

答:强度低;压缩性大;透水性大。

1)散体性2)多相性3)成层性4)变异性【其自身特性是:强度低,压缩性大,透水性大】的三相组成:固体,液体,气体。

有关系。

当含水量增加时,其抗剪强度降低。

称为粒度成分。

和弱结合水);自由水(包括重力水和毛细水)y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)。

下,沿着细小孔隙向上或其它方向移动的现象;对工程危害主要有:路基冻害;地下室潮湿;土地的沼泽化而引起地基承载力下降。

)土的密度测定方法:环刀法;2)土的含水量测定方法:=m/v;土粒密度ρ=ms/vs;含水量;ω=mω/ms;干密度ρd=ms/v;饱和密度ρsat=(mw+ms)/v;浮重度γ’=γsat-γw;孔隙比e=vv/vs;孔隙率n=vv/v;饱和度Sr=vw/vv;60cm3,质量300g,烘干后质量为260g,则该土样的干密度为4.35g/ cm3。

粘性土可塑性大小可用塑性指数来衡量。

用液性指数来描述土体的状态。

1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。

用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。

用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。

1)粘性土受扰动后强度降低,而静止后强度又重新增长的性质,称为粘性土的触变性;粘性土的触变性有利于预制桩的打入;而静止时又有利于其承载力的恢复。

殊性土第二章地下水在土体中的运动规律1.基坑开挖采用表面直接排水可能发生流沙现象;原因是动水力方向与土体重力方向相反,当土颗粒间的压力等于0时,处于悬浮状态而失稳,则产生流沙现象;处理方法为采用人工降低地下水位的方法进行施工。

2.路堤两侧有水位差时可能产生管涌现象;原因是水在砂性土中渗流时,土中的一些细小颗粒在动水力作用下被水流带走;处理方法为在路基下游边坡的水下部分设置反滤层。

260 g,恰好成为液态时质量为340 g,则该土样的液性指数为0.5,自然状态下土体处于可塑状态。

达西定律指出,水在砂性土体中渗流过程中,渗流速度与水头梯度成正比。

5×10-8 m/s,则当水在土样中流动时产生的动水力为2×1010 N/m3。

答:12动水力的数学表达式为GD=γwI:3原因及条件:地下水向上渗流,且GD≥γ。

答:其主要原因是,冻结时土中未冻结区水向冻结区迁移和积聚的结果;对工程危害:使道路路基隆起、鼓包,路面开裂、折断等;使建筑物或桥梁抬起、开裂、倾斜或倒塌。

,水的因素,温度的因素第三章土中应力计算的半无限空间线弹性体)地基土的性质;2)地基与基础的相对刚度;3)荷载的大小和性质以及分布情况;4)基础的埋深,面积,现状因主要来源于季节性冻土的冻融,影响因素如下:1.土的因素:土粒较细,亲水性强,毛细作用明显,水上升高度大、速度快,水分迁移阻力小,土体含水量增大,导致强度降低,路面松软、冒泥;2.水的因素:地下水位浅,水分补给充足,所以冻害严重,导致路面开裂;3.温度的因素。

冬季温度降低,土体冻胀,导致路面鼓包、开裂。

春季温度升高,土体又会发生融沉;。

2m,宽1m,自重5kN,上部载荷20kN,当载荷轴线与矩形中心重合时,基底压力为12.5kN/m2;当载荷轴线偏心距为基础宽度1/12土的有效应力控制了土的变形及强度性能。

总应力等于有效应力与孔隙水压力之和,称为土的有效应力原理;其数学表达式为:【】第四章土的压缩性与地基沉降计算场取土样,放于固结仪中;级加荷,并观测各级荷载下的压缩量;绘制压缩曲线。

指标有:压缩系数;压缩指数;压缩模量。

1.装置;2.实验方法:P1=const p1=rd s1;P2=const p2 s2;Pn= const pn sn;3.加载及观测标准:(1)n>=8;(2)在每级荷载下定时观测下沉速率《=0.1mm\h(连续两个小时可以提高荷载级数)4.破坏标准:(1)承压板周围的土明显侧向挤出或产生裂缝(2)p-s曲线出现陡降(3)在某级荷载下,24小时内某沉,即静力法和动力法;前者采用静三轴仪,测得的弹性模量称为静弹模;后者采用动三轴仪,测得的弹性模量称为动弹模。

特性矩作用不会发生挠曲变形1.计算结果更精确,计算工作量更少2.计算方法更合理。

3.提出了终沉计算经验系数。

1.渗透系数2.压缩模量ES值3.时间4.渗流路径。

进行加固处理,比如采用机械压密,强力夯实,换土垫层,加载预压,砂桩机密,振冲及化学加固措施,必要时可采用柱基础,或其他深基础形式;对于外因,则采用减少附加应力的方式,通常采用轻型结构,轻型材料,尽量减轻上部结构自重,或增设地下室等措施第五章土的抗剪强度1.土体抵抗剪切破坏的极限承载能力,称为土的抗剪强度2.测定方法有:直接剪切试验;三轴剪切试验;无侧限抗压试验;十字板剪切试验;大型直接剪切试验。

f时,的临界状态称为极限平衡状态密度;粘性土触变性;土的应力历史。

第六章土压力计算与挡土墙设计1)朗肯土压力与库伦土压力理论均属于极限状态土压力理论;2)朗肯土压力理论概念明确,公式简单,对于黏性土,粉土,无黏性土均可以直接计算,故工程中得到广泛应用;3)库伦土压力考虑了墙背与填土间的摩擦力作用,并可用于墙背倾斜,填土面倾斜的情况,但由于该理论假定强后的填土为砂性土,故不能直接用于计算黏性土和粉土的土压力墙。

第七章土坡稳定性分析强度由于受到外界各种因素的影响而降低。

度;促使剪应力增加的原因有:土坡变陡;动水力过大;坡顶有超载;打桩、爆破及地震等动荷载作用;造成土抗剪强度降低的原因有:冻胀再溶化;振动液化;浸水后土的结构崩解;土中含水量增加。

aΦ>3°,滑动面为坡脚圆,最危险滑动面圆心位置 bΦ=0°,β>53°,滑动面也是坡脚圆,最危险滑动面圆心位置 cΦ=0°,β<53°,滑动面可能是中点圆也可能是坡脚圆或坡面圆,nd>4,则为中点圆1.砂性土土坡的坡高不受限制;根据土坡稳定性分析理论,砂性土的安全系数为:K=tanΦ/tanβ,所以只要坡角不超过其内摩擦角即可,与坡高无关;;2.粘性土土坡的坡高受限制;根据土坡稳定性分析理论,砂性土的安全系数为:K=动力矩/阻力矩,而土坡高度的变化对动力矩和阻力矩均会产生影响,进而导致圆弧滑动面产生的位置发生变化,因此粘性土土坡的坡高受限制。

第八章地基承载力能力;确定方法有:现场载荷试验;理论计算;规范法。

1.压密阶段(线性变形阶段),曲线接近直线,土体处于弹性平衡状态;2.剪切阶段(塑性变形阶段)曲线不再是直线,土体出现塑性区;3.破坏阶段,出现连续滑动面,土坡失稳破坏。

中心垂直荷载作用想,塑性区的最大深度zmax可以控制在基础宽度1/4 b pcr、p1/4、p1/3是在均布条形,矩形和圆形结果偏于安全 c pcr与基础宽度b无关,而p1/4、p1/3与b有关,但三者都随深度d的增大而加大受的基底压力的极限值(pu)荷载底面光滑)密实砂土,硬塑黏土等低压缩性土,p-s 曲线通常有比较明显的起始直线段和极限值,呈急速破坏‘陡降型’,规范规定一直线段末点所对应的压力pcr作为承载力的特征值,但对于少数呈脆性破坏的土,pcr与极限荷载pu很接近,当pu<2.0作为承载力特征值 2)松砂,填土,较软的粘性土,其p-s曲线往往无明显的转折点,呈接近破坏的‘缓变型’此时极限荷载可取曲线斜率开始到达最大值时的荷载,但此时荷载实验必须进行到荷载板有很大沉降。

规定取s=(0.01~0.015)b作为承载力特征值,但不大于最大加载量的一半。

:正常毛细水带、毛细网状水带、毛细悬挂水带三种。

:不固结不排水剪、固结不排水剪、固结排水剪。

:坡脚圆、坡面圆、中点圆。

:整体剪切破坏、局部剪切破坏、刺入剪切破坏;,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)。

60cm3,质量300g,烘干后质量为260g,则该土样的干密度为4.35g/ cm3。

300g,恰好成为塑态时质量为260 g,恰好成为液态时质量为340 g,则该土样的液性指数为0.5,自然状态下土体处于可塑状态。

流速度为0.1m/s,该土样的渗透系数为5×10-8 m/s,则当水在土样中流动时产生的动水力为2×1010 N/m3。

2m,宽1m,自重5kN,上部载荷20kN,当载荷轴线与矩形中心重合时,基底压力为12.5kN/m2;当载荷轴线偏心距为基础宽度1/12时,基底最大压力为18.75kN/m2,基底最小压力为6.25kN/m2。

工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称为粒度成分。

时应当用有效重度。

可用塑性指数来衡量。

用液性指数来描述土体的状态。

达西定律指出,水在砂性土体中渗流过程中,渗流速度与水头梯度成正比。

动水力指水流作用在单位体积土体中土颗粒上的力。

:土的有效应力等于总应力减去孔隙水压力;土的有效应力控制了土的变形及强度性能。

:外界力的作用破坏了土体内原有的应力平衡状态;土的抗剪强度由于受到外界各种因素的影响而降低。

土的密度ρ=m/v;土粒密度ρ=ms/vs;含水量;ω=mω/ms;干密度ρd=ms/v;饱和密度ρsat=(mw+ms)/v;浮重度γ’=γsat-γw;孔隙比e=vv/vs;孔隙率n=vv/v;饱和度Sr=vw/vv;:土的矿物成分、颗粒形状和级配;含水量;原始密度;粘性土触变性;土的应力历史。

答:1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。

用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。

用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。

4.液限指数:IL=(ω-ωp)/(ωL-ωp),天然含水量用“烘干法”测定。

?试写出其数学表达式,并分析流砂产生的原因及条件?答:1.地下水在渗流过程中,对单位体积土骨架所产生的作用力,称为动水力;2.动水力的数学表达式为GD=γwI:3.原因及条件:地下水向上渗流,且GD≥γ。

?其测定方法有哪些?答:1.土体抵抗剪切破坏的极限承载能力,称为土的抗剪强度2.测定方法有:直接剪切试验;三轴剪切试验;无侧限抗压试验;十字板剪切试验;大型直接剪切试验。

有哪几种确定方法?答:1.是指地基土单位面积上所能承受荷载的能力;2.确定方法有:现场载荷试验;理论计算;规范法。

相关文档
最新文档