土力学期末知识点总结教学内容
期末土力学复习资料
期末土力学复习资料
土力学是土木工程中的重要学科,研究土体的力学性质和行为。
学习土力学对于理解土壤的力学行为和土壤力学参数的计算具有重
要意义。
为了帮助大家复习土力学知识,本文将从土力学的基本概
念和理论开始,介绍土体的力学行为、土壤参数的计算方法以及一
些常见的土力学实验方法。
一、土力学的基本概念和理论
1.土力学的定义和研究对象
土力学是研究岩土体的力学性质和行为的学科,它主要研究土
壤的力学特性、力学参数和应力应变关系等。
2.土壤的基本性质
土壤是由固体颗粒、水分和空气组成的多相多孔介质。
土壤的
基本性质包括颗粒密实度、含水率、孔隙度等。
3.土壤力学的基本假设
在土力学中,常用的基本假设包括孔隙水压力均衡假设、线弹
性假设和等效应力原理等。
二、土体的力学行为
1.土体力学参数
土体力学参数主要包括弹性模量、剪切模量、泊松比、内摩擦角、内聚力等。
这些参数对于描述土体的力学性质和行为至关重要。
2.土壤的压缩性行为
土壤在受到外加压力时会发生压缩行为,这是由于土壤颗粒重
排和水分压缩引起的。
了解土壤的压缩性行为对工程设计和土地利
用具有重要的影响。
3.土体的剪切行为
土体的剪切行为是指土壤在受到剪切应力时的变形和破坏过程。
了解土体的剪切行为对于土方工程的设计和施工至关重要。
三、土壤参数的计算方法
1.黏塑性土壤的力学参数计算。
《土力学》知识点总结
第一章 土的物理性质一 思考题1 土是如何生成的?它与其他材料的最大区别是什么?答:土是地壳岩石经受强烈风化的产物,是各种矿物颗粒的集合体。
与其他材料的最大区别是:①一般的建筑材料可由设计人员指定品种或型号,品种或型号一旦确定,力学性质参数也就确定;土则不同,建筑物以天然土层作为地基。
拟建地点是什么土,设计人员就以这种土作为设计对象,且由于土是自然历史的产物,性质很不均匀,而且复杂多变。
②土的应力-应变关系是非线形的,而且不唯一; ③土的变形在卸荷后一般不能完全恢复; ④土的强度也是变化的; ⑤土对扰动特别敏感。
2 土是由哪几部分组成的?答:自然界的土体由固相(固体颗粒)、液相(土中水)和气相(土中气体)组成,通常称为三相分散体系。
3 什么叫土粒的颗粒级配?如何从级配曲线的陡缓判断土的工程性质?答:天然土体中包含大小不同的颗粒,为了表示土粒的大小及组成情况,通常以土中各个粒组的相对含量来表示,称为土的颗粒级配。
根据曲线的坡度和曲率可判断土的级配情况。
如果曲线平缓,表示土粒大小都有,即级配良好;如果曲线较陡,则表示颗粒粒径相差不大,粒径较均匀,即级配不良。
级配良好的土,较粗颗粒间的孔隙被较细的颗粒所填充,因而土的密实度较好。
4 何谓土的结构?土的结构有几种?答:土的结构是指土在成土过程中所形成的土粒的空间排列及其联结形式,与组成土的颗粒大小、颗粒形状、矿物成分和沉积条件有关。
一般可归纳为单粒结构、蜂窝结构和絮状结构三种基本类型。
5 土的物理性质指标有几个?哪些是直接测定的?如何测定?答:土的物理性质指标有:土的密度、土粒相对密度、土的含水量、土的干密度、土的饱和密度、土的有效密度、土的孔隙比和孔隙率等。
土的密度(通过环刀法测定)、土粒相对密度(通过比重瓶法测定)和土的含水量(通过烘干法测定)是直接测定的物理性质指标。
6 土的物理状态指标有几个?答:土的物理状态,对于无粘性土是指土的密实程度,对于粘性土则是指土的软硬程度,也称为粘性土的稠度。
土力学知识总结[大全]
土力学知识总结[大全]第一篇:土力学知识总结[大全]1、地基与基础设计必须满足三个基本条件: 1.作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力或地基承载力特征值,保证建筑物不因地基承载力不足造成整体破坏或影响正常使用,具有足够防止整体破坏的安全储备;2.基础沉降不得超过地基变形容许值,保证建筑物不因地基变形而损坏或影响其正常使用;3.挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。
2、土体三相:固相、液相、气相土中水:液态水(自由水和结合水)、固态水、气态水3、土的颗粒级配是否良好 Cu>5和Cu=1—3级配良好。
4、毛细水是受到水与空气交界面处表面张力的作用存在于地下水位以上的透水层中自由水。
5、颗粒分析试验:>0.75:筛分法,<0.75:水分法6、土的结构分类:絮凝结构(粘性土)、蜂窝结构(粉土)、单粒结构(无粘性土)。
7、土的物理性质指标:1.土的天然密度ρ2.土的含水量ω3.土的相对密实度d8、e<0.6的土是密实的,土的压缩性小;e>1.0的土是疏松的,压缩性高。
9、大小:ρsat>ρ>ρd>ρ°10、土的毛细现象是指土中水在表面张力作用下沿着细的孔隙向上及向其他地方移动的现象11、土的冻胀影响:土、水、温度的因素12、判断无粘性土密实度最简便的方法,是用孔隙比e来描述,e 大,土中孔隙大,土疏松13、指标:相对密实度Dr(标准贯入试验)14、液限与塑限之差值定义为塑性指数;Ip>17 粘土1015、Ip越大,土颗粒愈细,比表面积愈大,黏粒或亲水矿物愈高,可塑状态的含水量变化范围愈大。
塑性指标能综合反映土的矿物成分和颗粒大小的影响。
(是粘性土分类的依据)16、影响击实效果的因素:1.含水量的影响2.击实功的影响3.土类及级配的影响17、只有当含水量控制为某一适宜值即最优含水量时,土才能得到充分压实,得到土的最大干密度。
土力学复习资料总结
第一章土的组成1、土力学:是以力学和工程地质为基础研究与土木工程有关的土的应力、应变、强度稳定性等的应用力学的分支。
2、地基:承受建筑物、构筑物全部荷载的那一部分天然的或部分人工改造的地层。
3、地基设计时应满足的基本条件:①强度,②稳定性,③安全度,④变形。
4、土的定义:①岩石在风化作用下形成的大小悬殊颗粒,通过不同的搬运方式,在各种自然环境中形成的沉积物。
②由土粒(固相)、土中水(液相)和土中气(气相)所组成的三相物质。
5、土的工程特性:①压缩性大,②强度低,③透水性大。
6、土的形成过程:地壳表层的岩石在阳光、大气、水和生物等因素影响下,发生风化作用,使岩石崩解、破碎,经流水、风、冰川等动力搬运作用,在各种自然环境下沉积。
7、风化作用:外力对原岩发生的机械破碎和化学风化作用。
风化作用有两种:物理风化、化学风化。
物理风化:用于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解,碎裂的过程。
化学风化:岩体与空气,水和各种水溶液相互作用的过程。
化学风化的类型有三种:水解作用、水化作用、氧化作用。
水解作用:指原生矿物成分被分解,并与水进行化学成分的交换。
水化作用:批量水和某种矿物发生化学反映,形成新的矿物。
氧化作用:指某种矿物与氧气结合形成新的矿物。
8、土的特点:①散体性:颗粒之间无黏结或一定的黏结,存在大量孔隙,可以透水透气。
②多相性:土是由固体颗粒、水和气体组成的三相体系。
③自然变异性:土是在自然界漫长的地质历史时期深化形成的多矿物组合体,性质复杂,不均匀,且随时间还在不断变化的材料。
9、决定土的物理学性质的重要因素:①土粒的大小和形状,②矿物组成,③组成。
10、土粒的个体特征:土粒的大小、土粒的形状。
11、粒度:土粒的大小。
12、粒组:介于一定粒度范围内的土粒。
13、界限粒经:划分粒组的分界尺寸。
14、土的粒度成分(颗粒级配):土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示。
土力学期末知识点总结
土力学期末知识点总结第一章土的物理性质和工程分类在地基设计中,需要满足地基的强度条件和变形条件这两个条件。
土是由完整坚固岩石经过风化、剥蚀、搬运和沉积而形成的。
根据成因的不同,第四纪沉积物可以分为残积物、坡积物、洪积物、冲积物、海相沉积物、湖沼沉积物、冰川沉积物和风积物。
与其他材料(如钢材)相比,土具有强度低、压缩性大和透水性大的特性。
与一般建筑材料相比,土具有散体性、多相性、成层性和变异性等特性。
土的三相组成包括固体、液体和气体。
它们的比例与土的物理力学性质有关系。
当含水量增加时,土的抗剪强度会降低。
粒度成分是工程上常用来描述土的颗粒组成情况的指标,它是不同粒径颗粒的相对含量。
土中的水可以按静电引力的不同分为结合水和自由水。
结合水包括强结合水和弱结合水,自由水包括重力水和毛细水。
在粒度分析累计曲线法中,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好。
土的毛细现象是指土在表面张力作用下,沿着细小孔隙向上或其它方向移动的现象。
它会对工程产生不利的影响,如路基冻害、地下室潮湿和土地的沼泽化等,从而引起地基承载力下降。
土粒间的连接关系包括接触连接、胶结连接、结合水连接和冰连接。
土的结构包括单粒结构、蜂窝结构和絮状结构。
土的构造包括层状构造、分散构造、结核状构造和裂隙构造。
土的基本指标测定方法包括土的密度测定方法(环刀法)、土的含水量测定方法(烘干法)和土的相对密度测定方法(比重瓶法)。
土的三相比例指标包括土的密度、土粒密度、含水量、干密度、饱和密度、浮重度、孔隙比、孔隙率和饱和度。
它们的计算公式分别为ρ=m/v、ρ=ms/vs、ω=mω/ms、ρd=ms/v、ρsat=(mw+ms)/v、γ’=γsat-γw、e=vv/vs、n=vv/v和XXX。
例如,试验土样体积为60cm3,质量为300g,烘干后质量为260g,则该土样的干密度为4.35g/cm3.粘性土的可塑性大小可以用塑性指数来衡量,而液性指数可以用来描述土体的状态。
土力学知识点总结
土力学知识点总结土力学是土木工程中的重要学科之一,研究土壤的力学性质及其在工程中的应用。
它涉及到一系列的知识点,包括土壤力学、地基基础、岩土工程等。
在本文中,我将对土力学的一些重要知识点进行总结和概述。
一、土壤的物理性质土壤是工程建设中最常见的材料之一,了解土壤的物理性质对于设计和施工至关重要。
土壤的物理性质包括颗粒形状、大小、密度、孔隙度等。
颗粒形状对土壤的组织结构和机械性质具有重要影响。
土壤颗粒之间的间隙称为孔隙,孔隙度是指孔隙体积与全体积的比值,它可以影响土壤的自由排水、渗透性等性质。
二、土壤的力学性质土壤力学是土力学的核心内容之一。
土壤的力学性质主要包括固结、压缩、塑性、强度等。
固结是指土壤体积随着应力的增大而减小的现象,它直接影响土壤的压缩性质和承载力。
压缩是指土壤在受到应力作用下体积发生减少的现象,它是由于土壤颗粒重排和孔隙变形引起的。
塑性是土壤特有的性质之一,它是指土壤能够在一定条件下发生塑性变形而不破裂的能力。
强度是指土壤抵抗外部应力破坏的能力,即土壤抗剪强度。
三、地基基础工程地基基础工程是土力学在工程领域中的应用之一,它涉及到土体的承载能力、变形特性以及稳定性等问题。
地基基础工程包括测定地基土的物理性质和力学性质,评估地基承载力和变形性能,设计地基基础结构以及施工过程中的监测和控制等。
地基的选择和设计对于工程的安全和稳定性具有至关重要的作用,因此地基基础工程在土木工程中占据着重要的地位。
四、岩土工程岩土工程是土力学的一个分支学科,它研究土壤和岩石在工程中的应用。
岩土工程涉及到土壤与岩石的工程性质、地下水对工程的影响、岩土体的稳定性以及地下工程等问题。
在岩土工程中,我们需要了解土壤和岩石的物理性质、力学性质以及岩土体的工作状态,从而进行设计和施工。
土力学作为土木工程的重要学科,它不仅关注土壤的力学性质,还涉及到土壤的物理性质、地基基础工程以及岩土工程等内容。
理解和掌握土力学的知识点对于工程的设计、施工和安全至关重要。
土力学复习资料(整理)知识讲解
土力学复习资料第一章绪论1.土力学的概念是什么?土力学是工程力学的一个分支,利用力学的一般原理及土工试验,研究土体的应力变形、强度、渗流和长期稳定性、物理性质的一门学科。
2.土力学里的"两个理论,一个原理"是什么?强度理论、变形理论和有效应力原理3.土力学中的基本物理性质有哪四个?应力、变形、强度、渗流。
4. 什么是地基和基础?它们的分类是什么?地基:支撑基础的土体或岩体。
分类:天然地基、人工地基基础:结构的各种作用传递到地基上的结构组成部分。
根据基础埋深分为:深基础、浅基础5.★地基与基础设计必须满足的三个条件★①作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力特征值,挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。
即满足土地稳定性、承载力要求。
②基础沉降不得超过地基变形容许值。
即满足变形要求。
③基础要有足够的强度、刚度、耐久性。
6.若地基软弱、承载力不满足设计要求如何处理?需对地基进行基础加固处理,例如采用换土垫层、深层密实、排水固结、化学加固、加筋土技术等方法进行处理,称为人工地基。
7.深基础和浅基础的区别?通常把埋置深度不大(3~5m),只需经过挖槽、排水等普通施工程序就可以建造起来的基础称为浅基础;反之,若浅层土质不良,须把基础埋置于深处的好地层时,就得借助于特殊的施工方法,建造各种类型的深基础(如桩基、墩基、沉井和地下连续墙等。
)8.为什么基础工程在土木工程中具有很重要的作用?地基与基础是建筑物的根本,统称为基础工程,其勘察、设计、施工质量的好坏直接影响到建筑物的安危、经济和正常使用。
基础工程的特点主要有:①由于基础工程是在地下或水下进行,施工难度大②在一般高层建筑中,占总造价25%,占工期25%~30%③隐蔽工程,一旦出事,损失巨大且补救困难,因此基础工程在土木工程中具有十分重要的作用。
第二章土的性质与工程分类1.土:连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。
土力学总结
′+ u σ =σ
(2)土的压缩变形和强度变化都 只取决于有效应力的变化. 只取决于有效应力的变化.
活塞
弹簧
渗流固结模型
钢筒 饱和土的渗流固结模型
(太沙基)
地基变形计算
一,土的压缩性
(一)土的压缩性指标 1. 每级荷载下的孔隙比
hi ei = e0 - (1 + e0 ) h0
2. 压缩系数(单位:kPa-1) 压缩系数(单位:
e e1 - e2 a= = p p2 - p1
判断土的压缩性的标准 低压缩性土 高压缩性土 a1-2 < 0.1MPa
-1 -1 -1
中等压缩性土 0.1MPa ≤a1-2 < 0.5MPa a1-2 ≥0.5MPa
-1
3. 压缩指数
e1 - e2 Cc = lg p2 - lg p1
4. 压缩模量:侧限条件下受压时压应 压缩模量: 力与相应应变的比值. 力与相应应变的比值.
n
S =∑ i S
i =1
三,饱和土体渗流固结理论
饱和土的渗流固结模型(太沙基) 饱和土的渗流固结模型(太沙基)
(一)渗流固结微分方程
u u Cv 2 = z t
2
k (1 + e1 ) 其中 Cv = aγ w
Cv称为固结系数,单位为 2/a或cm2/a. 称为固结系数,单位为m 或 . 上式称为一维固结微分方程. 上式称为一维固结微分方程.
细粒土多用塑性指数 p或液限 L加塑 细粒土多用塑性指数I 或液限w 细粒土多用塑性指数 性指数I 进行细分. 性指数 p进行细分. 土的工程分类原则:(1)按粒度成 土的工程分类原则:( ) 土的工程分类原则:( ;(2)按塑性特征. 分;( )按塑性特征. 熟悉水利部土质分类标准: 熟悉水利部土质分类标准: GBJ145-90 熟悉建设部的土质分类标准: 熟悉建设部的土质分类标准: GB50021-94
土力学重点概念总结讲课稿
土力学重点概念总结讲课稿土力学重点概念总结土力学1.土的主要矿物成分:原生矿物:石英、长石、云母次生矿物:主要是粘土矿物,包括三种类型高岭石、伊里石、蒙脱石2.粒径:颗粒的大小通常以直径表示。
称为粒径(mm)或粒度。
3.粒组:粒径大小在一定范围内、具有相同或相似的成分和性质的土粒集合。
4.粒组的划分:巨粒(>200mm)粗粒(0.075~200mm) 卵石或碎石颗粒 (20~200mm)圆砾或角砾颗粒 (2~20mm)砂 (0.075~2mm)细粒(<0.075mm)粉粒(0.005~0.075mm)粘粒(<0.005mm)5.土的颗粒级配:土由不同粒组的土颗粒混合在一起所形成,土的性质主要取决于不同粒组的土粒的相对含量。
土的颗粒级配就是指大小土粒的搭配情况。
6.级配曲线法:纵坐标:小于某粒径的土粒累积含量横坐标:使用对数尺度表示土的粒径,可以把粒径相差上千倍的粗粒都表示出来,尤其能把占总重量少,但对土的性质可能有主要影响的颗粒部分清楚地表达出来.7.不均匀系数:可以反映大小不同粒组的分布情况,Cu越大表示土粒大小分布范围广,级配良好。
8.曲率系数:描述累积曲线的分布范围,反映曲线的整体形状9.土中水-土中水是土的液体相组成部分。
水对无粘性土的工程地质性质影响较小,但粘性土中水是控制其工程地质性质的重要因素,如粘性土的可塑性、压缩性及其抗剪性等,都直接或间接地与其含水量有关。
13.表示土的三相组成部分质量、体积之间的比例关系的指标,称为土的三相比例指标。
主要指标有:比重、天然密度、含水量(这三个指标需用实验室实测)和由它们三个计算得出的指标干密度、饱和密度、孔隙率、孔隙比和饱和度。
14.稠度:粘性土因含水量的不同表现出不同的稀稠、软硬状态的性质称为粘性土的稠度。
15.粘性土的界限含水量:同一种粘性土随其含水量的不同,而分别处于固态、半固态、可塑状态及流动状态。
由一种状态转变到另一种状态的分界含水量,叫界限含水量16.可塑性是粘性土区别于砂土的重要特征,可塑性的大小用土处在可塑状态时的含水量的变化范围来衡量,从液限到塑限含水量的变化范围越大,土的可塑性越好。
《土力学》重点、难点及主要知识点
《土力学》重点、难点及主要知识点一、课程重点、难点1、土的物理性质及工程分类1.1概述、1.2土的组成、1.3土的三相比例指标、1.4无粘性土的密实度、1.5粘性土的物理性质、1.6土的击实性、1.7土的工程分类。
掌握重点:土的物理性质指标、无粘性土和粘性土的物理性质、土的击实性、土的工程分类原则难点:土的物理状态。
2、土的渗透性与渗流2.1概述、2.2土的渗透性、2.3土中二维渗流及流网简介、2.4渗透力与渗透破坏掌握重点:土的渗透规律、二维渗流及流网、渗透力与渗透破坏难点:土的渗透变形。
3、土的压缩性和固结理论3.1土的压缩特性、3.2土的固结状态、3.3有效应力原理、3.4太沙基一维固结理论。
掌握重点:土的压缩性,有效应力原理难点:有效应力原理、一维固结理论4、土中应力和地基沉降计算4.1地基中的自重应力、4.2地基中的附加应力、4.3常用沉降计算方法、4.4地基沉降随时间变化规律的分析掌握重点:地基自重应力及附加应力的计算方法、不同变形阶段应力历史的沉降计算方法、地基最终沉降量计算方法、地基沉降随时间变化规律。
难点:角点法计算附加应力,分层总和法计算地基沉降量。
5、土的抗剪强度5.1土的抗剪强度理论和极限平衡条件、5.2土的剪切试验、5.3三轴压缩试验中孔隙压力系数、5.4饱和粘性土的抗剪强度、5.5应力路径在强度问题中的应用、5.6无粘性土的抗剪强度掌握重点:库仑定律的物理意义、极限平衡条件式、直剪试验测定土的抗剪强度指标、不同排水条件下测定土的抗剪强度指标的方法、剪切试验的其它方法、剪切试验方法的选用、砂土的振动液化、应力路径的概念难点:极度限平衡条件式、抗剪强度指标的选用、应力路径6、土压力6.1土压力类型和静止土压力计算、6.2朗肯土压力理论、6.3库仑土压力理论、6.4几种常见情况下土压力计算。
掌握重点:静止土压力、主动土压力、被动土压力的形成条件、朗肯和库伦土压力理论难点:有超载、成层土、有地下水情况的土压力计算7、地基极限承载力7.1地基变形和破坏类型、7.2地基的临塑荷载及临界荷载、7.3地基承载力的确定掌握重点:握地基承载力确定方法、地基变形和破坏的类型、地基临塑荷载及临界荷载确定地基承载力、根据试验方法确定地基承载力。
土力学知识点总结PDF
土力学知识点总结PDF土力学是土木工程领域中的一个重要分支,它研究土体物理性质、力学性质和变形规律等内容。
土力学知识的掌握对于土木工程的设计、施工和管理具有重要意义。
本文将对土力学的相关知识进行总结,包括土体力学性质、土体压缩、土体强度等内容。
一、土体力学性质1. 土的物理性质:土体的物理性质包括密度、孔隙度、含水率等指标。
其中密度是土体的质量和体积之比,孔隙度是土体含水空隙的体积占总体积的比重,含水率是土体中水分的质量占总质量的比值。
2. 土的力学性质:土的力学性质包括固体土体和饱和土体的力学性质。
固体土体的力学性质由其颗粒间的摩擦力和粘聚力决定,而饱和土体的力学性质受到孔隙水的影响。
3. 土的变形规律:土体在外力作用下会发生变形,其变形规律可以用黏弹性理论进行描述。
土体的压缩变形和剪切变形是土体力学研究的重要内容。
二、土体压缩1. 土体压缩的原因:土体在受到外力作用时会发生压缩变形,其原因主要包括土颗粒间的调配和孔隙水的排出。
2. 土体压缩指标:土体压缩的指标包括压缩系数和压缩模量。
压缩系数表示单位压力下土体的体积变化量与初始体积的比值,压缩模量表示单位压力下土体的应变与应力之比。
3. 土体压缩计算:土体压缩的计算可以采用理论模型和实测数据相结合的方法。
一般通过试验和实测数据来确定土体的压缩系数和压缩模量,然后进行压缩计算。
三、土体强度1. 土体的强度指标:土体的强度指标包括内摩擦角和粘聚力。
内摩擦角是土体颗粒之间的摩擦阻力,粘聚力是土体颗粒间粘聚的力量。
2. 土体强度计算:土体的强度计算可以采用摩擦角和粘聚力的理论模型,通过实验和实测数据来确定土体的强度指标,然后进行强度计算。
4. 土体的抗剪强度:土体在受到剪切应力作用时会发生剪切破坏,其抗剪强度是土体的重要力学性质。
抗剪强度通过直剪试验来确定,它是土体强度的重要指标之一。
四、土体稳定性分析1. 土体的稳定性分析:土体在承受外部荷载作用下可能发生破坏,其稳定性分析是土力学研究的重要内容。
土力学知识点总结
土力学知识点总结一、土的物理性质1. 水分对土体的影响水分对土体的影响是土力学研究的重要内容之一。
水分含量对土体的力学性质、变形特性、渗流特性等都有较大的影响。
合理的水分含量可以提高土体的抗剪强度,减小土体的变形量,增加土体的稳定性。
但是过多或者过少的水分含量都会影响土体的力学性质,使得土体的强度和稳定性降低。
因此,合理控制土体的水分含量是土力学研究的一个重要方向。
2. 颗粒度对土体的影响土体的颗粒度分布对土体的物理性质有着重要的影响。
颗粒度分布越均匀,土体的孔隙结构越稳定,孔隙率越大,渗透性越好。
而颗粒度分布越不均匀,土体的孔隙结构越不稳定,孔隙率越小,渗透性也越差。
因此,颗粒度对土体的渗透性、压缩性等性质都有着重要的影响。
3. 土体的密实度土体的密实度对其强度和变形特性有着直接影响。
密实的土体具有较高的抗剪强度和较小的压缩变形量,而疏松的土体则具有较低的抗剪强度和较大的压缩变形量。
因此,在土力学的研究中,对土体的密实度进行严格把控是非常重要的。
二、土的力学特性1. 土的剪切强度土的剪切强度是研究土体力学性质的重要指标之一。
土的剪切强度受到诸多因素的影响,包括土体的颗粒组成、水分含量、密实度、应力状态等。
合理掌握土的剪切强度是进行土力学分析和工程设计的重要基础。
2. 土的压缩性土体在受到外力作用时会发生压缩变形,压缩性是研究土体变形特性的重要参数。
土的压缩性与土体的类型、颗粒度分布、含水量等因素有关。
在土力学的研究中,对土的压缩特性进行充分的了解和分析是非常重要的。
3. 土的渗透性土的渗透性是指土体内部水分的渗流性能。
渗透性对于土体的排水性能和稳定性有着重要的影响。
合理掌握土的渗透性对于水利工程、地基基础、岩土工程等领域的工程设计和施工具有重要意义。
三、土的力学参数1. 弹性模量土的弹性模量是研究土体的弹性变形特性的重要参数。
弹性模量大小与土体的颗粒组成、密实度、水分含量等因素有关,在土力学中对土体的弹性模量进行分析和测定具有重要的意义。
土力学知识点总结
士力学知识点总结1、士力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学.2、任何建筑都建造在一定的地层上.通常把支撑根底的土体或岩体成为地基〔天然地基、人工地基〕.3、根底是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基.4、地基和根底设计必须满足的三个根本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;② 根底沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够预防失稳破坏的平安储藏.5、地基和根底是建筑物的根本,统称为根底工程.6、士是连续、巩固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物.7、士的三相组成:固相〔固体颗粒〕、液相〔水〕、气相〔气体〕.8、土的矿物成分:原生矿物、次生矿物.9、黏土矿物是一种复合的铝一硅酸盐晶体.可分为:蒙脱石、伊利石和高岭石.10、士力的大小称为粒度.工程上常把大小、性质相近的土粒合并为一组,称为粒组.划分粒组的分界尺寸称为界限粒径. 土粒粒组分为巨粒、粗粒和细粒.11、土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配.级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标那么是用对数值表示土的粒径.12、颗粒分析实验:筛分法和沉降分析法.13、土中水按存在形态分为液态水、固态水和气态水.固态水又称矿物内部结晶水或内部结合水.液态水分为结合水和自由水.自由水分为重力水和毛细水.14、重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,由于在本身重力作用下运动,故称为重力水.15、毛细水是受到水与空气交界面处外表张力的作用、存在于地下水位以下的透水层中自由水.土的毛细现象是指土中水在外表张力作用下,沿着细的孔隙向上及向其他方向移动的现象.16、影响冻胀的因素:土的因素、水的因素、温度的因素.17、土的结构是指土颗粒或集合体的大小和形状、外表特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构.18、结构的类型:单粒结构、蜂窝结构、絮凝结构.19、土的物理性质直接反响土的松密、软硬等物理状态,也间接反映土的工程性质.而土的松密和软硬程度主要取决于土的三相各自在数量上所占的比例.20、黏土就是指具有可塑性状态性质的土,他们在外力作用下,可塑成任何性状而不产生裂缝,当外力去掉后,仍可保持原性状不变.土的这种性质叫做可塑性.21、黏土从一种状态转变成另一种状态的分界含水量称为界限含水量.土由可塑状态变化到流动状态的界限含水量称为液限〔锥式液限仪〕.土由半固态变化到可塑状态的界限含水量称为塑限.土由半固态状态不断蒸发水分,体积逐渐缩小,直到体积不再缩小时土的界限含水量称为缩限.22、液限与塑限之差值定义为塑性指数.Ip.表征土的天然含水量与分解含水量之间相对关系的指标是液性指数.23、根据灵敏度可将饱和粘性土分为低灵敏、中等灵敏、高灵敏.24、粘性土结构遭到破坏,强度降低,但随时间开展土体强度恢复的胶体化学性质称为土的触变性.25、影响土渗透性的主要因素:颗粒大小、级配、密度以及土中封闭气泡.其他因素:土的矿物成分、结合水膜厚度、土的结构构造、土中气体.26、土的压实性是指土体在压实能量的作用下,土颗粒克服粒间阻力,产生位移,使土中孔隙减小,土体密度增大的这种特性.27、在一定的压实功能下使土最容易压实,并能到达最大密实度的含水量称为土的最优含水量.28、影响击实效果的因素:含水量、击实功、土的性质.29、土体液化是指饱和状态砂土或粉土在一定强度的动荷载作用下表现出类似液体性质而完全丧失承载力的现象.30、砂土液化造成灾害:喷砂冒水、震陷、滑坡、上浮.31、影响土液化的主要因素:土的密度、土的初始应力状态、往复应力强度和往复次数.32、?建筑地基根底设计标准?把土分为:岩石、碎石土、砂土、粉土、粘性土、人工填土.33、岩石根据坚硬程度分为:坚硬岩、较硬岩、较软岩、软岩、极软岩.34、碎石土:漂石、块石、卵石、碎石、圆砾、角砾.密实度:松散、稍密、中密、密实.35、砂土分为:砾砂、粗砂、中砂、细砂、粉砂.36、黏性土是指塑限指数Ip大于10的土.Ip>17为黏土, 10VIp<17为粉质黏土.黏性土分为:坚硬、硬塑、可塑、软塑、流塑.37人工填土:素填土、杂填土、冲填土.38、附加应力是指由于外荷载的作用,在土中产生的应力增量.39、在根底底面与地基之间产生的接触压力称为基底压力.40、土在压力作用下体积缩小的特性称为土的压缩性.土体在外力作用下,压缩随时间增长的过程称为土的固结.41、压缩系数是评价地基土压缩性上下的重要指标之一压缩模量Es与压缩系数a成反比,Es越大,a就越小,土的压缩性越低.42、地基最终沉降流量是指基土在建筑荷载作用下,不断产生压缩,直至压缩稳定时地外表的沉降量.43,分层法假设:a、地基土是均质、各向同性的半无限线性体;b、地基土在外荷载作用下,只产生竖向变形,侧向不发生膨胀变形;c、采用基底中央点下的附加应力计算地基变形量.44、分层法步骤:①分层;②计算基底压力及基底附加压力;③计算各分层面上土的自重应力和附加应力,并绘制分布曲线;④确定沉降计算深度;⑤计算各分层土的平均自重应力和平均附加应力;⑥按公式计算每一分层土的变形量ASi;⑦计算地基最终沉降量.45、地基最终沉降量二瞬时沉降+固结沉降+次固结沉降.46、根据超固结比〔OCR〕可把天然土层分为:超固结状态、正常固结状态、欠固结状态.47、士的抗剪强度是指土体反抗剪切破坏的极限水平.48、当土体中某点任一平面上的剪应力等于土的抗剪强度时,将该点即濒于破坏的临界状态称为极限平衡状态.49、剪切试验实验室常用仪器:直接剪切试验、三轴压缩仪、无侧限抗压仪、单剪仪.现场试验字板剪切仪.50、直剪仪优点:操作简便,并符合某些特定条件.缺点:a、剪切过程中试样内的剪应变和剪应力分布不均匀;b、剪切面认为地限制在上下盒的接触面上;c、剪切过程中试样面积逐渐减小,且垂直荷载发生偏心,但计算抗剪强度时却根据受剪面积不变和剪切应力均匀计算;d、不能限制排水条件,不能两侧试样中的空隙水压力;f、主应力无法确定.51、黏性土在不固结和排水条件下的三种标准试验:固结不排水剪、不固结不排水剪、固结排水剪.52、挡土墙的结构形式:重力式、悬臂式、扶壁式.53挡土墙的土压力是指挡土墙后填土因自重或外荷载作用对墙背产生的侧向压力.54、主动土压力:当挡土墙向离开土体方向偏移至墙后土体到达极限平衡状态时,作用在墙背上的土压力.55、被动土压力:当挡土墙在外力作用下,向土体方向偏移至墙后土体到达极限平衡状态时,作用在墙背上的土压力.56、静止土压力:当挡土墙静止不动,墙后土体处于弹性平衡状态时,作用在墙背上的土压力.57、朗金土压力理论是通过研究弹性半空间体内的应力状态,根据土体的极限平衡条件而得出的土压力计算方法.58、库伦士压力理论是根据墙后土体处于极限平衡状态并形成一滑动楔体时,从楔体的静止平衡条件得出的土压力计算理论.根本假设:墙后填土是理想的散粒体、滑动破裂面为通过墙踵的平面.59、挡土墙的设计包括:墙形选择、稳定性验算、地基承载力验算、墙身材料强度验算以及一些设计中的构造要求和举措.60、重力式挡土墙根据墙背倾斜方向:仰斜、直立、俯斜.〔衡重〕61、地基破坏形式:整体剪切破坏、局部剪切破坏、冲剪破坏.62、地基承载力:地基承受荷载的水平.63、影响土坡稳定的因素:土坡作用力发生变化、土体抗剪强度降低、水压力的作用.64、根底是连接上部结构和地基之间的过渡结构,起承上启下作用.地基:天然地基、人工地基.根底:浅根底、深根底.65、天然地基上浅根底设计的内容和一般步骤:a、掌握拟建场地的工程地质条件和地质勘测资料;b、在研究地基勘测资料的根底上,结合上部结构的类型,荷载和性质、大小和分布,建筑布置和使用要求及拟建根底对原有建筑设备和坏境的影响,并了解当地建筑经验、施工条件、材料供给、保护坏境、先进技术的推广应用等其他有关情况,综合考虑选择根底类型和平面布置方案;C、选择地基持力层和根底埋置深度;d、确定地基承载力e、按地基承载力确定根底底面尺寸;f、进行必要的地基稳定性和变形验算;g、进行根底的结构设计;f、绘绘制根底施工图.66、整个结构或结构的一局部超过某一特定状态就不能满足设计规定的某一功能要求,这一特定状态称为该功能的极限状态;可分为:承载水平极限状态、正常使用极限状态.67、地基根底设计和计算满足三项根本原那么:a、有足够的安全度;b、限制地基的变形c、根底的材料、形式、尺寸和构造应适应上部结构、符合使用要求,满足地基承载力和变形要求,还应满足对根底结构强度、刚度和耐久性的要求.68、直接支承根底的土层称为持力层,其下的各土层称为下卧层.69、地基承载力按三种设计原那么:平安系数设计原那么、容许承载力设计原那么、概率极限设计原那么.70、地基变形特征:沉降量、沉降差、倾斜、局部倾斜.71、倾斜指根底倾斜方向两端点的沉降差与其距离的比值.72、局部倾斜指砌体承重结构沿纵向6"10m内根底两点的沉降差与其距离的比值.73、地基根底设计丙级建筑物的情况:a、地基承载力小于130kPa,且体型复杂的建筑;b、在根底上及其附近有地面堆载或相邻根底荷载差异较大,可能引起地基产生过大的不均匀沉降时;C、软弱地基上相邻建筑存在偏心荷载时;d、相邻建筑过近,可能发生倾斜式;e、地基土内有厚度较大或薄厚不均匀的填土,其自重固结尚未完成时.。
土力学知识点总结
土力学知识点总结土力学是土木工程的基础学科之一,主要研究土体的力学性质和土体与结构物之间的相互作用。
它对于土木工程设计和施工具有重要的指导作用。
下面是土力学的一些基本知识点的总结。
1.粒径分析:粒径分析是土力学研究的基本内容之一、通过对土壤颗粒的大小进行分析,可以了解土体的颗粒组成,从而对土体的力学性质做出合理的解释。
粒径分析主要通过筛分和沉降法进行。
2.孔隙水压力:土壤中的水分通常会存在于孔隙中,孔隙水压力是指土壤孔隙中的水对土壤颗粒施加的压力。
孔隙水压力的大小和分布对土壤的稳定性和工程施工具有重要的影响。
3.土体的压缩性:土体在受力作用下会发生变形,压缩性是指土体在受力后产生的压实变形量与施加的应力之间的关系。
土体的压缩性对于土体的沉降、承载力和变形性能有重要影响。
4.土壤的剪切强度:土体在受剪切力作用下会发生剪切变形,剪切强度是指土体抵抗剪切变形的能力。
土壤的剪切强度对于土体的稳定性和抗剪性能有重要影响。
5.应力应变关系:应力应变关系是描述土体力学性质的重要参数。
通常可以通过三轴剪切试验来确定土体的应力应变关系,包括应力应变曲线、弹性模量、剪切模量、泊松比等参数。
6.孔隙比和相对密实度:孔隙比是指土壤中孔隙的体积与总体积之比,反映了土体中空隙的大小和分布情况。
相对密实度是指土体的实际密度和最密排列情况下的密度之比,反映了土体的排列紧密程度。
这两个参数对土体的力学性质和工程应用有重要影响。
7.孔隙水流和渗透性:土体中的孔隙水可以对土体施加一定的压力,同时还可以通过孔隙中的渗流传递。
孔隙水流和渗透性的研究对于地下水工程和土木工程的设计和施工具有重要的指导作用。
8.土壤的抗震性能:土壤的抗震性能是指在地震作用下,土体的变形和稳定性能。
对于地震活动频繁的地区来说,土壤的抗震性能对于工程的安全性具有非常重要的意义。
9.土体的侧向支撑:在土木工程中,土体往往需要承受来自结构物和外界环境的侧向支撑力。
土体的侧向支撑是指土体抵抗侧向力的能力,常用的方法包括土压力理论和土体的侧向变形特性等。
土力学期末知识点总结2024
引言概述:土力学是土壤力学的研究,主要研究土壤的力学性质及其在工程中的应用。
土力学是土木工程中重要的一门基础学科,对于工程建设具有重要的指导意义。
本文将综合总结土力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。
正文内容:一、土壤力学基本概念1.土壤力学的定义及研究对象2.土壤颗粒特性和颗粒间的力学相互作用3.土壤的固结与压缩行为4.土壤中的孔隙与孔隙水5.土壤的液态和塑性行为二、土壤力学性质及其测试方法1.重度、容重和饱和度的概念及计算方法2.孔隙比、孔隙度和孔隙率的定义与计算3.土壤的渗透性和渗透系数的测定方法4.土壤的抗剪强度及剪切参数的测定方法5.土壤的压缩性与压缩参数的测定方法三、土壤固结与压缩性1.土壤的固结现象及固结指标的使用2.增加土壤支持力的方法和施工控制3.土壤的固结后稳定性分析4.应力路径对土壤固结和压缩行为的影响5.土壤对附加应力作用的响应四、土壤自重与有效应力1.土壤的自重力和土体重度的概念及计算方法2.土壤的有效应力和有效应力比的定义与计算3.土壤的有效承载力和有效压缩模量的计算4.孔隙水的压力与有效应力的关系5.应力路径对土壤自重和有效应力的影响五、土壤侧压力及土体的强度性质1.土壤侧压力的产生机制和计算公式2.土体的摩擦角与内聚力的确定方法3.土体的弯曲和剪切破坏研究4.土壤的固结和压缩对强度性质的影响5.土壤强度参数的利用和工程应用其他相关的工程应用1.地基的设计和加固2.地下工程的开挖与支护3.填土与挖土工程4.地基沉降的控制与补偿5.施工过程中的土壤力学问题分析结论:土力学作为土木工程中的重要学科,研究土壤的力学性质及其在工程中的应用。
本文综合总结了土壤力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。
《土力学》知识点总结
《土力学》知识点总结土力学(土木工程力学)是土木工程学中的一个重要分支,研究土体的力学性质和行为,为工程结构的设计、施工和维护提供依据。
下面是对土力学的知识点进行总结:一、土体的力学性质1.基本物理性质:包括土体的密度、含水量和孔隙度等。
2.英特尔以太网卡性质:包括土体的强度、变形特性和渗透性等。
3.变形特性:主要包括固结、压缩、膨胀和剪切等。
4.渗透特性:土体的渗透性是指水或气体通过土体的能力,主要影响土体的稳定性和渗透阻力。
5.特殊性质:热力学性质(热膨胀、热传导性等)、电性能(电阻率、电解质迁移等)和化学性能(酸碱性、腐蚀性等)等。
二、土体力学理论1.应力分布:土体中的应力分布受到多因素的影响,包括重力、土体的密度和孔隙度等。
2.应变特性:包括线弹性、松弛、蠕变和塑性等。
3.孔隙水力学:研究土体中的水分运动和水力特性,包括渗流、孔隙水压和渗透系数等。
4.孔隙水力固结和蠕变:研究土体中孔隙水位置和压力的变化对土体力学性质的影响。
5.刚性塑性力学:研究土体的强度和变形特性,包括内摩擦角、剪切强度和塑性指数等。
三、地基与基础工程1.增加地基承载力:通过加固地基、挖掘或替换土体等方法来提高土体的承载能力。
2.土的膨胀性:研究土体在含水量变化时的膨胀和收缩特性,对地基设计和施工起到重要作用。
3.土的稳定性:包括坡面稳定、边坡稳定和基坑的支护设计等。
4.地基沉降:研究地基在荷载作用下的沉降和沉降速度,对基础设计和施工起到重要作用。
四、土的试验与仪器设备1.土体取样与制样:包括岩土样品的卸样、取样和标本制作等。
2.土体力学试验:包括直剪试验、压缩试验和固结试验等,用于分析土体的强度和变形特性。
3.土体渗透性试验:包括渗透试验和渗透系数试验等,用于分析土体的渗透性和渗透阻力。
4.土体稳定性试验:包括坡度稳定试验和抗剪试验等,用于分析土体的稳定性和抗剪强度。
5.仪器设备:包括直剪仪、压实仪、渗透仪和测角仪等,用于方便进行土体力学试验。
土力学与地基基础知识点总结
土力学与地基基础知识点总结一、土力学基础知识点1. 土壤性质•沉积物和成土物质•湿陷性和膨胀性•饱和度、含水量和比重•压缩性和固结性2. 土壤力学参数•压缩指数、压缩模量和顶曲线•剪切参数:内摩擦角、剪切模量和剪切强度3. 土压力与土压力图解法•水平地下水面•垂直地下水面•水平和斜交地下水面4. 土的面内应力与位移•主应力和主应变•应力状态和应变状态•固结应力与固结应变二、地基基础知识点1. 地基分类与选择•自然地基和人工地基•基坑与挡土结构•选址与地质勘察2. 地基基础工法•承载力与沉降•基础类型:浅基础和深基础•墩台与桩基础3. 地基处理与加固•浅基础处理:夯实、加筋和土井•深基础处理:钻孔灌注桩和摩擦桩4. 地基施工与监测•地基平整与开挖•基础施工质量控制•监测与处理三、总结土力学与地基基础是土木工程中的重要基础学科,通过对土壤力学参数、土压力与土压力图解法、土的面内应力与位移等方面的学习,可以更好地理解土壤力学行为及土体的力学性质。
地基基础知识的掌握则能够帮助工程师合理选择与设计地基及地基处理方法,提高工程的承载力和稳定性。
掌握土力学与地基基础的知识,对于工程建设而言至关重要。
合理地选择和处理地基,可以保证工程的稳定性和安全性,减少不必要的工程风险。
因此,在土壤力学与地基基础的学习中,我们需要深入了解土壤性质、土壤力学参数、地基分类与选择、地基处理与加固等关键知识点,掌握相应的分析和设计方法,提高工程的施工质量和经济效益。
总而言之,土力学与地基基础是土木工程的基础学科,深入学习相关知识对于土地开发、工程建设具有重要意义。
通过分析土壤性质、土壤力学参数及应力应变等方面的知识,了解地基的分类与选择、处理与加固方法,能够更好地指导工程实践,确保工程的安全可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土力学期末知识点总结第一章土的物理性质和工程分类石经风化、剥蚀、搬运、沉积而形成的;第四纪沉积物有:残积物;坡积物;洪积物;冲积物;海相沉积物;湖沼沉积物;冰川沉积物;风积物。
答:强度低;压缩性大;透水性大。
1)散体性2)多相性3)成层性4)变异性【其自身特性是:强度低,压缩性大,透水性大】的三相组成:固体,液体,气体。
有关系。
当含水量增加时,其抗剪强度降低。
称为粒度成分。
和弱结合水);自由水(包括重力水和毛细水)y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)。
下,沿着细小孔隙向上或其它方向移动的现象;对工程危害主要有:路基冻害;地下室潮湿;土地的沼泽化而引起地基承载力下降。
)土的密度测定方法:环刀法;2)土的含水量测定方法:=m/v;土粒密度ρ=ms/vs;含水量;ω=mω/ms;干密度ρd=ms/v;饱和密度ρsat=(mw+ms)/v;浮重度γ’=γsat-γw;孔隙比e=vv/vs;孔隙率n=vv/v;饱和度Sr=vw/vv;60cm3,质量300g,烘干后质量为260g,则该土样的干密度为4.35g/ cm3。
粘性土可塑性大小可用塑性指数来衡量。
用液性指数来描述土体的状态。
1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。
用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。
用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。
1)粘性土受扰动后强度降低,而静止后强度又重新增长的性质,称为粘性土的触变性;粘性土的触变性有利于预制桩的打入;而静止时又有利于其承载力的恢复。
殊性土第二章地下水在土体中的运动规律1.基坑开挖采用表面直接排水可能发生流沙现象;原因是动水力方向与土体重力方向相反,当土颗粒间的压力等于0时,处于悬浮状态而失稳,则产生流沙现象;处理方法为采用人工降低地下水位的方法进行施工。
2.路堤两侧有水位差时可能产生管涌现象;原因是水在砂性土中渗流时,土中的一些细小颗粒在动水力作用下被水流带走;处理方法为在路基下游边坡的水下部分设置反滤层。
260 g,恰好成为液态时质量为340 g,则该土样的液性指数为0.5,自然状态下土体处于可塑状态。
达西定律指出,水在砂性土体中渗流过程中,渗流速度与水头梯度成正比。
5×10-8 m/s,则当水在土样中流动时产生的动水力为2×1010 N/m3。
答:12动水力的数学表达式为GD=γwI:3原因及条件:地下水向上渗流,且GD≥γ。
答:其主要原因是,冻结时土中未冻结区水向冻结区迁移和积聚的结果;对工程危害:使道路路基隆起、鼓包,路面开裂、折断等;使建筑物或桥梁抬起、开裂、倾斜或倒塌。
,水的因素,温度的因素第三章土中应力计算的半无限空间线弹性体)地基土的性质;2)地基与基础的相对刚度;3)荷载的大小和性质以及分布情况;4)基础的埋深,面积,现状因主要来源于季节性冻土的冻融,影响因素如下:1.土的因素:土粒较细,亲水性强,毛细作用明显,水上升高度大、速度快,水分迁移阻力小,土体含水量增大,导致强度降低,路面松软、冒泥;2.水的因素:地下水位浅,水分补给充足,所以冻害严重,导致路面开裂;3.温度的因素。
冬季温度降低,土体冻胀,导致路面鼓包、开裂。
春季温度升高,土体又会发生融沉;。
2m,宽1m,自重5kN,上部载荷20kN,当载荷轴线与矩形中心重合时,基底压力为12.5kN/m2;当载荷轴线偏心距为基础宽度1/12土的有效应力控制了土的变形及强度性能。
总应力等于有效应力与孔隙水压力之和,称为土的有效应力原理;其数学表达式为:【】第四章土的压缩性与地基沉降计算场取土样,放于固结仪中;级加荷,并观测各级荷载下的压缩量;绘制压缩曲线。
指标有:压缩系数;压缩指数;压缩模量。
1.装置;2.实验方法:P1=const p1=rd s1;P2=const p2 s2;Pn= const pn sn;3.加载及观测标准:(1)n>=8;(2)在每级荷载下定时观测下沉速率《=0.1mm\h(连续两个小时可以提高荷载级数)4.破坏标准:(1)承压板周围的土明显侧向挤出或产生裂缝(2)p-s曲线出现陡降(3)在某级荷载下,24小时内某沉,即静力法和动力法;前者采用静三轴仪,测得的弹性模量称为静弹模;后者采用动三轴仪,测得的弹性模量称为动弹模。
特性矩作用不会发生挠曲变形1.计算结果更精确,计算工作量更少2.计算方法更合理。
3.提出了终沉计算经验系数。
1.渗透系数2.压缩模量ES值3.时间4.渗流路径。
进行加固处理,比如采用机械压密,强力夯实,换土垫层,加载预压,砂桩机密,振冲及化学加固措施,必要时可采用柱基础,或其他深基础形式;对于外因,则采用减少附加应力的方式,通常采用轻型结构,轻型材料,尽量减轻上部结构自重,或增设地下室等措施第五章土的抗剪强度1.土体抵抗剪切破坏的极限承载能力,称为土的抗剪强度2.测定方法有:直接剪切试验;三轴剪切试验;无侧限抗压试验;十字板剪切试验;大型直接剪切试验。
f时,的临界状态称为极限平衡状态密度;粘性土触变性;土的应力历史。
第六章土压力计算与挡土墙设计1)朗肯土压力与库伦土压力理论均属于极限状态土压力理论;2)朗肯土压力理论概念明确,公式简单,对于黏性土,粉土,无黏性土均可以直接计算,故工程中得到广泛应用;3)库伦土压力考虑了墙背与填土间的摩擦力作用,并可用于墙背倾斜,填土面倾斜的情况,但由于该理论假定强后的填土为砂性土,故不能直接用于计算黏性土和粉土的土压力墙。
第七章土坡稳定性分析强度由于受到外界各种因素的影响而降低。
度;促使剪应力增加的原因有:土坡变陡;动水力过大;坡顶有超载;打桩、爆破及地震等动荷载作用;造成土抗剪强度降低的原因有:冻胀再溶化;振动液化;浸水后土的结构崩解;土中含水量增加。
aΦ>3°,滑动面为坡脚圆,最危险滑动面圆心位置 bΦ=0°,β>53°,滑动面也是坡脚圆,最危险滑动面圆心位置 cΦ=0°,β<53°,滑动面可能是中点圆也可能是坡脚圆或坡面圆,nd>4,则为中点圆1.砂性土土坡的坡高不受限制;根据土坡稳定性分析理论,砂性土的安全系数为:K=tanΦ/tanβ,所以只要坡角不超过其内摩擦角即可,与坡高无关;;2.粘性土土坡的坡高受限制;根据土坡稳定性分析理论,砂性土的安全系数为:K=动力矩/阻力矩,而土坡高度的变化对动力矩和阻力矩均会产生影响,进而导致圆弧滑动面产生的位置发生变化,因此粘性土土坡的坡高受限制。
第八章地基承载力能力;确定方法有:现场载荷试验;理论计算;规范法。
1.压密阶段(线性变形阶段),曲线接近直线,土体处于弹性平衡状态;2.剪切阶段(塑性变形阶段)曲线不再是直线,土体出现塑性区;3.破坏阶段,出现连续滑动面,土坡失稳破坏。
中心垂直荷载作用想,塑性区的最大深度zmax可以控制在基础宽度1/4 b pcr、p1/4、p1/3是在均布条形,矩形和圆形结果偏于安全 c pcr与基础宽度b无关,而p1/4、p1/3与b有关,但三者都随深度d的增大而加大受的基底压力的极限值(pu)荷载底面光滑)密实砂土,硬塑黏土等低压缩性土,p-s 曲线通常有比较明显的起始直线段和极限值,呈急速破坏‘陡降型’,规范规定一直线段末点所对应的压力pcr作为承载力的特征值,但对于少数呈脆性破坏的土,pcr与极限荷载pu很接近,当pu<2.0作为承载力特征值 2)松砂,填土,较软的粘性土,其p-s曲线往往无明显的转折点,呈接近破坏的‘缓变型’此时极限荷载可取曲线斜率开始到达最大值时的荷载,但此时荷载实验必须进行到荷载板有很大沉降。
规定取s=(0.01~0.015)b作为承载力特征值,但不大于最大加载量的一半。
:正常毛细水带、毛细网状水带、毛细悬挂水带三种。
:不固结不排水剪、固结不排水剪、固结排水剪。
:坡脚圆、坡面圆、中点圆。
:整体剪切破坏、局部剪切破坏、刺入剪切破坏;,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)。
60cm3,质量300g,烘干后质量为260g,则该土样的干密度为4.35g/ cm3。
300g,恰好成为塑态时质量为260 g,恰好成为液态时质量为340 g,则该土样的液性指数为0.5,自然状态下土体处于可塑状态。
流速度为0.1m/s,该土样的渗透系数为5×10-8 m/s,则当水在土样中流动时产生的动水力为2×1010 N/m3。
2m,宽1m,自重5kN,上部载荷20kN,当载荷轴线与矩形中心重合时,基底压力为12.5kN/m2;当载荷轴线偏心距为基础宽度1/12时,基底最大压力为18.75kN/m2,基底最小压力为6.25kN/m2。
工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称为粒度成分。
时应当用有效重度。
可用塑性指数来衡量。
用液性指数来描述土体的状态。
达西定律指出,水在砂性土体中渗流过程中,渗流速度与水头梯度成正比。
动水力指水流作用在单位体积土体中土颗粒上的力。
:土的有效应力等于总应力减去孔隙水压力;土的有效应力控制了土的变形及强度性能。
:外界力的作用破坏了土体内原有的应力平衡状态;土的抗剪强度由于受到外界各种因素的影响而降低。
土的密度ρ=m/v;土粒密度ρ=ms/vs;含水量;ω=mω/ms;干密度ρd=ms/v;饱和密度ρsat=(mw+ms)/v;浮重度γ’=γsat-γw;孔隙比e=vv/vs;孔隙率n=vv/v;饱和度Sr=vw/vv;:土的矿物成分、颗粒形状和级配;含水量;原始密度;粘性土触变性;土的应力历史。
答:1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。
用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。
用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。
4.液限指数:IL=(ω-ωp)/(ωL-ωp),天然含水量用“烘干法”测定。
?试写出其数学表达式,并分析流砂产生的原因及条件?答:1.地下水在渗流过程中,对单位体积土骨架所产生的作用力,称为动水力;2.动水力的数学表达式为GD=γwI:3.原因及条件:地下水向上渗流,且GD≥γ。
?其测定方法有哪些?答:1.土体抵抗剪切破坏的极限承载能力,称为土的抗剪强度2.测定方法有:直接剪切试验;三轴剪切试验;无侧限抗压试验;十字板剪切试验;大型直接剪切试验。
有哪几种确定方法?答:1.是指地基土单位面积上所能承受荷载的能力;2.确定方法有:现场载荷试验;理论计算;规范法。