MEMS传感器技术 ppt课件
合集下载
MEMS微传感器在汽车中的应用PPT课件
能的压敏电阻 对环境温度变化敏感
材料生长和制造工艺流程复 杂,不能在高温条件下工作
微传感器的实例(1)——力学
微加速度传感器 微陀螺仪 微压力传感器 微麦克风
在此只重点介绍微加速度传感器。
微加速度传感器
主要用于测量物体运动过程中的加速度:过载、 振动和冲击
压阻式、电容式、压电剪切压阻系数
P型压敏电阻的变化率为 R R ll tt 7.8 1 l 6.3 6 t 1 5 0
N型压敏电阻的变化率为
R R l lt t 3.2 1 l 1.6 7 t 1 5 0
压阻式传感器输出信号的检测一般需要采用惠斯通电桥
R1 R3
R4' R2'
电容式
悬浮支架 加速度
固定支架 导电电极
质量块 衬底
a)垂直敏感电容微加速度计结构
固定支点
加速度 质量块
感应叉指
悬浮支架
b) 水平敏感电容微加速度计结构
电容式加速度计的不同敏感电容
1) 平行板电容式微加速度计
平行板结构电容式 硅 微加速度计虽然具 玻璃 有较高的灵敏度, 玻硅璃 但是其制作需要腐 硅
研1202班
主要内容
微传感器的概念 微传感器的分类 基本敏感原理介绍 微传感器的实例
微传感器的概念
微传感器:基于MEMS工艺的,能把被测物理量 转换为电信号输出的器件,通常由敏感元件和传输 元件组成。
MEMS微传感器原理框图
微传感器的概念
微传感器是今天最广泛使用的MEMS器 件,通常使用集成电路工业中发展起来的 手段和技术来制造,比如微金属版印制技 术、刻蚀技术等,也采用专门为微传感器 制造开发的新技术。
检测质量电极 检测质量
扭转铰链
材料生长和制造工艺流程复 杂,不能在高温条件下工作
微传感器的实例(1)——力学
微加速度传感器 微陀螺仪 微压力传感器 微麦克风
在此只重点介绍微加速度传感器。
微加速度传感器
主要用于测量物体运动过程中的加速度:过载、 振动和冲击
压阻式、电容式、压电剪切压阻系数
P型压敏电阻的变化率为 R R ll tt 7.8 1 l 6.3 6 t 1 5 0
N型压敏电阻的变化率为
R R l lt t 3.2 1 l 1.6 7 t 1 5 0
压阻式传感器输出信号的检测一般需要采用惠斯通电桥
R1 R3
R4' R2'
电容式
悬浮支架 加速度
固定支架 导电电极
质量块 衬底
a)垂直敏感电容微加速度计结构
固定支点
加速度 质量块
感应叉指
悬浮支架
b) 水平敏感电容微加速度计结构
电容式加速度计的不同敏感电容
1) 平行板电容式微加速度计
平行板结构电容式 硅 微加速度计虽然具 玻璃 有较高的灵敏度, 玻硅璃 但是其制作需要腐 硅
研1202班
主要内容
微传感器的概念 微传感器的分类 基本敏感原理介绍 微传感器的实例
微传感器的概念
微传感器:基于MEMS工艺的,能把被测物理量 转换为电信号输出的器件,通常由敏感元件和传输 元件组成。
MEMS微传感器原理框图
微传感器的概念
微传感器是今天最广泛使用的MEMS器 件,通常使用集成电路工业中发展起来的 手段和技术来制造,比如微金属版印制技 术、刻蚀技术等,也采用专门为微传感器 制造开发的新技术。
检测质量电极 检测质量
扭转铰链
MEMS传感器及其应用 ppt课件
微机电系统(Microelectromechanical Systems,MEMS)是将微电子技术与机械 工程融合到一起的一种工业技术,它的操 作范围在微米范围内。比它更小的,在纳 米范围的类似的技术被称为纳机电系统。 MEMS(微机电系统)是指集微型传感器、 执行器以及信号处理和控制电路、接口电 路、通信和电源于一体的微型机电系统。
典型的MEMS压力传感器
典型的MEMS压力传感器管芯(die)结构和电原理如 图7所示,左是电原理图,即由电阻应变片组成的惠斯顿 电桥,右是管芯内部结构图。典型的MEMS压力传感器管 芯可以用来生产各种压力传感器产品,如图8所示。 MEMS压力传感器管芯可以与仪表放大器和ADC管芯封装 在一个封装内(MCM),使产品设计师很容易使用这个 高度集成的产品设计最终产品。
MEMS压力传感器
MEMS压力传感器广泛应用于汽车电子:如 TPMS(轮胎压力监测系统)、发动机机油压力传 感器、汽车刹车系统空气压力传感器、汽车发动 机进气歧管压力传感器(TMAP)、柴油机共轨 压力传感器;消费电子,如胎压计、血压计、橱用 秤、健康秤,洗衣机、洗碗机、电冰箱、微波炉、 烤箱、吸尘器用压力传感器、洗衣机、饮水机、 洗碗机、太阳能热水器用液位控制压力传感器;工 业电子,如数字压力表、数字流量表、工业配料 称重等。
1)影像传感器 简单说就是相机镜头,由于只牵涉到微光学与微电子,没有机械 成份在里头,即便加入马达、机械驱动的镜头,这类的机械零件 也过大,不到「微」的地步,所以此属于光电半导体,属于光 学、 光电传感器。 2)亮度传感器
外界并不清楚iPhone4用何种方式感应环境光亮度,而最简单的实现方式 是用一个光敏电阻,或者,iPhone4直接用影像传感器充当亮度侦测,也 是可行。无论如此,此亦不带机械成份,属于光电类传感器,甚至可能 不是微型的,只是一般光学、光电传感器。
《MEMS设计技术》课件
案例二:MEMS陀螺仪在导航系统中的应用
总结词
MEMS陀螺仪是导航系统中的关键传感 器,具有高精度、小型化和低成本等特 点。
VS
详细描述
MEMS陀螺仪采用微机械加工技术,将陀 螺仪的机械部分和电路部分集成在一个芯 片上,具有体积小、重量轻、成本低等优 点。它能够测量和保持方向信息,广泛应 用于航空、航天、军事等领域。在导航系 统中,MEMS陀螺仪可以提供高精度的角 度信息,用于计算航向、姿态和位置等参 数。
可靠性测试
进行全面的可靠性测试和评估,确保 MEMS器件的稳定性和可靠性。
06
MEMS设计案例分析
案例一:MEMS压力传感器在汽车中的应用
总结词
汽车压力传感器是MEMS技术的重要应用之一,具有高精度、可靠性和稳定性等特点。
详细描述
汽车压力传感器主要用于监测发动机进气歧管压力、燃油压力、气瓶压力等,以确保发动机正常工作 和提高燃油经济性。MEMS压力传感器采用微型机械加工技术,具有体积小、重量轻、功耗低等优点 ,能够实现高精度、快速响应和长期稳定性。
惯性传感器的设计需要综合考 虑材料、工艺和信号处理等因 素,以确保其性能和可靠性。
化学传感器设计
01
化学传感器是用于检测气体或 液体的化学成分的传感器,其 设计需要考虑选择性、灵敏度 、稳定性等因素。
02
常用的化学传感器类型包括电 化学式、光学式和热导式等, 其工作原理和结构各不相同。
03
化学传感器的设计需要综合考 虑材料、工艺和信号处理等因 素,以确保其性能和可靠性。
MEMS的发展历程与趋势
要点一
总结词
MEMS的发展经历了萌芽期、发展期和成熟期三个阶段, 未来将向更小尺寸、更高精度和智能化方向发展。
MEMS技术PPT课件
• 应用研究:如何应用这些MEMS系统也是一门非常重要的学问。人们不仅要开 发各种制造MEMS的技术,更重要的是如何将MEMS器件用于实际系统,并从 中受益。
第17页/共67页
MEMS的分类
• 微传感器:
• 机械类:力学、力矩、加速度、速度、角速度(陀螺)、 位置、流量传感器
• 磁学类:磁通计、磁场计 • 热学类:温度计 • 化学类:气体成分、湿度、PH值和离子浓度传感器 • 生物学类:DNA芯片
第42页/共67页
DMD——应用
第43页/共67页
DMD——应用
第44页/共67页
光开关
微机械1X4光开关
微机械1X8光开关
第45页/共67页
光开关
微机械22光开关
微机械2 2光开关
第46页/共67页
光纤固定结构
• V形槽 • 各种卡紧结构
第47页/共67页
光栅及光栅光谱仪
• 原理 • 不同类型的光栅
外腔激光器、光编码器等
第19页/共67页
MEMS的分类
• 真空微电子器件:它是微电子技术、MEMS技术和真空电子学发展的产物,具有极快的开关速度、非常好 的抗辐照能力和极佳的温度特性。主要包括场发射显示器、场发射照明器件、真空微电子毫米波器件、真 空微电子传感器等
• 电力电子器件:包括利用MEMS技术制作的垂直导电型MOS(VMOS)器件、V型槽垂直导电型 MOS(VVMOS)器件等各类高压大电流器件
• 微惯性传Байду номын сангаас器及微型惯性测量组合能应用于制导、 卫星控制、汽车自动驾驶、汽车防撞气囊、汽车 防抱死系统(ABS)、稳定控制和玩具
• 微流量系统和微分析仪可用于微推进、伤员救护 • MEMS系统还可以用于医疗、高密度存储和显示、
第17页/共67页
MEMS的分类
• 微传感器:
• 机械类:力学、力矩、加速度、速度、角速度(陀螺)、 位置、流量传感器
• 磁学类:磁通计、磁场计 • 热学类:温度计 • 化学类:气体成分、湿度、PH值和离子浓度传感器 • 生物学类:DNA芯片
第42页/共67页
DMD——应用
第43页/共67页
DMD——应用
第44页/共67页
光开关
微机械1X4光开关
微机械1X8光开关
第45页/共67页
光开关
微机械22光开关
微机械2 2光开关
第46页/共67页
光纤固定结构
• V形槽 • 各种卡紧结构
第47页/共67页
光栅及光栅光谱仪
• 原理 • 不同类型的光栅
外腔激光器、光编码器等
第19页/共67页
MEMS的分类
• 真空微电子器件:它是微电子技术、MEMS技术和真空电子学发展的产物,具有极快的开关速度、非常好 的抗辐照能力和极佳的温度特性。主要包括场发射显示器、场发射照明器件、真空微电子毫米波器件、真 空微电子传感器等
• 电力电子器件:包括利用MEMS技术制作的垂直导电型MOS(VMOS)器件、V型槽垂直导电型 MOS(VVMOS)器件等各类高压大电流器件
• 微惯性传Байду номын сангаас器及微型惯性测量组合能应用于制导、 卫星控制、汽车自动驾驶、汽车防撞气囊、汽车 防抱死系统(ABS)、稳定控制和玩具
• 微流量系统和微分析仪可用于微推进、伤员救护 • MEMS系统还可以用于医疗、高密度存储和显示、
MEMS惯性传感器简介演示
04
MEMS惯性传感器的应 用领域
消费电子领域
1 2
移动设备
MEMS惯性传感器在智能手机、平板电脑等移动 设备中发挥重要作用,用于屏幕旋转、游戏控制 以及虚拟现实等功能的实现。
可穿戴设备
惯性传感器在可穿戴设备如智能手表、手环中, 用于计步、姿态识别、定位等功能的实现。
3
智能家居
在智能家居领域,MEMS惯性传感器可用于智能 遥控器的姿态控制、电视等家电设备的自动定向 等。
新型材料在MEMS传感器中的应用
碳纳米管
碳纳米管具有优异的力学、电学和热学性能,可以作为MEMS传感器的敏感材料,提高传 感器的灵敏度、响应速度和稳定性。
二维材料
如石墨烯等二维材料具有超高的载流子迁移率和机械强度,可用于制造高性能、柔性的 MEMS传感器。
复合材料
采用金属、陶瓷与聚合物等复合材料制造MEMS传感器,可以综合各材料的优点,实现传 感器的高性能、低成本和批量化生产。
通过本次PPT演示,我们将 深入探讨MEMS惯性传感器 的技术挑战、市场前景及发 展趋势,希望能够对这一领 域有一个更为全面、深入的 了解,并为相关企业和研究 机构提供有价值的参考。
THANKS
感谢观看
AI算法在传感器中的应用
01
02
03
自适应校准
利用AI算法对传感器进行 自适应校准,实时修正误 差,提高传感器的测量精 度和线性度。
故障诊断与预测
结合传感器数据和AI算法 ,实现传感器的故障诊断 与预测,提前发现潜在问 题,提高系统的可靠性。
智能传感器网络
运用AI算法优化传感器网 络的布局和数据传输,降 低能耗,提高网络整体性 能。
。
惯性传感器定义
MEMS加速度传感器PPT课件
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成
MLOEGMOS
传感器技术
加速度传感器
.
目录
1
简述加速度传感器
2
电阻式加速度传感器
3
电容式加速度传感器
4
其他类型加速度传感器
G. rLoOuGpO3
篇前语
❖ MEMS是什么?加速度传感器与MEMS什么关 系?
▪ 微机电系统(MEMS, Micro-ElectroMechanical System),也叫做微电子机械系统
目前广泛应用制备光学加速度计的
光波导式 迈克尔逊、马赫—曾德等干涉仪的
核心部件都包含3 dB耦合器。
微谐振式
谐振式加速度传感器是一种典型的 微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。
热对流式
微型热对流加速度计是利用封闭空 气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。
•加速度传感器中的分类
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
G. rLoOuGpO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
压阻式加速度传感器
工艺流程
(d)在两面涂上光刻胶作为 湿法刻蚀的梁结构 (e)去除光刻胶以后两面重 新被氧化生成SiO2,随后再 EVG-100覆盖 (f)利用剩下的光刻胶进行刻 蚀然后移除光刻胶
G. rLoOuGpO3
压阻式加速度传感器
工艺流程
(g)等刻蚀完成,对 称梁结构形成
MLOEGMOS
传感器技术
加速度传感器
.
目录
1
简述加速度传感器
2
电阻式加速度传感器
3
电容式加速度传感器
4
其他类型加速度传感器
G. rLoOuGpO3
篇前语
❖ MEMS是什么?加速度传感器与MEMS什么关 系?
▪ 微机电系统(MEMS, Micro-ElectroMechanical System),也叫做微电子机械系统
目前广泛应用制备光学加速度计的
光波导式 迈克尔逊、马赫—曾德等干涉仪的
核心部件都包含3 dB耦合器。
微谐振式
谐振式加速度传感器是一种典型的 微机械惯性器件,基本工作原理是 利用振梁的力频特性,通过检测谐 振频率变化量获取输入的加速度。
热对流式
微型热对流加速度计是利用封闭空 气囊内的自由热对流对加速度敏感 性。两个温度传感器对称地在有气 体的腔体两侧,中间有一个热源。
•加速度传感器中的分类
加速度传感器的原理随其应用而不同,有压阻式,电容式,压 电式,谐振式、伺服式等。
G. rLoOuGpO3
压阻式加速度传感器
压阻式压阻式器件是最早微型化和商业化的一类加速度传感器。基于世界领先的 MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集 成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监 测等领域。
《MEMS技术及其应用》课件
MEMS技术及其应用
欢迎来到《MEMS技术及其应用》PPT课件,我们将介绍MEMS技术的基本原 理和应用领域,以及其未来发展趋势。
什么是MEMS技术
MEMS技术是微电子机械系统(Micro-Electro-Mechanical Systems)的简称。它是一种将微尺寸机械系统、电子 元器件和集成电路技术结合在一起的技术。 MEMS技术的发展历程经历了多年的研究和创新,目前已在许多领域得到广泛应用。 MEMS技术主要应用于传感器、执行器、生物医学、无线通信等领域,为现代科技带来了巨大的进步。
MEMS执行器的应用
MEMS执行器是一种能够通过控制电信号产生机械运动的微小器件,具有高精 度和高响应速度的特点。
MEMS执行器在光学、声学、微流控等领域发挥着重要作用,例如光学开关、 喷墨打印头和微型马达等。
MEMS执行器的典型应用还包括振动马达、微型阀门和微钳等,为各种微机电 系统提供动力和控制。
MEMS感器的应用
MEMS传感器是一种能够转换感知参数为电信号的微小器件,具有体积小、功 耗低和高灵敏度的特点。
MEMS传感器广泛应用于汽车、智能手机、医疗设备等领域,为实时监测、精 确测量和智能控制提供了关键支持。
典型的MEMS传感器应用包括加速度计、陀螺仪、压力传感器等,在自动驾驶、 健康监测等方面具有重要作用。
MEMS技术未来发展趋势
MEMS技术未来的发展方向包括更小尺寸、更低功耗、更高性能、更多功能的 微型器件和系统。
MEMS技术在人工智能、物联网、无人驾驶等领域具有极大的应用前景,将为 社会带来更多便利和创新。
随着MEMS技术的进一步发展,我们可以期待更多智能、高效和可靠的微型设 备的出现。
MEMS技术的基本原理
MEMS技术利用微纳加工艺制造微小的机械结构,并将其与电子元器件集成在一起,形成复杂的功能器件。
欢迎来到《MEMS技术及其应用》PPT课件,我们将介绍MEMS技术的基本原 理和应用领域,以及其未来发展趋势。
什么是MEMS技术
MEMS技术是微电子机械系统(Micro-Electro-Mechanical Systems)的简称。它是一种将微尺寸机械系统、电子 元器件和集成电路技术结合在一起的技术。 MEMS技术的发展历程经历了多年的研究和创新,目前已在许多领域得到广泛应用。 MEMS技术主要应用于传感器、执行器、生物医学、无线通信等领域,为现代科技带来了巨大的进步。
MEMS执行器的应用
MEMS执行器是一种能够通过控制电信号产生机械运动的微小器件,具有高精 度和高响应速度的特点。
MEMS执行器在光学、声学、微流控等领域发挥着重要作用,例如光学开关、 喷墨打印头和微型马达等。
MEMS执行器的典型应用还包括振动马达、微型阀门和微钳等,为各种微机电 系统提供动力和控制。
MEMS感器的应用
MEMS传感器是一种能够转换感知参数为电信号的微小器件,具有体积小、功 耗低和高灵敏度的特点。
MEMS传感器广泛应用于汽车、智能手机、医疗设备等领域,为实时监测、精 确测量和智能控制提供了关键支持。
典型的MEMS传感器应用包括加速度计、陀螺仪、压力传感器等,在自动驾驶、 健康监测等方面具有重要作用。
MEMS技术未来发展趋势
MEMS技术未来的发展方向包括更小尺寸、更低功耗、更高性能、更多功能的 微型器件和系统。
MEMS技术在人工智能、物联网、无人驾驶等领域具有极大的应用前景,将为 社会带来更多便利和创新。
随着MEMS技术的进一步发展,我们可以期待更多智能、高效和可靠的微型设 备的出现。
MEMS技术的基本原理
MEMS技术利用微纳加工艺制造微小的机械结构,并将其与电子元器件集成在一起,形成复杂的功能器件。
MEMS压力传感器原理与应用简介 ppt课件
ppt课件
9
硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅 片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一 个典型的压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2 的电阻应变片电桥电路。当外面的压力经引压腔进入传感器应力杯中,应 力硅薄膜会因受外力作用而微微向上鼓起,发生弹性变形,四个电阻应变 片因此而发生电阻变化,破坏原先的惠斯顿电桥电路平衡,电桥输出与压 力成正比的电压信号。图4是封装IC的硅压阻式压力传感器实物照片。
硅电容式压力传感器利用MEMS技术在硅片上制造出横隔栅状,上 下二根横隔栅成为一组电容式压力传感器,上横隔栅受压力作用向下位 移,改变了上下二根横隔栅的间距,也就改变了板间电容量的大小(图 5)。电容式压力传感器实物如图6。
图5 电容式压力传感器结构
ppt课件
图6 电容式压力传感器实物
13
4 MEMS压力传感器的应用
ppt课件
17
ppt课件
18
ppt课件
19
国内外主要供应商
1) 2) 3) 4) 5)
意法半导体(STM) 博世(bosch) 飞思卡尔(freescale) 敏芯微电子技术有限公司 北京青鸟元芯微系统科技有限责任公司
ppt课件
20
结束语
当前 ,MEMS技术正处于高速发展前夕 , 21世纪会展现一个大发展的局面 ,它的广泛应 用和效益将强有力地显示出来 ,它对信息、航 空、航天、自动控制、医学、生物学、力学、 热学、光学、近代物理和工程学等诸领域发 展的影响将是深远的 ,人类的生产和生活方式 也会因此而发生重大改变
17ppt课件18ppt课件19ppt课件国内外主要供应商?1意法半导体stm?2博世bosch?3飞思卡尔freescale?4敏芯微电子技术有限公司?5北京青鸟元芯微系统科技有限责任公司20ppt课件结束语?当前mems技术正处于高速发展前夕21世纪会展现一个大发展的局面它的广泛应用和效益将强有力地显示出来它对信息航空航天自动控制医学生物学力学热学光学近代物理和工程学等诸领域发展的影响将是深远的人类的生产和生活方式也会因此而发生重大改变21ppt课件22p式压力传 感器和硅电容式压力传感器,两者都是在硅 片上生成的微机械电子传感器。
《MEMS微电感》课件
应用领域
01
通信领域
用于无线通信、卫星通信、雷达等高频信号处理系统。
02
能源领域
用于微型电源、储能系统等。
03
生物医学领域
用于生物传感器、医学诊断和治疗等。
02 MEMS微电感的设计与制造
设计流程
A
需求分析
明确MEMS微电感的应用场景和性能要求,如 工作频率、Q值、尺寸等。
原理图设计
根据需求,设计MEMS微电感的原理图, 包括结构、形状、尺寸等。
B
C
仿真优化
利用仿真软件对设计的MEMS微电感进行性 能分析和优化,提高性能参数。
版图绘制
将原理图转化为制版图,为后续制造提供依 据。
D
材料选择
01
02
03
材料类型
选择适合MEMS微电感制 造的材料,如单晶硅、多 晶硅、氮化硅等。
材料纯度
确保所选材料的纯度,以 满足MEMS微电感的性能 要求。
材料特性
《MEMS微电感》 PPT课件
目录
• MEMS微电感简介 • MEMS微电感的设计与制造 • MEMS微电感的性能测试与评估 • MEMS微电感的发展趋势与挑战 • MEMS微电感的应用案例
01 MEMS微电感简介
定义与特性
定义
MEMS微电感是指利用微电子机械系 统(MEMS)技术制作的微型电感器 。
案例二:MEMS传感器
总结词
MEMS传感器是利用微电感技术实现传感器功能的重要应用,具有高精度、高可靠性、低功耗等优点 。
详细描述
MEMS传感器利用微电感作为敏感元件,可以感知温度、压力、磁场、加速度等物理量,广泛应用于 汽车、医疗、航空航天等领域。MEMS传感器的精度和可靠性高,能够提供准确的测量数据,并且具 有低功耗的特点,能够延长设备的续航时间。
MEMS倾角传感器PPT课件
微小变化转换为与其成正比的电压的变化。
电容式加速度微传感器
电容式加速度传感器具有温度效应小,功率损
耗低,灵敏度相对较高(可达),结
构比较简单,加工工艺不复杂等突出优点,同
时,动态特性好,抗过载能力强。但外界加速
度仅能引起微小的电容变化(通常在10-15量级
甚至更低),测试方法复杂。
电容式加速度微传感器工作原理
足机械特定需求的数字式角度测量装置。
END
Thanks!
的过程中,依次经过下部和上部的热线。若忽略气体上升过程
中克服重力的能量损失,则穿过上部热线的气流已经与下部热
线的产生热交换,使穿过两根热线时的气流速度不同,这时
V2′>V2,因此流过两根热线的电流也会发生相应的变化,所
以电桥失去平衡,输出一个电信号。
固、液、气体摆性能比较
在重力场中,固体摆的敏感质量是摆锤质量,液体摆的敏感质
体积小、功耗低、响应速度快和高可靠的传
感元件, 已经广泛应用于工程机械领域。
倾角传感器分类及其原理
根据原理分类
“固体摆”式倾角传
感器
倾角传感器
“液体摆”式倾角传感
器
“气体摆”式倾角传感
器
“固体摆”式倾角传感器
固体摆在设计中广泛采用
力平衡式伺服系统,如图
所示,其由摆锤、摆线、
支架组成, 摆锤受重力G
目录
➢
➢➢➢➢来自倾角传感器简介倾角传感器分类及其原理
电容式加速度微传感器
倾角传感器测量原理
总结
倾角传感器简介
在建筑施工或道路铺修中, 经常要对工程机
械或机架装置进行调平校准, 并且要对施工
质量进行检测, 这时遇到最多的问题就是水
电容式加速度微传感器
电容式加速度传感器具有温度效应小,功率损
耗低,灵敏度相对较高(可达),结
构比较简单,加工工艺不复杂等突出优点,同
时,动态特性好,抗过载能力强。但外界加速
度仅能引起微小的电容变化(通常在10-15量级
甚至更低),测试方法复杂。
电容式加速度微传感器工作原理
足机械特定需求的数字式角度测量装置。
END
Thanks!
的过程中,依次经过下部和上部的热线。若忽略气体上升过程
中克服重力的能量损失,则穿过上部热线的气流已经与下部热
线的产生热交换,使穿过两根热线时的气流速度不同,这时
V2′>V2,因此流过两根热线的电流也会发生相应的变化,所
以电桥失去平衡,输出一个电信号。
固、液、气体摆性能比较
在重力场中,固体摆的敏感质量是摆锤质量,液体摆的敏感质
体积小、功耗低、响应速度快和高可靠的传
感元件, 已经广泛应用于工程机械领域。
倾角传感器分类及其原理
根据原理分类
“固体摆”式倾角传
感器
倾角传感器
“液体摆”式倾角传感
器
“气体摆”式倾角传感
器
“固体摆”式倾角传感器
固体摆在设计中广泛采用
力平衡式伺服系统,如图
所示,其由摆锤、摆线、
支架组成, 摆锤受重力G
目录
➢
➢➢➢➢来自倾角传感器简介倾角传感器分类及其原理
电容式加速度微传感器
倾角传感器测量原理
总结
倾角传感器简介
在建筑施工或道路铺修中, 经常要对工程机
械或机架装置进行调平校准, 并且要对施工
质量进行检测, 这时遇到最多的问题就是水
MEMS课件 第二章微传感器1(清华)
• 可变电容器有变极距型、变面积型和变 介电常数型三种基本方式。微型压力传 感器一般采用变极距型。
电容式微型压力传感器基本结构
电极 硅
玻璃
微硅薄膜在压力作用下产生变形,使硅膜电极向固定电 极移动,两电极间的电容产生变化。
电容式传感器基本公式
两电极间的初始电容为:
C0
S
d
受压时的电容变化与电极的位移有以下关系:
• 压阻式微型压力传感器利用半导体材料的压阻 效应,即材料受到应力作用时,其电阻或电阻 率会发生变化。
压阻式微型压力传感器基本结构
压敏电阻 硅
玻璃
压阻式传感器基本公式
R R LL(12) / LL
其中: R——电阻值 R——电阻值的变化 L——电阻长度 L——电阻长度的变化 ρ——电阻率 ρ——电阻率的变化 ν——泊松比
压敏电阻
RRll tt
硅
玻璃
其中:
πl , πt——沿电阻纵向和横向的压阻系数 σl , σt——沿电阻纵向和横向的应力
压敏电阻的分布形式
在硅膜的一定晶向、位置上扩散上传感器。
压阻式微型压力传感器的例子(1)
IC Sensor公司的压阻式压力传感器
压阻元件
加速度方向
质量块
压阻式加速度计基本公式
R
R
lL(x)
(x)6mab(hl2x)
其中: R ——总电阻值的变化 πl——沿某晶向L的压阻系数 σ——在x点沿该晶向L的应力 m——质量块的质量 a——加速度 l, b, h——梁的长、宽、厚
压阻式微型加速度计例
美国IC Sensor公司生产的压阻式加速度计
机 • 其它:高度计、真空计等
2. 微型惯性传感器
电容式微型压力传感器基本结构
电极 硅
玻璃
微硅薄膜在压力作用下产生变形,使硅膜电极向固定电 极移动,两电极间的电容产生变化。
电容式传感器基本公式
两电极间的初始电容为:
C0
S
d
受压时的电容变化与电极的位移有以下关系:
• 压阻式微型压力传感器利用半导体材料的压阻 效应,即材料受到应力作用时,其电阻或电阻 率会发生变化。
压阻式微型压力传感器基本结构
压敏电阻 硅
玻璃
压阻式传感器基本公式
R R LL(12) / LL
其中: R——电阻值 R——电阻值的变化 L——电阻长度 L——电阻长度的变化 ρ——电阻率 ρ——电阻率的变化 ν——泊松比
压敏电阻
RRll tt
硅
玻璃
其中:
πl , πt——沿电阻纵向和横向的压阻系数 σl , σt——沿电阻纵向和横向的应力
压敏电阻的分布形式
在硅膜的一定晶向、位置上扩散上传感器。
压阻式微型压力传感器的例子(1)
IC Sensor公司的压阻式压力传感器
压阻元件
加速度方向
质量块
压阻式加速度计基本公式
R
R
lL(x)
(x)6mab(hl2x)
其中: R ——总电阻值的变化 πl——沿某晶向L的压阻系数 σ——在x点沿该晶向L的应力 m——质量块的质量 a——加速度 l, b, h——梁的长、宽、厚
压阻式微型加速度计例
美国IC Sensor公司生产的压阻式加速度计
机 • 其它:高度计、真空计等
2. 微型惯性传感器
MEMS传感器技术 ppt课件
几种常见的MEMS传感器
微机械位移控制器
微机械位移控制器的主要应用是计算机 硬盘的磁头定位系统, 硬盘的磁道密度很 快将达到0. 25μm/ 道,此时对应的移动定 位精度是0. 025μm ,这时解决磁头移动控 制的办法是在现有位置控制系统上附加 一个微机械次级控制系统。
MEMS的基本介绍
MEMS(微机电系统),同时也是一门技术, 是在一个硅基板上,微米范围内集成了 微型传感器、执行器以及信号处理和控 制电路、接口电路、通信和电源于一体 的微型机电系统的高新技术。
MEMS的基本介绍
MEMS又是一种产业,采用ME空微电子器件、电 力电子器件等在航空、航天、汽车、农 业、生物医学、环境监控、军事以及几 乎人们所接触到的所有领域中都有着十 分广阔的应用前景。
MEMS的基本分类
MEMS一般可以以其核心元件分为两类: 传感型MEMS、致动型MEMS。
传感型MEMS
能量供给
输入信号
微传感元件
传输单元
输出信号
致动型MEMS
能量供给
输出动作
微致动元件
传输单元
几种常见的MEMS传感器
微压力传感器
微机械压力传感器是最早开始研制的微机械产 品,也是微机械技术中最成熟、最早开始产业化 的产品。从信号检测方式来看, 微压力传感器 可分为压阻式和电容式两类, 分别以体微机械 加工技术和牺牲层技术为主制造;从敏感膜结构 来看,微压力传感器可分为圆形、方形、矩形、 E 形等多种结构。
MEMS的加工方法
微机械加工方法LIGA 微机械加工方法LIGA以德国为代表,LIGA~IY法 是指采用同步x射线深层光刻、注塑复制和微 电铸制模等主要工艺步骤组成的一种综合性微 机械加工技术。LIGA技术首先采用同步X射线 光刻技术光刻出所要生产的图形,然后采用电 铸的方法加工出与光刻图形相反的金属模具撮 后采用微塑注来制备微机械结构。
《光电检测技术》课件-mems传感器第二节
S4-14. mems器件
mems已经在光衰减器、光学开关、光电力学、 光学系统调谐及集成、光学扫描、光电图像传感 器方面获得了越来越多的应用。
2023/4/26
1
(MEMS)机械式光开关
MEMS:Micro Electronic and Mechanical System 利用硅材料和微电子加工技术制作的微机械装置
•驱动结构极为复杂
4
基于微镜式MEMS(二维)
2023/4/26
4×4
4×4组成的8×8
5
基于微镜式MEMS
2023/4/26
6
其它方式MEMS
2023/4/26
7
(MEMS)微机电系统型
微机电系统型光衰减器是利用MEMS技术制造光 衰减器的精密部分,然后再将他们精密的组装起 来。它实际上也是一种机械式的光衰减器。
于永磁铁形成的磁场中,正面的驱动线圈通过位于绝缘层下的连接线和 Rogowski线圈串联成回路,背面的反射镜面与双光纤准直器相对且初始偏角为 零度,mems扭转微镜与双光纤准直器封装在一起并加以电磁屏蔽。
2023/4/26
9
mems-OCS工作过程包括电磁感应-机械振动-光学检测 三个步骤。根据电磁感应原理,Rogowski线圈将交变大电 流信号转变为低电压信号,再以交变小电流的形式引入到 与之串联的mems驱动线圈内,驱动线圈在永磁铁的磁场力 矩作用下使微镜绕扭转梁振动,双光纤准直器与mems扭转 微镜背面的镜面形成反射光路,镜面扭转使反射光束的方 向发生改变,从而对耦合到光纤中的能量进行调制,因此 通过对输出光损耗峰值的检测可以确定镜面转角幅度,继 而获取电流幅值信息。
优点:在硅基体上制造,使用相当标准的半导体 工艺 ,因此可以低成本大批量自动化生产
mems已经在光衰减器、光学开关、光电力学、 光学系统调谐及集成、光学扫描、光电图像传感 器方面获得了越来越多的应用。
2023/4/26
1
(MEMS)机械式光开关
MEMS:Micro Electronic and Mechanical System 利用硅材料和微电子加工技术制作的微机械装置
•驱动结构极为复杂
4
基于微镜式MEMS(二维)
2023/4/26
4×4
4×4组成的8×8
5
基于微镜式MEMS
2023/4/26
6
其它方式MEMS
2023/4/26
7
(MEMS)微机电系统型
微机电系统型光衰减器是利用MEMS技术制造光 衰减器的精密部分,然后再将他们精密的组装起 来。它实际上也是一种机械式的光衰减器。
于永磁铁形成的磁场中,正面的驱动线圈通过位于绝缘层下的连接线和 Rogowski线圈串联成回路,背面的反射镜面与双光纤准直器相对且初始偏角为 零度,mems扭转微镜与双光纤准直器封装在一起并加以电磁屏蔽。
2023/4/26
9
mems-OCS工作过程包括电磁感应-机械振动-光学检测 三个步骤。根据电磁感应原理,Rogowski线圈将交变大电 流信号转变为低电压信号,再以交变小电流的形式引入到 与之串联的mems驱动线圈内,驱动线圈在永磁铁的磁场力 矩作用下使微镜绕扭转梁振动,双光纤准直器与mems扭转 微镜背面的镜面形成反射光路,镜面扭转使反射光束的方 向发生改变,从而对耦合到光纤中的能量进行调制,因此 通过对输出光损耗峰值的检测可以确定镜面转角幅度,继 而获取电流幅值信息。
优点:在硅基体上制造,使用相当标准的半导体 工艺 ,因此可以低成本大批量自动化生产
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS的加工方法
MEMS,微电子机械系统采用传统的机械 加工艺、软x射线深层光刻电铸成型工艺 和半导体硅微机加工工艺等来制作微尺 度的机械、电子、流体、光学、生物及 其它一些器件。制作微电子机械系统的 主流技术是硅微机械加工工艺,它越来 越多地用于微电子机械系统的加工中。 下面是其三种常用的加工方法:
MEMS的加工方法
传统超精密加工方法 传统的机械加工方法以日本为代表,超精密机 械加工是日本研究微电子机械系统的重点。它 主要是传统机械加工的微型化,这种加工方法 就是用大机器来制造小机器,然后再利用小机 器制造出微机器,这种加工方法加工出来的电 子机械适用于在特殊场合的应用,例如微型工 作台、微型机械手等。
华南农业大学博士生现代测试技术期终作业
MEMS传感器技术
内容提要
MEMS的基本介绍 MEMS的加工方法 MEMS的基本分类 几种常见的MEMS传感器 MEMS在农业上的应用 相关参考文献
MEMS的基本介绍
一门 科学
MEMS 一门 技术 一门 产业
MEMS的基本介绍
MEMS(Micro-Electro-Mechanical Systems) 是微机电系统的缩写,它是以机械学、 电子学和计算机软件技术融合而成的一 门新兴交叉学科。
几种常见的MEMS传感器
微加速度传感器 硅微加速度传感器在过去十年里发展很快, 是 继微压力传感器之后第二个进入市场的微机械 传感器。微加速度传感器有很多种类型, 目前 最有吸引力的是电容式力平衡加速度计, 其典 型产品是Kuehnel 等人1994 年报道的A GXL 50 型。系统分为四个部分: 质量块、检测电容、 力平衡执行器和信号处理电路, 均被集成在 3mm ×3mm 的硅片上, 其中机械部分采用表 面微机械工艺制作, 电路部分利用BiCMOS IC 技术制作。
几种常见的MEMS传感器
微机械陀螺仪 微机械陀螺仪是另一种惯性微机械器件, 它在 诸如汽车牵引控制系统、行驶稳定系统,摄像机 稳定系统, 飞机稳定系统, 计算的惯性鼠标以及 机器人、军事等领域均有广泛的应用前景。微 机械陀螺仪的结构与常见陀螺仪差别很大, 常 见的结构有双平衡环结构、悬臂梁结构、音叉 结构、振动环结构等几种,其中最先进的是振动 环结构。
MEMS的基本分类ME NhomakorabeaS一般可以以其核心元件分为两类: 传感型MEMS、致动型MEMS。
传感型MEMS
能量供给
输入信号
微传感元件
传输单元
输出信号
致动型MEMS
能量供给
输出动作
微致动元件
传输单元
几种常见的MEMS传感器
微压力传感器 微机械压力传感器是最早开始研制的微机械产 品,也是微机械技术中最成熟、最早开始产业化 的产品。从信号检测方式来看, 微压力传感器 可分为压阻式和电容式两类, 分别以体微机械 加工技术和牺牲层技术为主制造;从敏感膜结构 来看,微压力传感器可分为圆形、方形、矩形、 E 形等多种结构。
MEMS的加工方法
微机械加工方法LIGA 微机械加工方法LIGA以德国为代表,LIGA~IY法 是指采用同步x射线深层光刻、注塑复制和微 电铸制模等主要工艺步骤组成的一种综合性微 机械加工技术。LIGA技术首先采用同步X射线 光刻技术光刻出所要生产的图形,然后采用电 铸的方法加工出与光刻图形相反的金属模具撮 后采用微塑注来制备微机械结构。
几种常见的MEMS传感器
微机械位移控制器 微机械位移控制器的主要应用是计算机 硬盘的磁头定位系统, 硬盘的磁道密度很 快将达到0. 25μm/ 道,此时对应的移动定 位精度是0. 025μm ,这时解决磁头移动控 制的办法是在现有位置控制系统上附加 一个微机械次级控制系统。
MEMS的加工方法
半导体硅微机械加工方法 半导体硅微机械加工方法与传统微电子器件工 艺兼容,这种加工方法以美国为代表。它利用 集成电路工艺技术或化学腐蚀对硅基材料进行 加工,加工成硅基微电子机械系统的器件,它 可以实现微电子与微机械的系统集成,非常适 合于批量生产,已经成为微电子机械系统的主 流技术。
MEMS的基本介绍
MEMS(微机电系统),同时也是一门技术, 是在一个硅基板上,微米范围内集成了 微型传感器、执行器以及信号处理和控 制电路、接口电路、通信和电源于一体 的微型机电系统的高新技术。
MEMS的基本介绍
MEMS又是一种产业,采用MEMS技术制 作的微传感器、微执行器、微型构件、 微机械光学器件、真空微电子器件、电 力电子器件等在航空、航天、汽车、农 业、生物医学、环境监控、军事以及几 乎人们所接触到的所有领域中都有着十 分广阔的应用前景。
几种常见的MEMS传感器
微机械陀螺仪
几种常见的MEMS传感器
微机械陀螺仪
单轴MEMS偏航陀螺仪工作原理图
几种常见的MEMS传感器
微机械陀螺仪 微机械陀螺仪的设计和工作原理可能各种各样,但是 公开的微机械陀螺仪均采用振动物体传感角速度的概 念。利用振动来诱导和探测科里奥利力而设计的微机 械陀螺仪没有旋转部件、不需要轴承,已被证明可以 用微机械加工技术大批量生产。 绝大多数微机械陀螺 仪依赖于由相互正交的振动和转动引起的交变科里奥 利力。振动物体被柔软的弹性结构悬挂在基底之上。 整体动力学系统是二维弹性阻尼系统,在这个系统中 振动和转动诱导的科里奥利力把正比于角速度的能量 转移到传感模式。
几种常见的MEMS传感器
微加速度传感器
几种常见的MEMS传感器
微加速度传感器
微加速度传感器原理图
几种常见的MEMS传感器
微加速度传感器 随后Zimmermann 等人报道了利用SIMOX SOI 芯片制作的类似结构的微加速度传感器,另外 Chan 等人还报道了测量范围在5g 和1g 的改 进型的力平衡式加速度计。这种传感器在汽车 的防撞气袋控制等领域有着广泛应用,而且成 本较低(在15 美元以下) ,因而引起了产业界 极大的兴趣和投资热情。
几种常见的MEMS传感器
微压力传感器
几种常见的MEMS传感器
微压力传感器
微压力传感器原理图
几种常见的MEMS传感器
微压力传感器 目前微机械压力传感器的主要发展方向: 一是扩展其在汽车、工业测量控制、医 疗仪器等方面的应用, 加速产业化进程; 二是将压敏器件与信号处理、校准、补 偿、微控制单元进行单片集成, 以形成智 能化的压力传感器。