传感器技术基础课件重点
合集下载
《传感器介绍》课件

压力传感器
用于测量液体或气体的压力, 广泛应用于汽车、工业和医疗 设备。
光线传感器
测量光的强度和光谱,用于照 明、自动化和电子设备。
位置传感器
检测物体的位置和运动,用于 机器人、船舶和航空航天领域。
传感器如何工作?
1
传感器的基本原理
传感器利用物理、化学或其他原理感知并测量外部量,如电阻、电流或频率。
什么是传感器?
传感器是一种能够感知并测量外部物理量、化学量或其他特定信息的器件。 它们可靠地将这些信息转换为与之相关的电信号或数字信号,用于监测、控 制和应用。
传感器的应用
温度传感器
用于监测和控制温度,广泛应 用于工业、医疗和家居领域。
湿度传感器
测量空气中的湿度,用于气象、 农业和建筑领域的监测和控制。
1 传感器的作用
2 传感器的应用
传感器起着感知和测量外部信息的关键作用, 为现实世界与数字世界的交互提供基础。
传感器应用广泛,涵盖温度、湿度、压力、 光线等多个领域,为各行各业提供关键数据。
3 传感器的原理
传感器基于不同的物理或化学原理工作,将 外部信息转换为电信号或数字信号。
4 传感器的未来
传感器的发展将继续创新和突破,促进科技 和社会的进步与发展。
传感器的未来发展
传感器的发展趋势
新型传感器技术的出现,如纳 米传感器和柔性传感器,将拓 展传感器应用的边界。
传感器的应用前景
智能城市、医疗健康、工业自 动化等领域将成为传感器应用 的重点开发方向。
传感器的未来发展方向
传感器将更加小型化、智能化, 并融合其他技术,实现更广泛 的应用和更高的性能。
总结
Байду номын сангаас
传感器技术 PPT课件

•传感器节点被用于各种不同的应用中,因此节点硬件和软件的设计必须
具有灵活性和扩展性
•节点的硬件设计需满足一定的标准接口,例如节点和传感板的接口统 一有利于给节点安装上不同功能的传感器
•软件的设计必须是可剪裁的,能够根据不同应用的需求,安装不同功能
的软件模块
大规模长时间部署传感器的设计需求
鲁棒性
•鲁棒性是实现传感器网络长时间部署的重要保障
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
号和通过数字信号,选择是否需要外部模数转 换器和额外的校准技术。
常用传感器及其关键特性
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
3.5 硬件平台
微处理器
微处理器是无线传感节点中负责计算的核心 ,目前 的微处理器芯片同时也集成了内存、闪存、模数转
低功耗
•在硬件设计上采用低功耗芯片
例如TelosB节点使用的微处理器,在正常工作状态下功率为3mW,而一
般的计算机的功率为200到300W
•软件节能策略来实现节能
软件节能策略的核心就是尽量使节点在不需要工作的时候进入低
功耗模式,仅在需要工作的时候进入正常状态
大规模长时间部署传感器的设计需求
灵活性与扩展性
•通信芯片的传输距离是选择传感节点的重要指标。
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
发射功率越大,接受灵敏度越高,信号传输距离越远。
•常用通信芯片: •CC1000:可工作在433MHz,868MHz和915MHz;
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
具有灵活性和扩展性
•节点的硬件设计需满足一定的标准接口,例如节点和传感板的接口统 一有利于给节点安装上不同功能的传感器
•软件的设计必须是可剪裁的,能够根据不同应用的需求,安装不同功能
的软件模块
大规模长时间部署传感器的设计需求
鲁棒性
•鲁棒性是实现传感器网络长时间部署的重要保障
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
号和通过数字信号,选择是否需要外部模数转 换器和额外的校准技术。
常用传感器及其关键特性
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
3.5 硬件平台
微处理器
微处理器是无线传感节点中负责计算的核心 ,目前 的微处理器芯片同时也集成了内存、闪存、模数转
低功耗
•在硬件设计上采用低功耗芯片
例如TelosB节点使用的微处理器,在正常工作状态下功率为3mW,而一
般的计算机的功率为200到300W
•软件节能策略来实现节能
软件节能策略的核心就是尽量使节点在不需要工作的时候进入低
功耗模式,仅在需要工作的时候进入正常状态
大规模长时间部署传感器的设计需求
灵活性与扩展性
•通信芯片的传输距离是选择传感节点的重要指标。
设计需求回顾
•低成本与微型化 •低功耗 •灵活性与扩展性 •鲁棒性
发射功率越大,接受灵敏度越高,信号传输距离越远。
•常用通信芯片: •CC1000:可工作在433MHz,868MHz和915MHz;
无线传感器组成
•传感器 •微处理器 •无线通信芯片 •电池
《认识常见的传感器》课件

传感器在物联网中的应用
物联网传感器
物联网的发展离不开传感器技术的支持,传感器在智能家居、智能交通、智能农业等领 域的应用越来越广泛,为人们的生活和工作带来了便利。
物联网传感器发展趋势
随着物联网技术的不断进步,传感器将朝着更低功耗、更小体积、更高可靠性和更低成 本的方向发展。
传感器与其他技术的融合发展
详细描述
传感器可以监测人体的血压、血糖、 血氧饱和度等生理参数,以及检测癌 症标志物、病毒等,为医生提供快速 准确的诊断结果。
智能家居
总结词
在智能家居领域,传感器用于实现智能化控制和提升居住体验。
详细描述
传感器可以检测室内温度、湿度、光照、空气质量等环境参数,以及家庭成员的行动和习惯,实现智能化的家居 环境调节和节能控制。
《认识常见的传感器 》ppt课件
目录
• 传感器概述 • 常见传感器介绍 • 传感器的工作原理与特性 • 传感器的应用领域 • 未来传感器技术展望
01 传感器概述
传感器的定义与分类
定义
传感器是一种检测装置,能感受到被测量的信息,并能将感 受到的信息,按一定规律变换成为电信号或其他所需形式的 信息输出,以满足信息的传输、处理、存储、显示、记录和 控制等要求。
03 传感器的工作原理与特性
传感器的转换原理
电阻式传感器
利用电阻随环境变化而 变化的特性,将非电量 转换为电信号。
电容式传感器
利用电容器极板间电容 随环境变化而变化的特 性,将非电量转换为电 信号。
电感式传感器
利用线圈的电感随环境 变化而变化的特性,将 非电量转换为电信号。
磁电式传感器
利用磁电感应原理,将 非电量转换为电信号。
总结词
传感器原理及应用PPT教程课件专用

湿度传感器
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
湿度传感器能够监测室内湿度变化,与加湿器、除湿器等设备配合,保持室内湿度在适宜 范围内,避免潮湿或干燥对家居环境和人体健康的影响。
光照传感器
光照传感器能够感知室内光线强弱,与照明设备联动,实现室内光线的自动调节。同时, 还可用于窗帘、百叶窗等设备的自动控制,提高室内采光效果。
未来发展趋势预测
传感器应用领域
医疗领域
用于监测人体生理参数,如体 温、血压、心率等,以及医疗 设备中的控制和检测。
智能家居
用于实现家庭环境的智能化控 制,如温度控制、照明控制等。
工业自动化
用于检测和控制生产过程中的 各种参数,如温度、压力、流 量等。
环保领域
用于监测大气、水质等环境参 数,为环境保护提供数据支持。
传感器与通信接口的电路 设计
介绍传感器与通信接口之间的 电路设计,包括信号调制、解 调、编码、解码等。
接口电路设计的实例分析
通过具体案例,分析接口电路 设计的实现过程及效果。
06 传感器在物联网和智能家 居中应用展望
物联网中传感器作用及发展趋势
物联网中传感器的作用
物联网中的传感器是实现万物互联的基础, 它们能够感知和测量各种物理量,如温度、 湿度、压力、光照等,并将这些数据转换为 可处理和传输的数字信号,为物联网应用提 供实时、准确的数据支持。
新型传感器的研发
针对特定应用场景和需求,未来将研发更多新型传感器。例如,柔性传感器、生物传感器、化学传感器 等,它们将具有更高的灵敏度、选择性和稳定性,为物联网和智能家居等领域的发展提供有力支持。
THANKS FOR WATCHING
感谢您的观看
牌和型号。
注意传感器的尺寸、重量、 安装方式等是否符合应用场
传感器技术全套课件

A
T
hf
I G
B T0 热电偶
mV
光电池 R R U0
f
Q
+ –
+ –
+ –
+ –
+ –
RT
R0
压电传感器
Ui 热敏电阻传感器
1.3 传感器的分类与要求分类
一.分类 1.按输入量分类 常用的有机、光、电和化学等传感器。 例如:位移、速度、加速度、力、温度和流量传感 器等 2. 按输出量分类 参数式:电阻、电感、电容、频率和离子传感器 发电式:压电式、霍尔式、光电和热电式传感器 3. 按输出信号的性质分类 模拟式传感器和数字式传感器。
人与机器的机能对应关系图
外 界 对 象
感官
人脑
肢体
传感器
微机
执行器
例2 粮仓温度、湿度检测
无论是金属粮仓还是土仓,为防止霉变,粮 食都是分层存放,仓内温度和湿度不能过高,为 此,需在各层安放温湿度传感器进行检测。装有 温湿度探头的粮仓示意图如下。
将各层探头输出接至温湿度巡检仪上,通过 巡检仪监视器监视各点温湿度情况。通过通风口 保持温湿度在要求范围内。
二. 一般要求
1、稳定性、可靠性 一般用平均无故障时间来衡量稳定性、可靠性。 在计量、工业生产等领域中稳定性、可靠性至关重 要。 2、静态精度 测静态量,传感器精度应满足系统的精度要求。 3、动态性能 测动态量,如响应速度、工作频率、稳定时间等。 4、量程 测量被测量的范围。一般量程越大,精度越低。
用辐射温度计测量热轧带钢表面温度的方法巳被广泛 采用。从加热炉出来的钢坯最后到卷取机之前的整个 轧制线上,如加热炉出口、粗轧机的入口和出口、精 轧机的入口和出口以及在卷取机之前都设有辐射温度 计,用以测量各阶段带钢的表面温度。并用此温度信 号来控制轧制速度、轧辊压下力和冷却水流量等。
传感器基础知识培训 ppt课件

ppt课件
17
大距离接近IM-L系列
IM-L系列接近开关检测距离是常规产品的一倍,使用更方便,是高 端客户的至爱。 产品适用电压范围宽,浪涌、过流、反接等保护功能齐全。
ppt课件
18
ppt课件
19
光电传感器
• 在各类开关中,有一种对接近它物件有“感知”能力的元件— 位移传感器。利用位移传感器对接近物体的敏感特性达到控制 开关通或断的目的 ,这就是接近开关。
接近传感器
• 电感式接近开关 • 电容式接近开关 • 霍尔式接近开关 • 舌簧式接近开关
光学传感器
• 对射式光电开关 • 漫反射式光电开关 • 反馈反射式光电开关 • 定距离式光电开关 • 色标传感器 • 光钎传感器 • 光幕传感器
ppt课件
其他传感器
• 超声波传感器 • 温湿度传感器 • 倾斜传感器 • 加速度传感器 • 气体传感器 • PH传感器 • ......
请
单
击
滑
传感器
块
接电源-
ppt课件
41
三线 PNP常开输出
特点:相对于两线工作更稳定可靠。
接电源+
客户负载 输出电平01
请
单
击
滑
传感器
块
接电源-
ppt课件
42
三线 PNP常闭输出
特点:相对于两线工作更稳定可靠。
接电源+
客户负载 输出电平10
请
单
击
滑
传感器
块
接电源-
ppt课件
43
• 若被测物体为导磁材料或者为了区别和它在一同运动的物体而把磁钢埋在被测 物体内时,应选用霍尔接近开关。
• 若是用在气动、液动、汽缸等设备上时,当然是选用舌簧接近开关。
传感器技术ppt课件

• 电压衰减---是接近开关接通负载后(负载电流为Ie时)开关两端的电压值; • 空载电流---是指在没有负载时,测量所得的传感器自身所消耗的电流; • 剩余电流(漏电流)---是接近开关断开时,流过负载的电流;
8
第一章 感应式接近开关
输出电路:(直流三线型)
NPN型
棕色(BN)
PNP型
棕色(BN)
21
目录
第三章 光电开关
第一节、简 介 第二节、漫反射型光电开关 第三节、反光板型光电开关 第四节、对射型光电开关
22
第三章 光电开关
第一节 简介 光电开关利用光强度的变化转换成电信号的变化来实现控制的
目的。
23
第三章 光电开关
基本工作原理
目标物
发射器
控制电路
1 0
1
0
接收器
信号处理电路 输出电路
第三节 热电阻 热电阻常用于低温测量(测温范围:-200-500℃)。
工作原理: 热电阻是由一种对温度非常敏感的金属材料构成。自身电阻随温度 变化而变化(电阻增加或减少),输出信号:电阻。
电气符号
39
第四章 温度传感器
第三节 热电阻 分类:
热电阻分正温度系数和负温度系数。 正温度系数:热电阻 阻值随着温度的升高而增大; 负温度系数:热电阻 阻值随着温度的升高而减小;
近开关的工作电压及输出电流需 通过计算确定串联开关的数量。
总压降 U总降= U降 * n; 额定电流Ie串= Ie - Io * n
U降----单个接近开关的电压衰减值; Ie----单个接近开关的额定电流;
n----串联接近开关数量;
13
第一章 感应式接近开关
多开关并联接线图:
8
第一章 感应式接近开关
输出电路:(直流三线型)
NPN型
棕色(BN)
PNP型
棕色(BN)
21
目录
第三章 光电开关
第一节、简 介 第二节、漫反射型光电开关 第三节、反光板型光电开关 第四节、对射型光电开关
22
第三章 光电开关
第一节 简介 光电开关利用光强度的变化转换成电信号的变化来实现控制的
目的。
23
第三章 光电开关
基本工作原理
目标物
发射器
控制电路
1 0
1
0
接收器
信号处理电路 输出电路
第三节 热电阻 热电阻常用于低温测量(测温范围:-200-500℃)。
工作原理: 热电阻是由一种对温度非常敏感的金属材料构成。自身电阻随温度 变化而变化(电阻增加或减少),输出信号:电阻。
电气符号
39
第四章 温度传感器
第三节 热电阻 分类:
热电阻分正温度系数和负温度系数。 正温度系数:热电阻 阻值随着温度的升高而增大; 负温度系数:热电阻 阻值随着温度的升高而减小;
近开关的工作电压及输出电流需 通过计算确定串联开关的数量。
总压降 U总降= U降 * n; 额定电流Ie串= Ie - Io * n
U降----单个接近开关的电压衰减值; Ie----单个接近开关的额定电流;
n----串联接近开关数量;
13
第一章 感应式接近开关
多开关并联接线图:
传感器基础培训课件

*
二.回归反射型
光电传感器的分类(检测方式分)
*
回归反射型
*
回归反射型
ห้องสมุดไป่ตู้
反射板
回歸反射型
检测距离较长, 但比起对射型还是稍逊一筹。配线和光轴对合更方便。通过对反射板的改良(提高反射率/corner cube小型化)力求接近对射型传感器的性能, 有望进一步将其替代。目前使用占总体50%左右, 有增加的倾向。 由于反射板的特性, 因此也可以稳定检测出反光的物体。另, 某些产品也可替代对射型检测透明物体, 如欧姆龙的 E3S-CR62。
*
遮光/入光动作(L-ON/D-ON)
受光器入光时的动作=Light-ON 受光器遮光时的动作=Dark-ON 选择上述何种方式因客户需要而定。 有L-ON/D-ON的不同机种, 也有可 通过开关切换的机种。
ON=Light-ON
光
输出
ON=Dark-ON
光
输出
*
使用周围照度
*
可见光光电开关 红外光电开关 激光光电开关 紫外光电开关
光电开关从光的特性上分类?
现市面大多数普通产品
多数光电开关选用的是波长接近可见光的红外线光波形--近红外线。紫外线对人 有伤害, 中远红外线辐射热, 激光过于昂贵;近红外线更加符合感光器件的特性。 激光, 是一种崭新的光源, 是由激光器产生的一种光。 第一, 激光是一种颜色最单纯的光。 第二, 激光的方向性好。 第三, 激光亮度最高。 第四, 激光还可以具有很大的能量
*
保护构造1 (为防止固体杂质・水的侵入而设的保护等级)
IP=International Protection 由IEC(International Electrotechinical Commission)制定的保护等级 固体杂质 水 0=无保护 0=无保护 1=直径50mm(手) 1=垂直方向的水滴 2=直径12.5mm(手指) 2=垂直方向15°以内的水滴 3=直径2.5mm(电缆) 3=垂直方向60°以内的水滴 4=直径1mm(芯线) 4=全方向的水滴 5=只允许极微小粉尘进入 5=全方向的喷水 6=粉尘无法侵入 6=全方向的激烈喷水 7=可浸泡(欧姆龙标准1m30分钟) 8=可在水中使用(欧姆龙标准10m)
二.回归反射型
光电传感器的分类(检测方式分)
*
回归反射型
*
回归反射型
ห้องสมุดไป่ตู้
反射板
回歸反射型
检测距离较长, 但比起对射型还是稍逊一筹。配线和光轴对合更方便。通过对反射板的改良(提高反射率/corner cube小型化)力求接近对射型传感器的性能, 有望进一步将其替代。目前使用占总体50%左右, 有增加的倾向。 由于反射板的特性, 因此也可以稳定检测出反光的物体。另, 某些产品也可替代对射型检测透明物体, 如欧姆龙的 E3S-CR62。
*
遮光/入光动作(L-ON/D-ON)
受光器入光时的动作=Light-ON 受光器遮光时的动作=Dark-ON 选择上述何种方式因客户需要而定。 有L-ON/D-ON的不同机种, 也有可 通过开关切换的机种。
ON=Light-ON
光
输出
ON=Dark-ON
光
输出
*
使用周围照度
*
可见光光电开关 红外光电开关 激光光电开关 紫外光电开关
光电开关从光的特性上分类?
现市面大多数普通产品
多数光电开关选用的是波长接近可见光的红外线光波形--近红外线。紫外线对人 有伤害, 中远红外线辐射热, 激光过于昂贵;近红外线更加符合感光器件的特性。 激光, 是一种崭新的光源, 是由激光器产生的一种光。 第一, 激光是一种颜色最单纯的光。 第二, 激光的方向性好。 第三, 激光亮度最高。 第四, 激光还可以具有很大的能量
*
保护构造1 (为防止固体杂质・水的侵入而设的保护等级)
IP=International Protection 由IEC(International Electrotechinical Commission)制定的保护等级 固体杂质 水 0=无保护 0=无保护 1=直径50mm(手) 1=垂直方向的水滴 2=直径12.5mm(手指) 2=垂直方向15°以内的水滴 3=直径2.5mm(电缆) 3=垂直方向60°以内的水滴 4=直径1mm(芯线) 4=全方向的水滴 5=只允许极微小粉尘进入 5=全方向的喷水 6=粉尘无法侵入 6=全方向的激烈喷水 7=可浸泡(欧姆龙标准1m30分钟) 8=可在水中使用(欧姆龙标准10m)
《传感器技术及应用》课件——初识传感器

下图为国外各大传感器厂商及产品类型、领域
三 传感器国内外市场
下图为国内各大传感器厂商及产品领域
四 产业上下游
根据中国高端芯片联盟和中国信通院发布关于智能传感器的产业地图,产业链具体包括研 发、设计、制造、封装、测试、软件、芯片及解决方பைடு நூலகம்、系统/应用这八个环节,各环节的技术壁 垒高。
四 产业上下游
三 传感器国内外市场
2019年国内企业产值约为37亿美元,预计 2022年国内产值将达到 95亿美元,复合年均增长率 为37%。根据中国信息通信院预测,2022年中国智能传感器市场规模将达到 137 亿美元,意味 着本土化率将从 2015 年的 13%提升到 2022年的 46%。
三 传感器国内外市场
(2 ) 汽车电子:智能驾驶 ADAS 系统带动摄像头和雷达市场增长。预计 到 2022 年,国内摄像头市场规模将达278 亿元,毫米波雷达市场规模将达 371 亿元,激光雷达市场规模将达 275 亿元。
(3 ) 工业电子:智能机器人传感器全球市场规模增长速度快,2022年将 超 207 亿美元。
(4 ) 医疗 电子:医疗传感器市场空间巨大,2024 年全球市场规模增至 185 亿美元。
全球市场的众多产品中,CMOS图像传感器市占率最高,占据全球近 45%的市场份额,其次 是指纹传感器、压力传感器、射频识别传感器,三者市占率均为 9%。
三 传感器国内外市场
根据 Global Market Insights 最新的数据统计, 2015 年,美洲地区占据了全球市场的最大份 额,亚太地区(中国、日本、韩国、印度、澳大利亚)位居第二,占领了 23%的市场份额。美洲 地区预计在 2022 年前将一直主导智能传感器市场。而亚太地区由于汽车和消费电子领域等下游 产业的带动,则成为市场规模增长最快的地区。
三 传感器国内外市场
下图为国内各大传感器厂商及产品领域
四 产业上下游
根据中国高端芯片联盟和中国信通院发布关于智能传感器的产业地图,产业链具体包括研 发、设计、制造、封装、测试、软件、芯片及解决方பைடு நூலகம்、系统/应用这八个环节,各环节的技术壁 垒高。
四 产业上下游
三 传感器国内外市场
2019年国内企业产值约为37亿美元,预计 2022年国内产值将达到 95亿美元,复合年均增长率 为37%。根据中国信息通信院预测,2022年中国智能传感器市场规模将达到 137 亿美元,意味 着本土化率将从 2015 年的 13%提升到 2022年的 46%。
三 传感器国内外市场
(2 ) 汽车电子:智能驾驶 ADAS 系统带动摄像头和雷达市场增长。预计 到 2022 年,国内摄像头市场规模将达278 亿元,毫米波雷达市场规模将达 371 亿元,激光雷达市场规模将达 275 亿元。
(3 ) 工业电子:智能机器人传感器全球市场规模增长速度快,2022年将 超 207 亿美元。
(4 ) 医疗 电子:医疗传感器市场空间巨大,2024 年全球市场规模增至 185 亿美元。
全球市场的众多产品中,CMOS图像传感器市占率最高,占据全球近 45%的市场份额,其次 是指纹传感器、压力传感器、射频识别传感器,三者市占率均为 9%。
三 传感器国内外市场
根据 Global Market Insights 最新的数据统计, 2015 年,美洲地区占据了全球市场的最大份 额,亚太地区(中国、日本、韩国、印度、澳大利亚)位居第二,占领了 23%的市场份额。美洲 地区预计在 2022 年前将一直主导智能传感器市场。而亚太地区由于汽车和消费电子领域等下游 产业的带动,则成为市场规模增长最快的地区。
传感器简介PPT课件

传感器简介PPT课件
目录
• 传感器基本概念与原理 • 常见类型传感器介绍 • 传感器性能指标评价方法 • 传感器应用领域探讨 • 传感器技术发展趋势预测
01
传感器基本概念与原理
传感器定义及作用
传感器定义
能够感受规定的被测量并按照一 定规律转换成可用输出信号的器 件或装置。
传感器作用
将被测量转换为与之有确定关系 的、便于应用的某种物理量,以 满足信息传输、处理、存储、显 示、记录和控制等要求。
多功能、复合型方向
利用新材料、新工艺和新技术, 开发具有多种功能的复合型传感 器,如同时检测温度、湿度、压
力等多种参数的传感器。
发展可穿戴传感器技术,实现人 体生理参数和环境参数的实时监
测和评估。
结合柔性电子技术,开发可弯曲 、可折叠的传感器,拓展其在可 穿戴设备、医疗器械等领域的应
用。
生物医学传感器方向
转换过程
敏感元件将被测量转换为电参量(如电阻、电容、电感等),经过转换电路转 换为标准输出信号(如电压、电流等)。转换过程中可能涉及信号调理和校准 等环节,以确保输出信号的准确性和稳定性。
02
常见类型传感器介绍
温度传感器
01
02
03
热电偶
利用热电效应测量温度, 具有测量范围宽、稳定性 好等特点。
电容式压力传感器
利用电容器原理将压力转 换为电容变化,具有精度 高、稳定性好等特点。
位移传感器
电感式位移传感器
光电式位移传感器
利用电磁感应原理将位移转换为电感 量变化,具有测量精度高、响应速度 快等优点。
利用光电转换原理将位移转换为光信 号变化,具有测量精度高、抗干扰能 力强等优点。
电容式位移传感器
目录
• 传感器基本概念与原理 • 常见类型传感器介绍 • 传感器性能指标评价方法 • 传感器应用领域探讨 • 传感器技术发展趋势预测
01
传感器基本概念与原理
传感器定义及作用
传感器定义
能够感受规定的被测量并按照一 定规律转换成可用输出信号的器 件或装置。
传感器作用
将被测量转换为与之有确定关系 的、便于应用的某种物理量,以 满足信息传输、处理、存储、显 示、记录和控制等要求。
多功能、复合型方向
利用新材料、新工艺和新技术, 开发具有多种功能的复合型传感 器,如同时检测温度、湿度、压
力等多种参数的传感器。
发展可穿戴传感器技术,实现人 体生理参数和环境参数的实时监
测和评估。
结合柔性电子技术,开发可弯曲 、可折叠的传感器,拓展其在可 穿戴设备、医疗器械等领域的应
用。
生物医学传感器方向
转换过程
敏感元件将被测量转换为电参量(如电阻、电容、电感等),经过转换电路转 换为标准输出信号(如电压、电流等)。转换过程中可能涉及信号调理和校准 等环节,以确保输出信号的准确性和稳定性。
02
常见类型传感器介绍
温度传感器
01
02
03
热电偶
利用热电效应测量温度, 具有测量范围宽、稳定性 好等特点。
电容式压力传感器
利用电容器原理将压力转 换为电容变化,具有精度 高、稳定性好等特点。
位移传感器
电感式位移传感器
光电式位移传感器
利用电磁感应原理将位移转换为电感 量变化,具有测量精度高、响应速度 快等优点。
利用光电转换原理将位移转换为光信 号变化,具有测量精度高、抗干扰能 力强等优点。
电容式位移传感器
传感器基础知识PPT课件

精度等级以一系列标准百分比数值分档表示。 代表传感器测量的最大允许误差,即相对误差。
2020/5/28
.
10
4. 灵敏度:灵敏度是指传感器输出的
变化 量与引起该变化量的输入变化 量之比,如下图所示。
s y x
2020/5/28
.
11
灵敏度表征传感器对输入量变化的反应能力
(a) 线性传感器
(b) 非线性传感器
二阶传感器的固有频率ωn表征了其动态特性。
.
35
1.1.4 传感器的命名、代号和图形符号
1.传感器的命名
传感器的全称应由“主题词+四级修饰语”组成,即 主题词 —— 传感器 一级修饰语 —— 被测量,包括修饰被测量的定语。 二级修饰语 —— 转换原理,一般可后缀以“式”字。 三级修饰语 —— 特征描述,指必须强调的传感器结构、性能、材料特
和快速地测得非电量的技术。
(2)非电量电测量技术优点:
测量精度高、反应速度快、能自动连续地进行测 量、可以进行遥测、便于自动记录、可以与计算 机联结进行数据处理、可采用微处理器做成智能
仪表、能实现自动检测与转换等。
.
43
酒精测试仪
呼气管
.
44
电子湿度计模块
封装后的外 形
.
45
1.2.2 测量方法
2020/5/28
.
47
1.2. 3 检测系统
检测系统又分:开环检测系统与闭环检测系统
开环检测系统:
2020/5/28
.
48
1.2. 3 检测系统
闭环检测系统 :
2020/5/28
.
49
1.2. 4 测量误差及数据处理
传感器与检测技术课件全文

1.1.3传感器的分类
1.按输入量(被测量)分类 2.按工作原理(机理)分类 3、按能量的关系分类 4.按输出信号的形式分类
1.2 传感器的特性
静态特性和动态特性
输入量X和输输出Y的关系通常可用多项式表示
静态特性可以用一组性能指标来描述,如线性度、灵敏度、精确度(精 度)、重复性、迟滞、漂移、阈值和分辨率、稳定性、量程等。
(4) 分贝误差 在电子学和声学等计量中,常用对数形式来表示相对误差, 称为分贝误差,它实质上是相对误差的另一种表示方式。
2、按性质分类
(1)系统误差(systematic error) 定义:在重复性条件下,对同一被测量进行无限多次测量所得 结果的平均值与被测量的真值之差。 特征:在相同条件下,多次测量同一量值时,此此的绝对值和 符号保持不变,或者在条件改变时,按某一确定规律变化。 分类(变化规律不同):恒定系统误差包括恒正系统误差和恒 负系统误差,可变系统误差包括线性系统误差、周期性系统误 差和复杂规律系统误差等。
1、线性度 也称为非线性误差,是指在全量程范围内实际
特性曲线与拟合直线之间的最大偏差值与满量程输出值 之
比。反映了实际特性曲线与拟合直线的不吻合度或偏离程
度。
L
Lmax YFS
100 %
2.迟滞。传感器在输入量由小到大(正行程)及输入量由大到小(反行程) 变化期间其输入输出特性曲线不重合的现象称为迟滞。即,对于同一大小的 输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。 传感器在全量程范围内最大的迟滞差值或最大的迟滞差值的一半与满量程输 出值之比称为迟滞误差,又称为回差或变差(最大滞环率)。
在仪表准确度等级及其测量标称范围或量程选择方面应注意 如下原则: ①不应单纯追求测量仪表准确度越高越好,而应根据被测量 的大小,兼顾仪表的级别和标称范围或量程上限全理进行选 择。 ②选择被测量的值应大于均匀刻度测量仪表量程上限的三分 之 二 , 即 x>(2xm/3) , 此 时 测 量 的 最 大 相 对 误 差 不 超 过 rx=±[xm/(2xm/3)]×s%=±1.5s%,即测量误差不会超过测量 仪表等级的1.5倍。
《传感器技术说课》课件

优势:提高医疗效 率,降低医疗成本 ,提高患者生活质 量
基于传感器的环境监测系统
传感器类型: 温度传感器、 湿度传感器、 空气质量传感
器等
应用领域:气 象监测、空气 质量监测、水
质监测等
工作原理:通 过传感器采集 环境数据,传 输至数据处理 中心进行分析
和处理
应用案例:智 能温室、智能 城市、智能交
智能化:能够实现自动采集、处理 和分析数据,提高自动化程度
传感器技术与传统技术的比较
传感器技术:实时监测, 数据准确,智能化程度高
传统技术:人工监测,数 据误差大,智能化程度低
传感器技术:适应性强, 可应用于各种环境
传统技术:适应性差,只 能在特定环境下使用
传感器技术:维护成本低, 使用寿命长
传统技术:维护成本高, 使用寿命短
少污染
安全性:传感 器技术将更加 安全性,能够 提高系统的安 全性和可靠性
传感器技术面临的挑战和问题
技术瓶颈:传感器技术需要突破现有技术瓶颈,提高精度、稳定性和可靠性 成本问题:传感器技术需要降低成本,提高性价比,以适应市场需求 应用领域:传感器技术需要拓展应用领域,如物联网、智能交通、智能家居等 信息安全:传感器技术需要解决信息安全问题,保护用户隐私和数据安全
传感器技术说课
,
汇报人:
目录
01 添 加 目 录 项 标 题
02 传 感 器 技 术 概 述
03 传 感 器 技 术 的 应 用
领域
05 传 感 器 技 术 的 实 际 应用案例
04 传 感 器 技 术 的 特 点 和优势
06 传 感 器 技 术 的 未 来 发展前景和挑战
Part One
单击添加章节标题
传感器基础知识课件

能力。
分辨率
分辨率是指传感器能够检测到的最 小输入变化量。分辨率越高,传感 器能够检测到的信号越微弱。
交叉灵敏度
交叉灵敏度是指传感器对非测量方 向的输入变化的敏锐程度。交叉灵 敏度会影响传感器的测量精度和稳 定性。
分辨率
绝对分辨率
绝对分辨率是指传感器能够检测 到的最小输入变化量。绝对分辨 率反应了传感器对微弱信号的检
新技术
新兴技术如物联网、人工智能等正在与传感器技术深度融会,推动传感器向智能化、网络化方向发展 。
微型化与集成化
微型化
随着微纳加工技术的进步,传感 器正变得越来越微型化,这使得 传感器能够应用于更广泛的领域 ,如生物医疗、环境监测等。
集成化
将多个传感器集成到一个芯片上 ,实现多参数、多功能的测量, 有助于提高传感器的测量效率和 精度。
环境稳定性
环境稳定性是指传感器在不同环境条件下(如温度、湿度 、压力、振动等)的性能表现。环境稳定性是衡量传感器 在不同工作环境下性能稳定性的重要指标。
重复性
重复性是指传感器在相同条件下重复测量同一物理量时, 其输出值的一致程度。重复性是衡量传感器测量精度的重 要指标。
响应时间
响应时间
响应时间是指传感器从接收到输入信号到产生相应输出信号所需 的时间。响应时间是衡量传感器快速响应能力的重要指标。
工作原理
转换机制
传感器的工作原理是将输入的信号转换成电信号。例如,电阻式传感器通过改 变电阻值来测量压力或温度;光电传感器则利用光电效应将光信号转换成电信 号。
放大与调节
传感器内部通常包含放大器和调节器,用于放大和调节转换后的电信号,以便 进行后续处理和测量。
传感器在日常生活中的应用
01
分辨率
分辨率是指传感器能够检测到的最 小输入变化量。分辨率越高,传感 器能够检测到的信号越微弱。
交叉灵敏度
交叉灵敏度是指传感器对非测量方 向的输入变化的敏锐程度。交叉灵 敏度会影响传感器的测量精度和稳 定性。
分辨率
绝对分辨率
绝对分辨率是指传感器能够检测 到的最小输入变化量。绝对分辨 率反应了传感器对微弱信号的检
新技术
新兴技术如物联网、人工智能等正在与传感器技术深度融会,推动传感器向智能化、网络化方向发展 。
微型化与集成化
微型化
随着微纳加工技术的进步,传感 器正变得越来越微型化,这使得 传感器能够应用于更广泛的领域 ,如生物医疗、环境监测等。
集成化
将多个传感器集成到一个芯片上 ,实现多参数、多功能的测量, 有助于提高传感器的测量效率和 精度。
环境稳定性
环境稳定性是指传感器在不同环境条件下(如温度、湿度 、压力、振动等)的性能表现。环境稳定性是衡量传感器 在不同工作环境下性能稳定性的重要指标。
重复性
重复性是指传感器在相同条件下重复测量同一物理量时, 其输出值的一致程度。重复性是衡量传感器测量精度的重 要指标。
响应时间
响应时间
响应时间是指传感器从接收到输入信号到产生相应输出信号所需 的时间。响应时间是衡量传感器快速响应能力的重要指标。
工作原理
转换机制
传感器的工作原理是将输入的信号转换成电信号。例如,电阻式传感器通过改 变电阻值来测量压力或温度;光电传感器则利用光电效应将光信号转换成电信 号。
放大与调节
传感器内部通常包含放大器和调节器,用于放大和调节转换后的电信号,以便 进行后续处理和测量。
传感器在日常生活中的应用
01
《传感器基础培训》课件

测试方法
根据性能指标制定相应的测试方法,包括静态测试和动态测试,以及 长期稳定性和可靠性测试。
结果分析
对测试结果进行分析和比较,找出传感器性能的优缺点,提出改进措 施和建议,为进一步优化提供依据。
05
传感器在物联网中的应 用
物联网中的传感器节点
传感器节点是物联网感知层的重要组成部分,能够感知、采集并处理物体信息。
环境监测
传感器用于监测环境参数,如 温度、湿度、压力、气体等, 为环境保护和治理提供数据支
持。
传感器的发展趋势
微型化
随着微电子技术的发展 ,传感器逐渐向微型化 方向发展,便于集成和
携带。
智能化
传感器与微处理器结合 ,实现智能化检测和数 据处理,提高测量精度
和可靠性。
多功能化
传感器逐渐向多功能化 方向发展,能够同时检 测多种参数,满足复杂
应用需求。
网络化
传感器与物联网技术结 合,实现远程监控和数 据传输,提高信息共享
和协同能力。
02
传感器的原理与技术
传感器的物理原理
传感器的工作原理
传感器是一种能够感知物理、化学或 生物量并将其转换为电信号的装置。 这些电信号可以被进一步处理、记录 或用于控制目的。
传感器的分类
传感器的基本组成
传感器通常由敏感元件和转换元件组 成,敏感元件负责感知被测量,而转 换元件则将感知到的量转换为电信号 。
根据工作原理和应用领域,传感器可 以分为多种类型,如电阻式、电容式 、电感式、磁阻式、光电式等。
传感器的信号处理技术
信号调理
信号调理是传感器信号处理的重 要环节,它包括放大、滤波、隔 离、线性化等操作,以减小噪声 、提高信噪比、增强信号的稳定
根据性能指标制定相应的测试方法,包括静态测试和动态测试,以及 长期稳定性和可靠性测试。
结果分析
对测试结果进行分析和比较,找出传感器性能的优缺点,提出改进措 施和建议,为进一步优化提供依据。
05
传感器在物联网中的应 用
物联网中的传感器节点
传感器节点是物联网感知层的重要组成部分,能够感知、采集并处理物体信息。
环境监测
传感器用于监测环境参数,如 温度、湿度、压力、气体等, 为环境保护和治理提供数据支
持。
传感器的发展趋势
微型化
随着微电子技术的发展 ,传感器逐渐向微型化 方向发展,便于集成和
携带。
智能化
传感器与微处理器结合 ,实现智能化检测和数 据处理,提高测量精度
和可靠性。
多功能化
传感器逐渐向多功能化 方向发展,能够同时检 测多种参数,满足复杂
应用需求。
网络化
传感器与物联网技术结 合,实现远程监控和数 据传输,提高信息共享
和协同能力。
02
传感器的原理与技术
传感器的物理原理
传感器的工作原理
传感器是一种能够感知物理、化学或 生物量并将其转换为电信号的装置。 这些电信号可以被进一步处理、记录 或用于控制目的。
传感器的分类
传感器的基本组成
传感器通常由敏感元件和转换元件组 成,敏感元件负责感知被测量,而转 换元件则将感知到的量转换为电信号 。
根据工作原理和应用领域,传感器可 以分为多种类型,如电阻式、电容式 、电感式、磁阻式、光电式等。
传感器的信号处理技术
信号调理
信号调理是传感器信号处理的重 要环节,它包括放大、滤波、隔 离、线性化等操作,以减小噪声 、提高信噪比、增强信号的稳定
《传感器课件》课件

纳米传感器
探索纳米级传感器在材料科学和环境监测中的 应用。
智能传感器
探究智能传感器的概念和未来发展趋势。
七、传感器实验及应用案例
传感器实验介绍
介绍一些有趣的传感器实验,让学生亲自动手。
传感器应用案例分析
分析一些真实的传感器应用案例,探索其实际价值。
八、总结
1 传感器发展历程回顾
回顾传感器技术的发展历程和里程碑事件。
1 传感器网络简介
了解传感器网络及其在物 联网中的作用。
2 传感器网络通信协议
探究常用的传感器网络通 信协议。
3 传感器网络应用场景
观察传感器网络在不同场 景中的应用案例。
六、传感器未来发展方向
生物传感器
展望生物传感器在医疗和健康领域的前景。
机器视觉传感器
了解机器视觉传感器在自动化和智能工业中的 重要性。
深入了解传感器的工作原理和基本原理。
二、主要传感器类型
温度传感器
介绍温度传感器及其在各个领域中的应用。
湿度传感器
探究湿度传感器的特点和应用场景。
压力传感器
了解压力传感器的原理及其在工业环境中的应用。
光电传感器
详细介绍光电传感器的工作原理和使用方式。
三、传感器测量精度分析
1
精度定义及分类
澄清什么是精度,并了解传感器精度的分类。
2
误差消除方法
探索如何减少或消除传感器测量中的误差。
3
传感器校准技术
介绍传感器校准的方法和流程。
四、传感器接口技术
模拟信号输出
了解传感器通过模拟信号进行 输出的技术。
数字信号输出
探究传感器通过数字信号进行 输出的方法。
串行通信接口
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:指传感器在输入按同一方向作全量程连 续多次变动时所得特性曲线不一致的程度。
重复性误差可用正反行程的最大偏差表示,即
R
Rmax10% 0 yF.S.
21.10.2020
23
y ⊿Rmax2
⊿Rmax1
0 x
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
21.10.2020
21.10.2020
9
(2)传递函数 由控制理论可知,对于用线性常系数微分方程表示的传感 器,其传递函数为 :
H(S)x y((S S))b am nS Sn m a b1 1S S a b0 0
S=σ+jw,称为拉氏变
框图表示法为: 换的自变量。
x
bmSmb1Sb0 y
anSn a1Sa0
21.10.2020
10
n
对于n个环节的串联系统: H(S) Hi S i1
X(S)
H1(S)
H2(S)
Y(S) 转换电路
对于n个环节的并联系统:H(S)
n
Hi
S
i1
X(S)
21.10.2020
H1(S) H2(S)
Y(S) 转换电路
11
采用传递函数法的优点: 1、容易看清各个环节对系统的影响,因而 便于对传感器或测量系统进行改进。 2、当传感器比较复杂或传感器的基本参数 未知时,可以通过实验求得传递函数。
a n d d n n y t a n 1 d d n n 1 1 y t a 0 y b m d d m m x t b m 1 d d m m 1 x 1 t b 0 x
21.10.2020
8
用微分方程作为传感器数学模型的特点: 优点:通过求解微分方程容易分清暂态响 应与稳态响应。 缺点:求解微分方程很麻烦,尤其当需要 通过增减环节来改变传感器的性能时显得很不 方便。
21.10.2020
13
1、线性度:又称非线性
定义:表征传感器输出—输入校准曲线与所选 定的拟合直线(作为工作直线)之间的吻合(或偏 离)程度的指标。
通常用相对误差来表示线性度,即
L
Lmax10% 0 YF.S.
21.10.2020
14
目前常用的拟合方法有: A、理论拟合: B、过零旋转拟合: C、端点连线拟合: D、端点连线平移拟合:
分辨率:分辨力用与满量程的百分数表示时称 为分辨率。
阈值:在传感器输入零点附近的分辨力称为阈 值。
21.10.2020
26
6、稳定性与漂移
稳定性:指传感器在长时间工作的情况下输出量发 生的变化。有时称为长时间工作稳定性或零点漂移。
漂移:指在一定时间间隔内,传感器输出量存在着 有与被测输入量无关的、不需要的变化。
漂移包括零点漂移与灵敏度漂移,两者又可分为时 间漂移(时漂)和温度漂移(温漂)。
21.10.2020
27
21.10.2020
15
a)理论拟合
c)端点连线拟合
21.10.2020
b)过零旋转拟合
d)端点连线平移拟合
16
E、最小二乘法拟合(重点)
y
yi
y=kx+b
y=kx+b
Δi=yi-(kxi+b)
0
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 2i
为最小值,即
n
n
2
2 i yi kixb min
复
习
绪论
1、现代信息技术的三大基础
2、传感器的定义、组成及分类 (重点)
3、传感器的发展趋势
21.10.2020
第一章 传感器技术基础
21.10.2020
2
第一节 传感器的一般数学模型
(重点)
第二节 传感器的特性与指标
(重点)
第三节 改善传感器性能的技术途径 (了解)
第四节 传感器的标定与校准
21.10.2020
20
2、回差(或称迟滞、滞后)
定义:传感器在正反行程中输出输入曲线的不重合 程度称为迟滞。
迟滞特性一般是由实验方法测得。 迟滞误差一般以满量程输出的百分数表示,即
H
Hmax10% 0 yF.S.
21.10.2020
21
y
yFS ⊿Hmax
0
x
迟滞特性
21.10.2020
22
3、重复性
(二)、传感器的动态特性
1、频率响应特性
2、阶跃响应特性
21.10.2020
3、典型环节的动态响应
4
第一节 传感器的一般数学模型
建立传感器的数学模型的必要性 传感器数学模型的静态与动态之分
21.10.2020
5
一、静态模型
输入量对时间t 的各阶导数为零
静态模型是指在静态条件下得到的传感器数学 模型。
21.10.2020
12
第二节 传感器的特性与指标
一、传感器的静态特性
传感器特性:主要是指输出与输入之间的关系。 静态特性:当输入量为常量,或变化极慢时,输出与输 入之间的关系称为~; 静态特性表示传感器在被测输入量各个值处于稳定状态 时的输出—输入关系。 研究静态特性主要应考虑其非线性与随机变化等因素。
传感器的静态模型可用一代数方程表示,即:
y a 0 a 1 x a 2 x 2 a n x n
21.10.2020
6
表示输出量与输入量之间的关系曲线称为特性曲线。 理想情况下,传感器数学模型为:
y a1x
21.10.2020
7
二、动态模型
(1)微分方程 传感器的动态模型用线性常系数微分方程来表示:
24
4、灵敏度与灵敏度误差
定义:传感器输出的变化量Δy与引起该变化量的
输入变化量 Δx之比即为其静态灵敏度,其表达式
为
Ky x
灵敏度误差用相对误差表示,即
k kk10 % 0
21.10.2020
25
5、分辨力与阈值
分辨力:是传感器在规定测量范围内所能检测 出被测输入量的最小变化量,用绝对值表示。
i1
i1
21.10.2020
17
得到k和b的表达式
n
k
xiyi
n xi2
xi yi xi 2
b
xi2 yi xi xiyi n xi2 xi 2
21.10.2020
18
21.10.2020
19
最小二乘法准则的几何意义在于拟和直线精 密度高即误差小。
将几组x分别带入以上五式,与y值相差最小 的就是所求,(5)为所求。
(了解)
第五节 传感器材料与工艺
(补充)
21.10.2020
3
第一节 传感器的一般数学模型
(一)、静态模型
代数方程
(二)、动态模型
1、微分方程 2、传递函数
新 课
第二节 传感器的特性与指标
(一 )、传感器的静态特性
1、线性度 3、重复性
5、分辨力与阈值 7、误差表达
2、回差(滞后或迟滞) 4、灵敏度 6、稳定性与漂移 8、精确度等级
重复性误差可用正反行程的最大偏差表示,即
R
Rmax10% 0 yF.S.
21.10.2020
23
y ⊿Rmax2
⊿Rmax1
0 x
△Rmax1正行程的最大重复性偏差, △Rmax2反行程的最大重复性偏差。
21.10.2020
21.10.2020
9
(2)传递函数 由控制理论可知,对于用线性常系数微分方程表示的传感 器,其传递函数为 :
H(S)x y((S S))b am nS Sn m a b1 1S S a b0 0
S=σ+jw,称为拉氏变
框图表示法为: 换的自变量。
x
bmSmb1Sb0 y
anSn a1Sa0
21.10.2020
10
n
对于n个环节的串联系统: H(S) Hi S i1
X(S)
H1(S)
H2(S)
Y(S) 转换电路
对于n个环节的并联系统:H(S)
n
Hi
S
i1
X(S)
21.10.2020
H1(S) H2(S)
Y(S) 转换电路
11
采用传递函数法的优点: 1、容易看清各个环节对系统的影响,因而 便于对传感器或测量系统进行改进。 2、当传感器比较复杂或传感器的基本参数 未知时,可以通过实验求得传递函数。
a n d d n n y t a n 1 d d n n 1 1 y t a 0 y b m d d m m x t b m 1 d d m m 1 x 1 t b 0 x
21.10.2020
8
用微分方程作为传感器数学模型的特点: 优点:通过求解微分方程容易分清暂态响 应与稳态响应。 缺点:求解微分方程很麻烦,尤其当需要 通过增减环节来改变传感器的性能时显得很不 方便。
21.10.2020
13
1、线性度:又称非线性
定义:表征传感器输出—输入校准曲线与所选 定的拟合直线(作为工作直线)之间的吻合(或偏 离)程度的指标。
通常用相对误差来表示线性度,即
L
Lmax10% 0 YF.S.
21.10.2020
14
目前常用的拟合方法有: A、理论拟合: B、过零旋转拟合: C、端点连线拟合: D、端点连线平移拟合:
分辨率:分辨力用与满量程的百分数表示时称 为分辨率。
阈值:在传感器输入零点附近的分辨力称为阈 值。
21.10.2020
26
6、稳定性与漂移
稳定性:指传感器在长时间工作的情况下输出量发 生的变化。有时称为长时间工作稳定性或零点漂移。
漂移:指在一定时间间隔内,传感器输出量存在着 有与被测输入量无关的、不需要的变化。
漂移包括零点漂移与灵敏度漂移,两者又可分为时 间漂移(时漂)和温度漂移(温漂)。
21.10.2020
27
21.10.2020
15
a)理论拟合
c)端点连线拟合
21.10.2020
b)过零旋转拟合
d)端点连线平移拟合
16
E、最小二乘法拟合(重点)
y
yi
y=kx+b
y=kx+b
Δi=yi-(kxi+b)
0
xI
x
最小二乘拟合法
最小二乘法拟合直线的原理就是使 2i
为最小值,即
n
n
2
2 i yi kixb min
复
习
绪论
1、现代信息技术的三大基础
2、传感器的定义、组成及分类 (重点)
3、传感器的发展趋势
21.10.2020
第一章 传感器技术基础
21.10.2020
2
第一节 传感器的一般数学模型
(重点)
第二节 传感器的特性与指标
(重点)
第三节 改善传感器性能的技术途径 (了解)
第四节 传感器的标定与校准
21.10.2020
20
2、回差(或称迟滞、滞后)
定义:传感器在正反行程中输出输入曲线的不重合 程度称为迟滞。
迟滞特性一般是由实验方法测得。 迟滞误差一般以满量程输出的百分数表示,即
H
Hmax10% 0 yF.S.
21.10.2020
21
y
yFS ⊿Hmax
0
x
迟滞特性
21.10.2020
22
3、重复性
(二)、传感器的动态特性
1、频率响应特性
2、阶跃响应特性
21.10.2020
3、典型环节的动态响应
4
第一节 传感器的一般数学模型
建立传感器的数学模型的必要性 传感器数学模型的静态与动态之分
21.10.2020
5
一、静态模型
输入量对时间t 的各阶导数为零
静态模型是指在静态条件下得到的传感器数学 模型。
21.10.2020
12
第二节 传感器的特性与指标
一、传感器的静态特性
传感器特性:主要是指输出与输入之间的关系。 静态特性:当输入量为常量,或变化极慢时,输出与输 入之间的关系称为~; 静态特性表示传感器在被测输入量各个值处于稳定状态 时的输出—输入关系。 研究静态特性主要应考虑其非线性与随机变化等因素。
传感器的静态模型可用一代数方程表示,即:
y a 0 a 1 x a 2 x 2 a n x n
21.10.2020
6
表示输出量与输入量之间的关系曲线称为特性曲线。 理想情况下,传感器数学模型为:
y a1x
21.10.2020
7
二、动态模型
(1)微分方程 传感器的动态模型用线性常系数微分方程来表示:
24
4、灵敏度与灵敏度误差
定义:传感器输出的变化量Δy与引起该变化量的
输入变化量 Δx之比即为其静态灵敏度,其表达式
为
Ky x
灵敏度误差用相对误差表示,即
k kk10 % 0
21.10.2020
25
5、分辨力与阈值
分辨力:是传感器在规定测量范围内所能检测 出被测输入量的最小变化量,用绝对值表示。
i1
i1
21.10.2020
17
得到k和b的表达式
n
k
xiyi
n xi2
xi yi xi 2
b
xi2 yi xi xiyi n xi2 xi 2
21.10.2020
18
21.10.2020
19
最小二乘法准则的几何意义在于拟和直线精 密度高即误差小。
将几组x分别带入以上五式,与y值相差最小 的就是所求,(5)为所求。
(了解)
第五节 传感器材料与工艺
(补充)
21.10.2020
3
第一节 传感器的一般数学模型
(一)、静态模型
代数方程
(二)、动态模型
1、微分方程 2、传递函数
新 课
第二节 传感器的特性与指标
(一 )、传感器的静态特性
1、线性度 3、重复性
5、分辨力与阈值 7、误差表达
2、回差(滞后或迟滞) 4、灵敏度 6、稳定性与漂移 8、精确度等级