青岛版初中数学八年级上册《全等三角形》拔高测试卷练习题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的面积是______.
A
D
O
B
C
图4
B
D
A
C
图5
E A
D C
B 图6
TB:小初高题库
青岛版初中数学
8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一
天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等
于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正
A. PE PF
B. AE AF
C.△APE≌△APF D. AP PE PF
E
F
B
D
C
图7
2.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可
以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,
Hale Waihona Puke Baidu
那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至
A A
D
E
A
C
O
B
D
B
C
图2
D
B
E
C
图3
图1
5.如图 3,AB,CD 相交于点 O,AD=CB,请你补充一个条件,使得
△AOD≌△COB.你补充的条件是______.
6.如图 4,AC,BD 相交于点 O,AC=BD,AB=CD,写出图中两对相等的角
______.
7.如图 5,△ABC 中,∠C=90°,AD 平分∠BAC,AB=5,CD=2,则△ABD
在△EBD 与△FCE 中,
∠______=∠______(已证),
______=______(已知),
A
F D
B
E
C
图 14
∠B=∠C(已知),
∴ △EBD ≌△FCE ( ).
∴ED=EF( ).
5.(本题 13 分)如图 15,O 为码头,A,B 两个灯塔与码头的距离相等,OA,
2.(本题 10 分)已知:如图 12,AB=CD,DE⊥AC,BF⊥AC,E,F 是垂足,
DE BF .
求证:(1) AF CE ;(2) AB ∥CD .
D
C
F
TB:小初高题库
E
A
B
图 12
青岛版初中数学
3.(本题 11 分)如图 13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他 手边没有量角器,只有一个刻度尺.他是这样操作的: ①分别在 BA 和 CA 上取 BE CG ; ②在 BC 上取 BD CF ; ③量出 DE 的长 a 米,FG 的长 b 米. 如果 a b ,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?
A
E
G
4.(本题 12 分)填空,完成下列证明过程.
B
DFC
图 13
如图 14, △ABC 中,∠B=∠C,D,E,F 分别在 AB , BC , AC 上,且
BD CE ,∠DEF =∠B ,求证: ED=EF .
证明:∵∠DEC=∠B+∠BDE(
),
又∵∠DEF=∠B(已知),
∴∠______=∠______(等式性质).
A.5 对 B.4 对 C.3 对 D.2 对
7.将一张长方形纸片按如图 11 所示的方式折叠, BC, BD 为折痕,则∠CBD 的
度数为( ) A.60° B.75° C.90° D.95° 8.根据下列已知条件,能惟一画出△ABC 的是( ) A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30° C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6 三、解答题 (本大题共 69 分) 1.(本题 8 分)请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的 边 OP 上截取 OA=50mm,OQ 上截取 OB=70mm,连结 AB,画∠AOB 的平分 线与 AB 交于点 C,并量出 AC 和 O C 的长 .(结果精确到 1mm,不要求写画 法).
④△BDF≌△CDE.其中正确的有( )
F
图8
A.1 个 B.2 个 C.3 个 D.4 个
4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )
A.形状相同 B.周长相等 C.面积相等 D.全等
5.如图 9, AD AE , BD=CE, ∠ ADB=∠AEC =100, ∠ BAE =70 ,下列结论错
青岛版初中数学
青岛版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 青岛版初中数学 和你一起共同进步学业有成!
TB:小初高题库
青岛版初中数学
1.1 全等三角形
一、填空题(每小题 3 分,共 27 分) 1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和 △GHI______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则 △ABC 和△GHI______全等.(填“一定”或“不一定”或“一定不”) 2.如图 1,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED= ______. 3.△ABC 中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则 ∠DEF=______. 4.如图 2,BE,CD 是△ABC 的高,且 BD=EC,判定△BCD≌△CBE 的依据 是“______”.
确吗?答:______.
9.如图 6,直线 AE∥BD,点 C 在 BD 上,若 AE=4,BD=8,△ABD 的面积
为 16,则 △ACE 的面积为______.
二、选择题(每小题 3 分,共 24 分)
A
1.如图 7,P 是∠BAC 的平分线 AD 上一点,PE⊥AB 于 E,
PF⊥AC 于 F,下列结论中不正确的是( )
误的是( ) A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40° D.∠C=30°
TB:小初高题库
青岛版初中数学
A
O
D
A′
B
DA
E
GF
C
E′ C
图9
B
D
C
A
B
E
图 10
图 11
6.已知:如图 10,在△ABC 中,AB=AC,D 是 BC 的中点,DE⊥AB 于 E,
DF⊥AC 于 F,则图中共有全等三角形( )
少要有一对边对应相等.正确的是( )
A
A.①和② B.②和③ C.①和③ D.①②③
3.如图 8, AD 是 △ABC 的中线,E,F 分别是 AD 和 AD
延长线上的点,且 DE DF ,连结 BF,CE.下列说法:
B
①CE=BF;②△ABD 和△ACD 面积相等;③BF∥CE;
E C
D
相关文档
最新文档