生物柴油制备技术

合集下载

生物酶法制备生物柴油

生物酶法制备生物柴油

二、液体脂肪酶法
在油水界面上脂肪酶催化反应速率较快
界面活化效应:即在油水界面催化反应速率较快 的原因。一般而言,脂肪酶活性位点为一个盖子所 罩住,所谓界面活化是指此盖子的打开使催化活性 位点暴露出来。
二、液体脂肪酶法
液体脂肪酶通过催化双相(油相/水相)体系界面的 转酯/酯化反应而制备生物柴油。 优点:
生物柴油制备方法
生物柴油制备方法 物理法
化学法 高温热裂解法 直接使用法 酯交换法 混合法 超临界法 微乳液法 固定化酶法 全细胞法 液体酶法
生物酶法
酸/碱催化法
一、固定化脂肪酶法
利用固定化脂肪酶催化制备生物柴油是非水 酶学理论应用于实践的典型实例,也正因为如 此,固定化脂肪酶催化制备生物柴油具备非水 介质中酶催化的优势:
1、可防止冻干的酶粉在反应过程中发生聚集 从而增大酶与底物的接触面积; 2、产物容易纯化;
一、固定化脂肪酶法
3、有利于酶的回收和连续化生产;
4、酶的热稳定性及对甲醇等短链醇的耐受性 显著提高; 5、利用溶剂工程可提高酶与底物油脂、甲醇 的接触频率,从而提高反应速率。
影响因素
不同的固定化形式、反应介质体系、酰基受体 及添加策略均会对酶活力、酶对甲醇的耐受性 等有着显著的影响 (1)不同的固定化形式。脂肪酶采用不同的固 定化形式对酶活力、酶对甲醇的耐受性等有着 显著的影响。
thank you!!!
(2)不同的反应介质体系。不同的反应介质体系 对于固定化脂肪酶催化制备生物柴油的得率有 着显著的影响。
影响因素
(3)不同的酰基受体及添加策略。大量的研 究表明,甲醇、乙醇等短链醇因剥夺脂肪酶 的必需水而破坏维持蛋白功能构象的氢键 体系,从而使酶活性降低或失去活性。

生物质连续化制备高品质生物柴油关键技术

生物质连续化制备高品质生物柴油关键技术

生物质连续化制备高品质生物柴油关键技术生物质能作为可再生的资源,其利用不仅可实现资源的再生利用,也可以减少对环境的污染。

其中,生物柴油是利用生物质资源生产的一种清洁能源,可以替代传统柴油使用,具有重要的应用价值。

生物质连续化制备高品质生物柴油是目前研究的热点之一,需要攻克以下几个关键技术。

1.生物质前处理技术生物质前处理是将原生物质转化为易于催化转化的中间产物或基础化合物的过程。

在生物质连续化制备高品质生物柴油中,生物质的前处理对于提高生物柴油的品质和生产效率起到了至关重要的作用。

目前,常用的生物质前处理技术包括浸泡、碱处理、酸处理、微波处理等。

2. 催化剂研究与开发生物柴油是通过催化转化将生物质转化为柴油的过程中,催化剂是至关重要的因素。

因此,在生物质连续化制备高品质生物柴油的过程中,研究和开发高效、低毒、长效的催化剂具有重要的意义。

当前,以酸性离子液体催化剂、钠亚麻油酸盐催化剂、离子交换树脂等为代表的新型催化剂吸引了广泛的关注。

3. 反应条件优化反应条件也是影响生物质制备生物柴油质量和效率的重要因素。

反应条件的优化能够进一步提高生物柴油的产率和抗氧化性能,降低其产量成本。

现有研究指出,温度、催化剂的用量、反应时间等是影响反应条件的重要因素。

4. 加氢技术在生物质连续化制备高品质生物柴油的过程中,加氢技术是一种重要的手段。

加氢工艺能够使生物柴油的分子量提高,同时也能够提高生物柴油的抗氧化性能和储存稳定性。

近年来,以固体酸-金属催化剂、纳米钛金属催化剂为代表的新型加氢技术在研究和应用中取得了显著的进展。

总之,生物质连续化制备高品质生物柴油是一个非常复杂的过程,需要攻克多项关键技术。

随着技术的不断发展和完善,相信生物质连续化制备高品质生物柴油将会越来越广泛地应用于替代传统柴油,降低能源消耗和污染 emissions。

菜籽油馏分制备生物柴油的技术研究

菜籽油馏分制备生物柴油的技术研究

菜籽油馏分制备生物柴油的技术研究随着全球对可再生能源的需求日益增加,生物柴油作为一种可再生燃料,受到了广泛的关注和重视。

而菜籽油馏分作为生物柴油的一种重要原材料,其技术研究具有十分重要的意义。

本文旨在探讨菜籽油馏分制备生物柴油的技术研究现状和未来发展趋势。

一、制备生物柴油的技术路线菜籽油馏分可以通过酯化反应或者转化反应来制备生物柴油,其中酯化反应是较为常见的一种制备方法。

在酯化反应中,菜籽油馏分首先与甲醇或乙醇等醇类发生酯化反应,生成一系列的酯类。

然后,通过油-酯化产物混合液的分离和纯化,我们可以得到纯净的生物柴油。

而在转化反应中,将菜籽油馏分与过氧化氢等氧化剂反应,生成一系列的脂肪酸和其他杂质。

通过脱除杂质和再结晶,我们可以得到高纯度的生物柴油。

二、菜籽油馏分制备生物柴油技术的优缺点菜籽油馏分作为一种原材料制备生物柴油的优点在于具有丰富的资源、高产出量和低成本。

而在制备过程中,菜籽油馏分需要处理一些不纯物质,比如水分和杂质,这些不纯物质会影响生物柴油的纯度和质量。

因此,我们需要消除这些不纯物质,以获得高纯度的生物柴油。

此外,使用菜籽油馏分制备生物柴油还可能存在生产量不足、影响农作物生产和潜在的生态问题等方面的缺点。

三、菜籽油馏分制备生物柴油技术的发展趋势菜籽油馏分制备生物柴油技术的发展趋势主要集中在提高生物柴油的产量和纯度、降低生产成本、减少生产过程中的环境影响等方面。

为了提高产量和纯度,目前研究者主要集中在优化酯化反应条件、改进分离纯化方法、研究新型催化剂等方面。

同时,由于生物柴油生产需要耗费大量的能量,研究者正在探索使用太阳能等可再生能源来替代传统能源,以实现生产过程的可持续发展。

此外,近年来,生物柴油在交通运输领域逐渐受到认可和应用。

世界各地鼓励使用生物柴油作为环保燃料,减少对化石燃料的依赖和减少CO2等排放物的排放量。

因此,在未来菜籽油馏分制备生物柴油技术方面,我们需要更好地探索生物柴油的市场应用和发展前景,以满足社会的需求和发展空间。

生物柴油的制备工艺研究

生物柴油的制备工艺研究

生物柴油的制备工艺研究生物柴油是一种很重要的替代燃料,在目前世界能源危机日益严重的情况下,它是解决能源瓶颈问题的重要手段。

生物柴油的制备工艺研究是生产和应用生物柴油的重要前提,本文将简单介绍相关的制备工艺。

生物柴油的来源生物柴油以植物油为原料,或以动物脂肪和油脂为原料,是一种环保、可再生的二代清洁能源。

与石油燃料相比,生物柴油的优点在于能够减少二氧化碳的排放,且在生物柴油燃烧完全后生成的气体中,含有的二氧化碳并不会对大气环境造成进一步的影响,因此是非常环保的。

生物柴油的制备工艺研究生物柴油的制备工艺可以分为两种,分别是碱催化和酸催化。

1.碱催化法碱催化法是将植物油或动物脂肪与醇反应生成酯,其中的催化剂是氢氧化钠或氢氧化钾等强碱。

此法制备生物柴油成本低廉,反应速度快,可以在室温下、常压下完成,但在反应过程中容易产生大量的碱酸催化剂残留,使得产品合格率不高,影响了产品的质量;此外,反应过多久会影响产率,所以需要控制反应时间。

2.酸催化法酸催化法是将醇和油脂按一定的摩尔比在酸催化剂作用下进行酯化反应,其中的催化剂是硫酸、苯甲酸、过磷酸等。

此法反应过程温和、产率高、反应后的催化剂残留量小,但需要较高的反应温度和压力,容易产生过多的酸性催化剂残留,同样影响产品的质量。

现阶段的研究目前,国内外的研究人员在生物柴油的制备工艺研究方面取得了很多成果。

比如,中科院化学所的一位研究员在碱催化制备生物柴油过程中,采用了超声波振荡反应器,以更快的速度去酯化油脂,取得了良好的效果;此外还有一些新型催化剂的研制,如杨凌农业高新技术产业示范区的研究人员,就成功地将粗甘油转化为生物柴油的高效催化剂部分还原氧化石墨烯(rGO)上。

这些新技术的出现,为生物柴油在生产和应用方面提供了新的思路和方法。

结论综上,生物柴油的制备工艺研究至关重要。

目前,生物柴油的研究仍处于初期阶段,需要加强各个环节的研究,以提高产品的质量和生产效率。

相信在科学家们的共同努力下,生物柴油将会越来越适用于人们的生产和生活,从而达到绿色低碳的目的。

简述制备生物柴油的主要方法

简述制备生物柴油的主要方法

简述制备生物柴油的主要方法
生物柴油的主要制备方法包括以下步骤:
1.植物油或动物脂肪的提取
提取植物油或动物脂肪是制备生物柴油的第一步。

一般来说,常用的
植物油包括油菜籽油、大豆油、棕榈油等,常用的动物脂肪包括猪油、牛油、鸡油等。

提取的原料中必须含有高含量的油脂。

2.预处理
植物油或动物脂肪在提取后需要进行预处理,主要是去除水分、杂质
和游离脂肪酸等。

这一步骤可以通过压榨、过滤、脱水和脱臭等方式
进行。

3.转化反应
将经过预处理的植物油或动物脂肪与醇类或甲醛等反应,生成脂肪酯。

这一步是制备生物柴油的关键,常用的反应方式包括碱催化法、酸催
化法、酯化法等。

4.分离和净化
经过转化反应后生成的脂肪酯需要进行分离和净化。

这一步可以通过
重力分离、离心分离和蒸馏分离等方式进行。

5.加工调配
分离和净化好的脂肪酯需要进行加工调配,主要是将不同类型的脂肪
酯混合,以满足各种不同的使用要求。

6.生物柴油储存和前置处理
加工调配好的生物柴油需要进行储存和前置处理。

前置处理包括过滤、脱水和脱氧等步骤,以去除水分、杂质和氧化物等。

7.生物柴油使用
生物柴油可以作为替代传统石油柴油的燃料使用,在汽车、船舶、发
电机等领域都有广泛应用。

其优点包括绿色环保、可再生等。

生物柴油制备技术介绍

生物柴油制备技术介绍

生物柴油制备技术介绍目前,生物柴油的制备方法主要有直接混合法、微乳化法、高温裂解法和酯交换法。

前两种方法属于物理方法,虽然简单易行,能降低动植物油的粘度,但十六烷值不高,燃烧中积炭及润滑油污染等问题难以解决。

高温裂解法过程简单,没有污染物产生,缺点是在高温下进行,需催化剂,裂解设备昂贵,反应程度难控制,且高温裂解法主要产品是生物汽油,生物柴油产量不高。

工业上生产生物柴油主要方法是酯交换法。

在酯交换反应中,油料主要成分三甘油酯与各种短链醇在催化剂作用下发生酯交换反应得到脂肪酸甲酯和甘油。

可用于酯交换的醇包括甲醇、乙醇、丙醇、丁醇和戊醇,其中最常用的是甲醇,这是由于甲醇价格较低,碳链短,极性强,能够很快与脂肪酸甘油酯发生反应,且碱性催化剂易溶于甲醇。

酯交换反应是可逆反应,过量的醇可使平衡向生成物的方向移动,所以醇的实际用量远大于其化学计量比。

反应所使用的催化剂可以是碱、酸或酶催化剂等,它可加快反应速率以提高产率。

酯交换反应是由一系列串联反应组成,三甘油酯分步转变为二甘油酯、单甘油酯,最后转变成甘油,每一步反应均产生一个酯。

酯交换法包括酸催化、碱催化、生物酶催化和超临界酯交换法等。

(1)酸催化法。

酸催化法用到的催化剂为酸性催化剂,主要有硫酸、盐酸和磷酸等。

在酸催化法条件下,游离脂肪酸会发生酯化反应,且酯化反应速率要远快与酯交换速率,因此该法适用于游离脂肪酸和水分含量高的油脂制备生物柴油,其产率高,但反应温度和压力高,甲醇用量大,反应速度慢,反应设备需要不锈钢材料。

工业上酸催化法受到关注程度远小于碱催化法。

(2)碱催化法。

碱催化法采用的催化剂为碱性催化剂,一般为NaOH、KOH、NaOH 以及有机胺等。

在无水情况下,碱性催化剂酯交换活性通常比酸性催化剂高。

传统的生产过程是采用在甲醇中溶解度较大的碱金属氢氧化物作为均相催化剂,它们的催化活性与其碱度相关。

碱金属氢氧化物中,KOH比NaOH具有更高的活性。

用KOH作催化剂进行酯交换反应典型的条件是:甲醇用量5%-21%,KOH用量0.1%~1%,反应温度25-60℃,而用NaOH 作催化剂通常要在60℃下反应才能得到相应的反应速率。

生物柴油技术

生物柴油技术

生物柴油技术生物柴油技术作为一种新型的可再生能源,近年来备受关注。

生物柴油是通过生物质资源,如植物油、废弃食用油脂等,经过一系列的化学反应制备而成的替代传统石油柴油的燃料。

生物柴油技术的发展,对于缓解能源危机、减少碳排放、推动可持续能源发展等方面具有重要意义。

生物柴油的制备生物柴油的制备过程主要包括生物质资源的提取和转化两个步骤。

首先是生物质资源的提取,可以从植物油、动植物油脂、微藻等生物质资源中提取所需的油脂。

然后是转化过程,通过酯交换反应或酯化反应将生物质资源中的油脂转化成生物柴油。

整个制备过程需要考虑原料的选择、反应条件的控制以及产物的纯化等环节。

生物柴油的特点相对于传统石油柴油,生物柴油具有许多优点。

首先,生物柴油是一种可再生能源,相比于石油资源,其生产过程所消耗的能源和排放的二氧化碳更少,对环境的影响更小。

其次,生物柴油具有较高的氧含量,燃烧时产生的有害气体更少,对环境和人体健康更友好。

此外,生物柴油可以与传统石油柴油混合使用,对燃油设施的适应性较好。

生物柴油技术的挑战与发展尽管生物柴油技术具有许多优势,但也面临一些挑战。

比如,生物柴油的生产成本相对较高,限制了其大规模商业化应用。

同时,生物柴油的存储稳定性和燃烧性能等方面需要进一步改进。

未来,生物柴油技术仍然需要不断创新,降低生产成本,提高燃料质量,推动其广泛应用。

综上所述,生物柴油技术作为一种具有巨大潜力的可再生能源技术,对于实现能源可持续发展、减少碳排放等具有重要意义。

随着技术的不断进步和完善,相信生物柴油技术将在未来得到更广泛的应用和推广。

生物质间接液化制备柴油(BTL)

生物质间接液化制备柴油(BTL)

生物质间接液化制备柴油(BTL)BTL柴油技术是先将生物质在高温、高压条件下气化得到合成气,再经FT(费托)合成得到清洁柴油或化工产品,所得柴油十六烷值可高达85,性能优于石油基柴油,是一种最具前途的生产生物柴油技术。

图1是其典型流程图。

从自然界中获得的秸杆等植物生物质先进行预处理——磨碎和干燥,然后通过气化装置进行气化,产生的气体中除了含有CO和H2外,还含有焦油、多种无机物和有机物,如CxHy、HCl、NH3等,需要进一步净化,同时还可根据要求对气体的组成进行调整,最后进入FT合成装置进行FT合成制备燃油。

FT合成催化剂通常包括下列组分:活性金属(第VIII族过渡金属),氧化物载体或结构助剂(SiO2,A12O3等),化学助剂(碱金属氧化物)及贵金属助剂(Ru,Re,Cu等)。

我国的中科院山西煤化所与英国BP 合作正在进行FT催化剂方面的研究。

图1 生物质气化-FT成合成生物柴油流程图在FT反应中,长链液态烃应该具有高的选择性和高的收率。

为了获得长链烃,生长概率(growth probability)α需接近1。

催化剂对α影响非常大,但同时反应温度、反应物及惰性化合物的分压、FT 合成技术都有影响。

Ru和Co催化剂的α要比Fe催化剂的高。

合成气在FT反应器中转化的程度受催化剂类型、反应器大小和技术的影响。

气相产物中包括未反应的CO和H2及FT合成产物。

FT合成产物中有气态烃(C1~C4)、石脑油(C5~C10)、柴油(C11~C12)和蜡组分(>C20)。

其中超过5个碳的有机物很容易通过冷凝分离和回收,并被用作燃料;蜡状物质进行选择性加氢裂化生产C10~C20的中间馏分,并进行异构化以提高低温流动性,然后进行常规蒸馏以获得燃料。

尾气中通常含有未反应的H2、CO及低碳烷烃。

为了获得最大收率,尾气(部分)可以进入反应器循环利用,并在循环反应部分加入重整装置和转移反应器进行重整和转移反应,或作为FT合成的副产品直接燃烧供热/发电。

技术|地沟油制备生物柴油的技术方法

技术|地沟油制备生物柴油的技术方法

技术|地沟油制备生物柴油的技术方法目前,生物柴油的制备技术方法主要有直接混合法、微乳法、热解法和酯交换法。

我国地沟油的来源广且分散,具有含固体杂质多、含水分高、酸值高的特点。

地沟油制备生物柴油一般要先经过除水、机械除杂、除酸、脱色等预处理,然后利用酯交换法或加氢裂化法制备成生物柴油。

酯交换法制备生物柴油张勇以废弃地沟油为原料,经预处理后采用两步酯化工艺将其转化为生物柴油,第一步为酸催化预酯化反应,主要是将地沟油中的游离脂肪酸转化为脂肪酸甲酯;第二步为酸催化转酯化反应,进一步将地沟油中的甘三酯转化为甲酯和甘油。

通过正交实验得到预酯化反应的最佳条件为:醇油摩尔比10∶1、催化剂用量1%、反应温度70℃、反应时间4小时;转酯化反应的最佳条件为:醇油摩尔比20∶1、催化剂用量6%、反应温度70℃、反应时间4小时。

在最佳反应条件下,甘三酯的酯化率可达到86.89%。

利用该方法制备的生物柴油在闪点、冷滤点等方面要优于0号柴油,在储运过程中更安全;同时能够在更宽的温度范围内使用。

研究同时发现将利用该方法制备的生物柴油与0号柴油按照B20调和后,不仅能够大大降低生物柴油的黏度,使挥发性得到改善,同时使0号柴油的闪点提高,凝点和冷滤点降低,使储运过程更加安全,低温性能得到改善,有利于在更宽的温度范围内使用,可以满足使用要求。

地沟油酸催化法制备生物柴油是利用地沟油与甲醇或乙醇等低碳醇在酸性催化剂条件下进行酯交换反应,生成相应脂肪酸甲酯或乙酯。

姚亚光等以酸作为催化剂,首先对地沟油进行除杂、脱胶、脱色、脱水的预处理,在酸催化条件下利用地沟油制备生物柴油,通过对地沟油与甲醇、乙醇酯化反应进行正交实验,实验确定了酸催化地沟油制备生物柴油的最佳反应条件为:甲醇温度为70℃,油醇摩尔比为1∶40,催化剂浓度为7%,反应时间为6小时,级差顺序依次是:油醇摩尔比、反应时间、催化剂浓度、温度;乙醇温度为80℃,油醇摩尔比为1∶30,催化剂浓度为5%,反应时间为6小时,级差顺序依次是:油醇摩尔比、温度、催化剂浓度、反应时间。

生物柴油的生产方法与技术

生物柴油的生产方法与技术

生物柴油的生产方法与技术生物柴油是一种以生物质为原料制成的、与传统石油柴油具有相似化学性质的燃料。

相比于石油柴油,生物柴油具有绿色环保、可再生资源等优点,而且它的使用无需改变现有的发动机设计,最大程度地保证了汽车的使用便利性。

本文将探讨一下生物柴油的生产方法与技术。

1. 原料的选择制备生物柴油需要选取适合的原料,常见的原料有油菜籽、大豆、棉籽、花生等高油量作物。

此外,生物柴油的原料也可以是动物脂肪、油脂废弃物等,这些原料的使用可以做到废物利用的效果。

不过,值得注意的是,原料的选择需要考虑到能源效益和环境效益等多方面的因素。

2. 原料的处理原料的处理对生物柴油的质量和产量都有着极大的影响。

在处理原料时,需要进行去杂、去水、脱臭等工序。

同时,还需要进行磨碎、压榨等处理,以便将原料的油分离出来。

这些处理工序中,关键的环节是脱水,一般选择机械脱水法、热氧化法等方法脱除原料中的水分。

3. 酯化反应原材料处理好之后,就需要进行酯化反应。

酯化反应是将生物原料中的油脂或脂肪酸甲酯与甲醇反应生成生物柴油的一个过程。

在酯化反应中,需要添加催化剂,常见的有硫酸、盐酸等。

此外,反应物质的比例、反应温度和反应时间等也需要严格控制以保证反应的效果。

4. 精炼和加工酯化反应完成后,得到的生物柴油仍然含有一定的杂质和水分,需要进行精炼和加工。

精炼过程的主要工序有脱水、脱酸、脱色、脱臭等。

其中,脱水是最重要的环节之一,如果未能彻底脱除生物柴油中的水分,会导致产量下降、设备损坏等问题。

在加工的过程中,还需要进行掺配等操作,以使生物柴油的性能符合国家标准和客户需求。

5. 生产流程的自动化生物柴油的生产是一个比较复杂的过程,需要进行多个环节的控制和管理。

为了提高生产效率和生产质量,生产流程的自动化是非常必要的。

在自动化系统中,可以通过各种传感器来实时监测温度、压力、流量等参数,从而实现对生产过程的自动控制。

此外,还可以通过物联网、云计算等技术实现远程监控和管理。

生物柴油的制备和应用

生物柴油的制备和应用

生物柴油的制备和应用随着人们对环保意识的提高,生态问题已经成为社会各界共同关注的话题。

石油的开采和利用不仅对环境造成污染,而且也会在很大程度上加剧能源的消耗。

为了解决这些问题,生物柴油的制备和应用逐渐成为人们寻求替代能源的选择之一。

一、生物柴油的制备生物柴油是使用植物油或动物油替代石油原材料制备的柴油燃料。

为了制备生物柴油,需要将植物油或动物油通过酯化、环氧化、加氢、脱水等化学反应转化为柴油燃料。

具体制备过程包括以下几个步骤:1、油脂的预处理:清理油脂中的杂质和水分,分离出纯净的植物油或动物油,以便后续处理。

2、精细加工:将油脂进行精细加工,使其转化为甘油和脂肪酸两个部分。

3、酯化反应:将脂肪酸和甲酸或乙酸反应生成甲酯或乙酯。

4、脱水组成乙醇。

5、环氧化反应:将甲酸酯或乙酸酯进行环化反应,在存在催化剂的条件下生成环氧丙烷。

6、转化为柴油:将环氧丙烷通过加氢反应转化为柴油燃料。

二、生物柴油的应用生物柴油作为一种新型的绿色燃料,其应用范围越来越广。

生物柴油对环境的污染程度较小,且可以降低碳排放量,尤其是对于汽车尾气的排放有着更好的效果。

此外,生物柴油的热值相对于石油柴油较低,但其其保持稳定的性质使得其在工业领域中同样有不少的应用,包括发电、锅炉、以及农业机械等设备的燃料。

在未来,生物柴油的应用将会得到更广泛的推广和应用,同时生物柴油的研发和产业链也将会越来越完善。

最近年来,国内生物柴油生产企业增多,但是仍然存在一些缺陷和问题,例如成本较高、技术还需要进一步开发、以及相关的政策和法规等还没有完全成熟。

这需要产业界和政府相互合作,共同把生物柴油推向一个更高的水准。

总之,尽管生物柴油在技术和市场层面上仍存在一些挑战,但是生物柴油作为一种节能环保的替代能源有着越来越广阔的前景。

只要我们加强技术创新和管理,进一步加强标准化和规范化的建设,生物柴油的产业链将会得到更加完善和健康的发展。

1.实验室制备生物柴油

1.实验室制备生物柴油

实验室制备生物柴油(一) 反应原理实验室制备生物柴油分为两步反应:预酯化反应、酯交换反应。

1。

预酯化反应的原理油脂中的游离脂肪酸及甘油三酯在酸性催化作用下和过量的甲醇或乙醇进行酯化反应,反应过程中生成水、甘油和脂肪酸甲酯或脂肪酸乙酯.反应方程式:RCOOH+CH 3OH=RCOOCH 3+H 2O2。

酯交换反应的原理甘油三酯在碱性催化作用下进行酯交换反应,生成脂肪酸甲酯或脂肪酸乙酯。

反应方程式:(二)以地沟油为原料1。

关于地沟油通俗地讲,地沟油可分为以下几类:一是狭义的地沟油,即将下水道中的油腻漂浮物或者将宾馆、酒楼的剩饭、剩菜(通称泔水)经过简单加工、提炼出的油;二是劣质猪肉、猪内脏、猪皮加工以及提炼后产出的油;三是用于油炸食品的油使用次数超过规定要求后,再被重复使用或往其中添加一些新油后重新使用的油。

地沟油常压下沸点约为300—400℃,负压-0.098MPa 时,沸点约为140—250℃ 。

2. 操作步骤2。

1 称取油样称取一定量的油样,要保证脱水后油样的质量不少于100g.2。

2 对原料油水洗除杂在分液漏斗中用80℃以上的热水水洗,水洗至中性。

注:①如果温度低于80℃,则易发生乳化(油包水、水包油)②破乳化的方法:加适量食盐;加稀酸1%;加热;R 1COO-CH 2 R 2COO-CH R 3COO-CH 2 R 1COOCH 3 R 2COOCH 3 R 3COOCH 3 CH 2-OHCH-OH CH 2-OH + 3CH 3OH = +③杂质存在的影响:酯化反应转换率会降低;预酯化反应后若胶质过多,则会增加乳化现象。

2。

3 静置分层在分液漏斗中静置30—60min。

其中,上层为油,下层为水.2。

4 加热脱水先用离心机进行脱水,再用电炉加热脱水。

注:若水分含量达不到所要求的,那么可能将会影响预酯化反应的进行。

因为预酯化反应是可逆反应,水的大量存在会使反应向逆方向进行。

2。

5 测定酸值.根据酸值的大小决定反应的类型.2。

生物柴油制备技术的优缺点分析

生物柴油制备技术的优缺点分析

生物柴油制备技术的优缺点分析生物柴油(Biodiesel)是一种以植物油、动物脂肪或废弃料为原料,经酯化或转酯化制成的可代替传统石油柴油的燃料。

近年来,随着环保意识的提高,生物柴油的使用逐渐受到越来越多的关注。

本文将从生物柴油制备技术的角度出发,对其优缺点进行分析。

优点:1.生物柴油可再生相比传统石油柴油,生物柴油是一种可再生资料。

由于其主要原料为植物油、动物脂肪或废弃料,这些原料可以通过种植、饲养等方式进行再生,产生的生物柴油也可以被再生利用,降低了对于化石燃料的依赖,减少了对于环境的污染。

2.生物柴油环保生物柴油的主要原料为植物油、动物脂肪或废弃料,这些资料在生长、生产过程中会吸收二氧化碳,并在酯化反应中释放出来,形成一个封闭的生态循环系统,减少了温室气体的排放量。

同时,生物柴油燃烧过程产生的尾气排放较少,其一氧化碳、氮氧化物、颗粒物和有害气体的排放远低于传统石油柴油,其环保性能得到了广泛的认可。

3.生物柴油可融合现有石油基础设施生物柴油与传统石油柴油具有相似的物理和化学性质,所以生物柴油完全可以融合现有的石油基础设施中进行生产、销售和使用,使其成本显著降低。

缺点:1.生物柴油生产过程复杂生物柴油的生产过程较为复杂,需要经过多个步骤的处理,如去酸、去水、甲酸等处理,使得其生产成本较高。

同时,由于生物柴油的原料来源较为广泛,不同原料的处理步骤略有差异,这也增加了生产过程的复杂度。

2.生物柴油产量较低相较于传统石油柴油,生物柴油生产的累动机批年产量相对较低,这也导致其价格较高,难以大规模应用。

3.生物柴油稳定性较低生物柴油在运输、储存和使用过程中容易发生沉淀、生锈、泄漏等问题,需要对于其进行加工和处理,增加使用成本。

结语:总体而言,生物柴油具有可再生、环保和可融合现有石油基础设施的优点,然而其价格较高、生产过程复杂以及产量较低和稳定性较低等缺点也是不能忽略的。

未来在生物柴油生产技术和成本方面的持续改进,将有望进一步提高生物柴油的竞争力和应用价值。

制备生物柴油的方法

制备生物柴油的方法

制备生物柴油的方法生物柴油是一种可再生能源,是通过天然植物油或动物油制备而成的,与传统石油柴油相比具有更低的碳排放和更高的环保性能。

制备生物柴油的方法主要包括酸碱催化转酯化法、超临界酯化法和生物化学法等。

一、酸碱催化转酯化法酸碱催化转酯化法是制备生物柴油最常用的方法之一。

其步骤如下:1. 原料准备:选择适合生物柴油制备的油料作为原料,如大豆油、菜籽油、棕榈油等。

2. 预处理:将原料油中的杂质、水分和自由脂肪酸等物质进行去除。

3. 酯化反应:将原料油与酸性催化剂(如硫酸)进行酯化反应,将原料油中的甘油酯化为甲酯。

4. 中和处理:加入碱性催化剂(如氢氧化钠)进行中和反应,中和催化反应中产生的酸性物质。

5. 分离纯化:通过沉淀、离心或蒸馏等方法将甲酯和催化剂分离出来,获取纯净的生物柴油。

二、超临界酯化法超临界酯化法是一种高效、环保的生物柴油制备方法,其步骤如下:1. 超临界溶剂的选择:选择适合的超临界溶剂,通常是氨、乙醇、甲醇等。

2. 反应系统构建:将原料油和超临界溶剂放入反应釜中,加热到一定温度并保持一定压力。

3. 催化剂选择:选择适合超临界条件的催化剂,催化剂有助于提高酶催化反应的效率。

4. 反应进行:在超临界条件下,通过加入适量的催化剂使油脂与溶剂中的酯发生酯化反应。

5. 分离纯化:通过减压蒸馏或其他分离技术将酯类柴油和超临界溶剂分离,得到纯净的生物柴油。

三、生物化学法生物化学法是一种利用微生物进行酯化反应的方法。

其步骤如下:1. 选菌:选择适合酯化反应的微生物菌株,如产酶能力强的酵母菌、酯酶高活性的细菌等。

2. 培养:将选定的菌株培养到一定数量,并将其接种到含有油料的培养基中。

3. 发酵:在适宜的温度和pH条件下,利用微生物菌株对油料中的脂肪酸进行酯化反应。

4. 分离纯化:通过离心、滤网等方式将反应液中的生物柴油和沉淀物分离,获取纯净的生物柴油。

以上是制备生物柴油的几种常用方法,每种方法都有其优缺点,需要根据实际情况选择合适的方法进行制备。

生物柴油的制备及其副产物的纯化方法研究

生物柴油的制备及其副产物的纯化方法研究

生物柴油的制备及其副产物的纯化方法研究
制备生物柴油是在生物酶催化作用下将植物油中的长链脂肪酸开环分解为折氢后的烷烃柴油,以达到制备生物柴油的目的。

生物柴油制备的关键步骤是利用能保护植物油中的长链脂肪酸的酶,包括甘油脂酶和加氢脂酶,将植物油中的长链脂肪酸开环分解。

开环后的烷烃经过过滤提纯后,就能经过再脱盐和再氢加工,得到高纯度的生物柴油。

生物柴油的纯化主要使用精馏法,精馏是生物柴油纯化的最常用方法,它把生物柴油混合物以温度梯度的方式从加热蒸馏塔中按化学性质分净,这样可以得到更高纯度的生物柴油。

另外,离子交换法、凝胶层析法和深层吸附法也可以用于纯化生物柴油。

总之,生物柴油制备并不是一件轻而易举的任务,不仅要利用能够保护植物油中的长链脂肪酸的酶,还要有高效的纯化方法来提纯所获得的生物柴油。

只有实现上述的两个步骤,才能获得高纯度的生物柴油。

生物柴油的制备及其应用

生物柴油的制备及其应用

生物柴油的制备及其应用生物柴油(BioDiesel)是一种由植物油或动物油的脂肪酸甲酯化合而成的可再生能源,与化石能源相比,生物柴油具有更加环保和可再生的特点。

同时,生物柴油的成本也比传统的柴油油价更低,能有效降低石油依赖度和维护国家能源安全。

因此,生物柴油的制备和应用越来越成为各国研究关注的焦点。

一、生物柴油的制备目前生物柴油的制备方法主要分为两类:催化剂法和微生物法。

1、催化剂法催化剂法是将动植物油在催化剂的作用下,与甲醇或乙醇反应,生成甲酯或乙酯,最终制备生物柴油。

常用的催化剂有强酸性催化剂和碱性催化剂。

其中,碱性催化剂比强酸性催化剂在制备过程中更加环保、高效,逐渐成为生物柴油催化剂的主流。

2、微生物法微生物法指的是利用细菌、酵母等微生物对植物油或动物油进行微生物发酵,合成生物柴油的过程。

其制备过程简单、不产生废水、二氧化硫等有毒物质,因而具有人们注目的环保优势。

但是,由于该方法需要对微生物环境进行严格调控,还存在生产成本高等问题,使得其在实际生产过程中的应用受到了限制。

二、生物柴油的应用1、车辆燃料生物柴油已经被证实可以用作汽车柴油的替代品,并且不需要对车辆进行额外的改进。

它是低排放和低碳燃料,由于生产原料可以轻松获取,生产成本也不高,因此受到了业界和市场的广泛认可。

2、船舶燃料相对于其他运输方式,船运是一种低成本且低碳排放的运输方式。

而生物柴油可以被用作航运业的代替品,可以降低船舶的碳排放,减少海洋污染和对环境的危害。

3、机械燃料生物柴油也被应用于燃料类型为柴油的机械中,如发电机、锅炉等,以及柴油燃动机。

生物柴油不仅可以减少机器产生的污染,还可以节约能源,使机器的运行更加高效。

三、结语生物柴油作为可再生能源的代表之一,虽然在制备技术和应用领域还面临着许多挑战,但随着科学技术的不断突破和发展,未来必定有更多的突破和应用。

人们一直在探索制备和应用生物柴油技术的最佳方法,以便未来使用更清洁的燃料,为环境保护和人类未来的可持续发展做出积极的贡献。

生物柴油制备工艺技术条件

生物柴油制备工艺技术条件

生物柴油制备工艺技术条件生物柴油是一种可以替代传统石化柴油的清洁能源,它由生物质废弃物转化而成。

为了获得高质量的生物柴油,制备工艺需要满足一定的技术条件。

本文将探讨生物柴油的制备工艺技术条件。

首先,生物柴油的原料主要以植物油和动物油为主,在选择原料时需要考虑其成分和特性。

一般来说,植物油中的不饱和脂肪酸含量较高,容易导致生物柴油氧化稳定性差,因此在选择植物油时应尽量选择低饱和度的油种。

同时,动物油中所含的硬脂酸和琥珀酸含量较高,容易导致结晶和凝固现象,因此在选择动物油时应注意对硬脂酸和琥珀酸进行适当的调整和疏水化处理。

其次,生物柴油的制备过程中需要采用催化剂对原料进行酯化和甲醇胺解反应。

其中,酯化反应需要使用酯化剂和酸性催化剂,常用的酯化剂有小分子酸酐和酸酐酐,常用的酸性催化剂有硫酸、盐酸、磷酸等。

而甲醇胺解反应需要使用甲醇和胺类催化剂,常用的胺类催化剂有二乙醇胺、三乙醇胺等。

在选择催化剂时,需要考虑其催化活性、选择性、稳定性等因素。

此外,生物柴油的制备还需要控制反应温度和反应时间。

一般来说,酯化反应的反应温度在60-70摄氏度之间较为合适,反应时间一般为1-3小时;而甲醇胺解反应的反应温度在80-100摄氏度之间较为合适,反应时间一般为2-4小时。

在控制反应温度和反应时间的同时,还需要考虑反应过程中产物的溶解度和挥发性,以保证反应的顺利进行和产物的纯度。

最后,生物柴油的制备工艺中还需要考虑废水处理和废物处理等环境问题。

酯化反应和甲醇胺解反应中会产生大量的废水和废物,需要通过适当的处理方法进行处理,以减少环境的污染。

综上所述,生物柴油的制备工艺需要满足一系列的技术条件。

通过选择适当的原料、合理选择催化剂、控制反应温度和时间,以及合理处理废水和废物等环节,可以获得高质量的生物柴油。

这些技术条件的合理控制将为生物柴油的大规模生产和应用提供有力支持。

生物柴油的制备和性能调控技术

生物柴油的制备和性能调控技术

生物柴油的制备和性能调控技术随着环境保护意识的增强和对可再生能源的需求,生物柴油作为一种绿色可替代燃料,受到了广泛关注。

生物柴油的制备和性能调控技术是实现其产业化应用的关键。

一、生物柴油的制备技术生物柴油的制备技术主要包括生物质预处理、催化转化和收获分离三个步骤。

首先,生物质经过破碎和处理,使得其中的纤维素、半纤维素和木质素等组分得以充分暴露,提高可降解性。

然后,通过催化转化将生物质组分转化为生物柴油。

常用的催化转化方法包括催化裂解、催化氢化和催化酯化等。

最后,在收获分离步骤中,将生物柴油与废物水分离,得到高纯度的生物柴油。

在生物柴油的制备过程中,催化转化技术是关键的一环。

目前常用的催化剂包括金属催化剂和酶。

金属催化剂可以通过调节其结构和组成来实现对生物质的选择性催化转化,从而提高生物柴油的产率和质量。

而酶催化则可以在较低温度和无毒溶剂条件下实现生物柴油的制备,具有较高的环境友好性和能源效率。

二、生物柴油的性能调控技术生物柴油的性能调控技术主要包括添加剂和催化剂的使用以及饱和度的调控。

添加剂被广泛应用于生物柴油中,可以改善其低温流动性、氧化安定性和粘度等性能。

常见的添加剂包括抗氧化剂、减摩剂和防腐剂等。

抗氧化剂可以延缓生物柴油氧化的过程,从而提高其储存稳定性和可靠性。

减摩剂可减少生物柴油在燃烧过程中产生的摩擦和磨损,降低发动机的噪音和能耗。

防腐剂则可以减少生物柴油储存和运输过程中的微生物生长,延长其使用寿命。

催化剂的使用可以提高生物柴油的燃热值和氮氧化物的排放控制。

在生物柴油燃烧过程中,催化剂可以加速燃料的燃烧反应,提高燃烧效率和热值释放,同时减少颗粒物和有害气体的产生。

常用的催化剂包括钴、钼和铁等金属催化剂。

通过调节催化剂的组成和结构,可以实现生物柴油的性能优化。

另外,饱和度是影响生物柴油性能的一个重要因素。

较高的饱和度可以提高生物柴油的抗氧化稳定性和储存寿命,但过高的饱和度会导致其凝固温度升高,降低低温流动性。

生物柴油制备工艺技术规程

生物柴油制备工艺技术规程

生物柴油制备工艺技术规程生物柴油是利用农业油料作为原料,经过酯化和脱水处理生产得到的替代传统石油柴油的一种绿色能源。

为了确保生物柴油的制备过程稳定可靠,需要制定一套科学规程来指导生产工艺技术的操作。

一、原料准备1. 选择优质的农业油料,包括大豆、油菜籽、棉籽等,保证其含油量达到标准要求。

2. 对原料进行清洗,去除杂质和水分,使原料干燥。

二、预处理1. 将原料进行破碎,使颗粒粒径均匀,提高酯化反应速率。

2. 对预处理后的原料进行脱水处理,降低柴油产率中水分的影响。

三、酯化反应1. 准备酯化反应器,将预处理后的原料加入反应器中。

2. 在反应器中加入催化剂,常用的催化剂为硫酸。

3. 加热反应器,控制反应温度为55-60°C,保持稳定。

4. 进行酯化反应,反应时间一般为2-4小时。

5. 用酯化试剂检测反应进程,当酯化转化率达到标准要求时结束反应。

四、分离水相1. 冷却反应液,待其冷却至室温。

2. 分离水相和油相,将水相排出。

3. 对酯化油进行蒸馏,去除其中的杂质。

五、脱水处理1. 将获得的酯化油进行脱水处理。

2. 常用的脱水方法有真空蒸馏法和脱水剂吸附法。

六、催化剂去除1. 进行酯化催化剂的去除,常用方法为中和法和活性炭吸附法。

七、产品储存与贮存1. 将制得的生物柴油进行冷却,达到储存温度。

2. 采用密封容器储存,以防产品受到氧化和污染。

此外,制备生物柴油的过程中还需要进行多次的检测和测量,如原料含油量的测定、酯化转化率的测定、水分含量的测定等,以确保产品质量达到规定标准。

总之,生物柴油制备工艺技术规程是保证生产过程的稳定和产品质量的基础。

只有严格按照规程操作,才能制得高质量可靠的生物柴油,为环保事业做出贡献。

生物酶法制备生物柴油技术的研究现状

生物酶法制备生物柴油技术的研究现状

生物酶法制备生物柴油技术的研究现状生物柴油,是指利用油脂类、植物油等生物资源进行提炼而得到的一种绿色环保型燃料,具有卓越的环保优势,成为现代化石燃料的重要替代品。

相比传统柴油,生物柴油具有较高的氧化稳定性,能够较好地保护发动机,同时在碳排放和颗粒物排放等环保方面也具有显著优势。

目前,生物柴油技术正逐渐发展成为绿色低碳能源领域的热点之一。

生物酶法制备生物柴油,是指利用生物酶(即酶类催化剂)帮助烃类油脂在温和条件下发生脱水酯化反应,从而得到生物柴油的一种工艺。

生物酶催化制备生物柴油相对于传统钠催化技术具有制备条件温和、制备工艺简单、反应速度快、催化剂易于回收等优势,因此被视为未来生物柴油工业化生产的有前景的技术路线之一。

随着研究的不断深入,目前生物酶法制备生物柴油技术正朝着更加高效、绿色可持续的方向不断发展。

下面,我们就来分别探讨当前该领域的研究现状,以及生物酶法制备生物柴油技术所面临的挑战和前景。

一、生物酶法制备生物柴油技术研究现状1.研究框架在研究生物酶法制备生物柴油技术过程中,相关领域的专家学者采用了多种不同的研究框架,包括传统酶学研究、反应工程学研究、反应动力学研究等方面。

近年来,包括多酯化合物合成过程、催化酶种类以及反应底物配比等在内的多个研究热点已被逐渐认识和发掘。

2.生物酶种类目前已开展的生物酶催化反应类型研究涉及到了多种不同的催化酶种,包括酶esterase以及酯水解酶等。

其中,酶esterase类催化制备生物柴油是目前具有较为广泛应用的一类技术之一。

除此之外,利用了脂肪酸生物酶进行合成反应也具有广泛的应用前景。

3. 反应底物生物柴油的制备过程中需要选择合适的反应底物,例如酯化反应涉及到甲酸甲酯等多种底物,脂肪酸的合成反应涉及到脂肪酸、油酸苯甲酸酯、油酸甲酯等底物。

合适的反应底物和反应配比能够加速生物酶催化制备生物柴油的效率。

二、生物酶法制备生物柴油技术所面临的挑战1. 酶催化稳定性的需求在酶催化合成生物柴油的过程中,催化酶的稳定性极为重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ 生物柴油不含硫,其碳循环是动态的,每两年即可 完成“CO,+光合作用一生物质一生物柴油一CO,+ 光合作用⋯ ⋯ ”的闭合循环链。
+ 生物柴油的燃烧过程比石油柴油更清洁采用生物柴 油的发动机废气排放指标不仅能满足目前的欧洲3 号标准,甚生物柴油的生物分解性高,有利于环境保护, 生物 柴油可以用于处理丁基以及腈类橡胶, 尤其在废轮 胎的处理方面有独到的作用。
+ 化石能源:一、储量十分有限。二、燃烧 后产生的二氧化碳、氮化物、硫化物及排 放的黑烟等导致严重的环境污染。
+ 生物柴油:一、以植物或动物及其产物为 原料制成的可再生能源。二、对保障石油 安全、保护环境生态有重要意义。
+ 生物柴油对于解决废食用油的污染以及避免废食用 油重新进入饮食系统方面有重要作用。
+ 酶法制备生物柴油指 在脂肪酶的催化下, 油脂与低碳醇进行转 酯化反应合成长链脂 肪酸单脂。
➢ 使用固定化脂肪酶。
➢ 全细胞催化剂转酯化。
+ 超临界反应是在超临界流体参与下的化学 反应。超临界流体在密度、对物质的溶解 度及其他方面具有独特性质,可以提高生 产的产率、选择性及反应速率。
+ 酶的选择性、寿命及反应时间 + 生物柴油的倾点高, 影响低温启动性 + 催化剂的研制 + 反应的接触界面问题 + 甘油皂对油品质量的影响 + 燃烧残留物的微酸性问题 + 残留甲醇与甘油的腐蚀性问题
——新兴能源的发展
成员 徐阳杰 余冬 张春雷 张培元
+ 生物柴油概述 + 国外生物柴油发展概况 + 生物柴油的制备方法 + 转脂化存在的技术问题 + 生物柴油的使用意义
+ 生物柴油是植物柴油与动物柴油的总称。
+ 它基本不含硫和芳烃,十六烷值高达52.9 , 可被生物降解、无毒、对环境无害。
+ 它的开口闪点高,储存、使用、运输都非 常安全。
+ 化学法转酯化 + 生物酶法转酯化 + 超临界流体转酯化
+ 均相催化和非均相催化
+ 主要是使用碱液(氢氧化钠或氢氧化钾) 作催化剂,该法是目前常用的方法,但最 大的问题是酸碱催化剂难以回收,对环境 污染严重。非均相催化是利用固体催化剂 进行转酯化制备生物柴油,具有环境友好、 催化剂易回收的优点。
+ 在生产过程中,每消耗1个单位的矿物能量 就能获得3.2个单位的能量,在所有的替 代能源中它的单位热值最高。
+ 美国:生物柴油在美国的商业应用始于20 世纪90年代初,主要用于具有集中加油站 的大巴和卡车运输公司,美国大多使用B20 生物柴油(生物柴油占20%,石油柴油占 80%)。
+ 德国:德国是目前生物柴油发展最成功的 国家之一,德国生物柴油生产量已达到250 万吨左右,2006年末国内所有加油站都提 供B5(混有5%生物柴油)的石化柴油。
相关文档
最新文档