金属学与热处理习题解答
金属学及热处理习题参考答案(1-9章)
第一章金属及合金的晶体结构一、名词解释:1.晶体:原子(分子、离子或原子集团)在三维空间做有规则的周期性重复排列的物质。
2.非晶体:指原子呈不规则排列的固态物质。
3.晶格:一个能反映原子排列规律的空间格架。
4.晶胞:构成晶格的最基本单元。
5.单晶体:只有一个晶粒组成的晶体。
6.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体(晶粒)通过晶界结合在一起的聚合体。
7.晶界:晶粒和晶粒之间的界面。
8.合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。
9.组元:组成合金最基本的、独立的物质称为组元。
10.相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。
11.组织:用肉眼观察到或借助于放大镜、显微镜观察到的相的形态及分布的图象统称为组织。
12.固溶体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。
二、填空题:1.晶体与非晶体的根本区别在于原子(分子、离子或原子集团)是否在三维空间做有规则的周期性重复排列。
2.常见金属的晶体结构有体心立方晶格、面心立方晶格、密排六方晶格三种。
3.实际金属的晶体缺陷有点缺陷、线缺陷、面缺陷、体缺陷。
4.根据溶质原子在溶剂晶格中占据的位置不同,固溶体可分为置换固溶体和间隙固溶体两种。
5.置换固溶体按照溶解度不同,又分为无限固溶体和有限固溶体。
6.合金相的种类繁多,根据相的晶体结构特点可将其分为固溶体和金属化合物两种。
7.同非金属相比,金属的主要特征是良好的导电性、导热性,良好的塑性,不透明,有光泽,正的电阻温度系数。
8.金属晶体中最主要的面缺陷是晶界和亚晶界。
9.位错两种基本类型是刃型位错和螺型位错,多余半原子面是刃型位错所特有的。
10.在立方晶系中,{120}晶面族包括(120)、(120)、(102)、(102)、(210)、 (210)、(201)、 (201)、(012)、(012)、(021)、(021)、等晶面。
(完整版)金属材料与热处理题库及答案
金属材料与热处理习题及答案第一章金属的结构与结晶一、判断题1、非晶体具有各同性的特点。
( √)2、金属结晶时,过冷度越大,结晶后晶粒越粗。
(×)3、一般情况下,金属的晶粒越细,其力学性能越差。
( ×)4、多晶体中,各晶粒的位向是完全相同的。
( ×)5、单晶体具有各向异性的特点。
( √)6、金属的同素异构转变是在恒温下进行的。
( √)7、组成元素相同而结构不同的各金属晶体,就是同素异构体。
( √)8、同素异构转变也遵循晶核形成与晶核长大的规律。
( √)10、非晶体具有各异性的特点。
( ×)11、晶体的原子是呈有序、有规则排列的物质。
( √)12、非晶体的原子是呈无序、无规则堆积的物质。
( √)13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。
( √)14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。
( √)15、金银铜铁锌铝等都属于金属而不是合金。
( √)16、金属材料是金属及其合金的总称。
( √)17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。
( √)18、金是属于面心立方晶格。
( √)19、银是属于面心立方晶格。
( √)20、铜是属于面心立方晶格。
( √)21、单晶体是只有一个晶粒组成的晶体。
( √)22、晶粒间交接的地方称为晶界。
( √)23、晶界越多,金属材料的性能越好。
( √)24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。
( √)25、纯金属的结晶过程是在恒温下进行的。
( √)26、金属的结晶过程由晶核的产生和长大两个基本过程组成。
( √)27、只有一个晶粒组成的晶体成为单晶体。
( √)28、晶体缺陷有点、线、面缺陷。
( √)29、面缺陷分为晶界和亚晶界两种。
( √)30、纯铁是有许多不规则的晶粒组成。
( √)31、晶体有规则的几何图形。
( √)32、非晶体没有规则的几何图形。
金属材料与热处理练习题库与参考答案
金属材料与热处理练习题库与参考答案一、单选题(共30题,每题1分,共30分)1、根据石墨形态不同,铸铁的分类错误的是( )。
A、麻口铸铁B、球墨铸铁C、蠕墨铸铁D、灰铸铁正确答案:A2、GCrl5SiMn钢属于:( )。
A、滚动轴承钢B、刃具钢C、量具钢D、模具钢正确答案:A3、马氏体组织有两种形态( )。
A、树状、针状B、板条、针状C、板条、树状D、索状、树状正确答案:B4、淬火后铝合金的强度和硬度随时间而发生显著提高的现象称为( )。
A、淬火处理B、正火处理C、时效或沉淀强化D、退火处理正确答案:C5、加工硬化现象的最主要原因是( )。
A、晶粒破碎细化B、位错密度增加C、形成纤维组织正确答案:B6、a-Fe转变为y-Fe时的温度为( )摄氏度。
A、912B、770C、1538正确答案:A7、作为碳素工具钢,含碳量一般应为( )。
A、<0.25%B、>0.7%C、<0.55&D、>2.1%正确答案:B8、铜的熔点为( )。
A、1023℃B、2032℃C、1083℃D、3245℃正确答案:C9、钢的()是指钢淬火时获得一定淬透层深度的能力。
A、淬透性B、淬硬性C、时效D、冷处理正确答案:A10、ZG25表示含碳量为( )的铸造碳钢。
A、0.0025B、0.0037C、0.0028D、0.0035正确答案:A11、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的--伸长曲线(拉伸图)可以确定出金属的()。
A、强度和韧性B、强度和塑性C、塑性和韧性D、强度和硬度正确答案:B12、拉伸实验时,试样拉断前所能承受的最大应力称为材料的 ( )。
A、弹性极限B、屈服强度C、抗拉强度正确答案:C13、()是硬而脆的相。
A、奥氏体B、贝氏体C、马氏体正确答案:C14、金属材料的组织不同,其性能()。
A、与组织无关B、不确定C、不同D、相同正确答案:C15、共晶白口铸铁的室温组织是( )。
《金属学与热处理》课后答案完整版.docx
第一章金属的晶体结构1-1作图表示出立方晶系( 1 2 3[-2 1 1]、[3 4 6]等晶向。
)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、答:1-2 立方晶系的 {1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1} 晶面共包括( 1 1 1 )、(-1 1 1 )、(1 -1 1 )、(1 1 -1 )四个晶面,在一个立方晶系中画出上述四个晶面。
1-3某晶体的原子位于正方晶格的节点上,其晶格常数为a=b≠ c,c=2/3a 。
今有一晶面在 X、Y、Z 坐标轴上的结局分别为 5 个原子间距、 2 个原子间距和 3个原子间距,求该晶面的晶面指数。
答:由题述可得: X 方向的截距为×2a/3=2a 。
取截距的倒数,分别为1/5a ,1/2a ,1/2a5a, Y 方向的截距为2a,Z 方向截距为3c=3化为最小简单整数分别为故该晶面的晶面指数为(2,5,5 255 )1-4 体心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。
答:H( 1 0 0) ==a/2 H( 1 1 0) ==√2a/2H)==√3a/6(111面间距最大的晶面为( 1 1 0 )1-5 面心立方晶格的晶格常数为a,试求出( 1 0 0 )、( 1 1 0 )、(1 1 1 )晶面的面间距大小,并指出面间距最大的晶面。
答:H( 1 0 0) ==a/2H( 1 1 0) ==√2a/4H( 1 1 1) ==√3a/3面间距最大的晶面为( 1 1 1 )注意:体心立方晶格和面心立方晶格晶面间距的计算方法是:1、体心立方晶格晶面间距:当指数和为奇数是H=,当指数和为偶数时 H=2、面心立方晶格晶面间距:当指数不全为奇数是H=,当指数全为奇数是H=。
1-6 试从面心立方晶格中绘出体心正方晶胞,并求出它的晶格常数。
金属学与热处理课后答案(哈工大第3版)
金属学与热处理课后答案第一章填表:晶格类型原子数原子半径配位数致密度体心立方2a43868%面心立方4a421274%密排六方6a211274%5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向10、已知面心立方晶格常数为a,分离计算(100)、(110)、和(111)晶面的晶面间距;并求出【100】、【110】和【111】晶向上的原子罗列密度(某晶向上的原子罗列密度是指该晶向上单位长度罗列原子的个数)第1 页/共18 页答:(100):(110):(111):14、何谓组元?何谓相?何谓固溶体?固溶体的晶体结构有何特点?何谓置换固溶体?影响其固溶度的因素有哪些?答: 组元:组成合金最基本的、自立的物质。
相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分。
固溶体:合金组元之间以不同的比例互相混合形成的晶体结构与某一组元相同的固相。
固溶体的晶体结构特点:固溶体仍保持着溶剂的晶格类型,但结构发生了变化,主要包括以下几个方面:1)有晶格畸变,2)有偏聚与有序,3)当低于某一温度时,可使具有短程有序的固溶体的溶质和溶剂原子在囫囵晶体中都按—定的顺序罗列起来,改变为长程有序,形成有序固溶体。
置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。
影响置换固溶体固溶度的因素:原子尺寸,电负性,电子浓度,晶体结构15、何谓固溶强化?置换固溶体和间隙固溶体的强化效果哪个大?为什么?答:固溶强化:在固溶体中,随着溶质浓度的增强,固溶体的强度、硬度提高,而塑性、韧性有所下降的现象。
间隙固溶体的强化效果大于置换固溶体的强化效果。
缘故:溶质原子与溶剂原子的尺寸差别越大,所引起的晶格畸变也越大,强化效果越好。
间隙固溶体晶格畸变大于置换固溶体的晶格畸变16、何谓间隙相?它与间隙固溶体及复杂晶格间隙化合物有何区别?答:间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成的容易的晶体结构称为间隙相。
金属学与热处理习题及答案
金属学与热处理习题及答案金属学与热处理习题及答案金属学是研究金属材料的结构、性质和加工工艺的学科,而热处理则是指通过加热和冷却来改变金属材料的性质和结构。
在学习金属学和热处理的过程中,习题是非常重要的一部分,通过解答习题可以加深对知识的理解和掌握。
下面将给出一些金属学与热处理的习题及答案。
习题一:金属的晶体结构1. 金属的晶体结构有哪几种?2. 铁素体和奥氏体的晶体结构分别是什么?3. 钨的晶体结构是什么?答案:1. 金属的晶体结构有面心立方结构、体心立方结构和简单立方结构。
2. 铁素体的晶体结构为体心立方结构,奥氏体的晶体结构为面心立方结构。
3. 钨的晶体结构为简单立方结构。
习题二:金属的机械性能1. 什么是屈服强度和抗拉强度?2. 强度和韧性之间的关系是什么?3. 金属的硬度和强度有什么区别?答案:1. 屈服强度是指材料在受力过程中开始发生塑性变形的应力值,抗拉强度是指材料在拉伸过程中最大的抗拉应力值。
2. 强度和韧性是互相矛盾的,一般来说,材料的强度越高,韧性越低。
3. 金属的硬度是指材料抵抗局部压痕的能力,而强度是指材料抵抗外力破坏的能力。
习题三:热处理工艺1. 什么是退火和淬火?2. 淬火的目的是什么?3. 淬火过程中的冷却介质有哪些?答案:1. 退火是将金属材料加热到一定温度,然后缓慢冷却的过程,目的是消除材料内部的应力和改善其机械性能。
淬火是将金属材料加热到一定温度,然后迅速冷却的过程,目的是使材料具有高硬度和高强度。
2. 淬火的目的是通过迅速冷却来使材料的组织发生相变,从而提高材料的硬度和强度。
3. 淬火过程中常用的冷却介质有水、油和盐溶液等。
习题四:金属的腐蚀与防护1. 什么是金属的腐蚀?2. 金属腐蚀的原因有哪些?3. 防止金属腐蚀的方法有哪些?答案:1. 金属的腐蚀是指金属在与外界介质接触时,发生化学反应而使其性能和结构受到破坏的过程。
2. 金属腐蚀的原因主要有氧化、电化学腐蚀和化学腐蚀等。
金属学与热处理习题解答
⾦属学与热处理习题解答⾦属学与热处理习题及参考解⼀、论述四种强化的强化机理、强化规律及强化⽅法。
1、形变强化形变强化:随变形程度的增加,材料的强度、硬度升⾼,塑性、韧性下降的现象叫形变强化或加⼯硬化。
机理:随塑性变形的进⾏,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产⽣固定的割阶、位错缠结等障碍,使位错运动的阻⼒增⼤,引起变形抗⼒增加,给继续塑性变形造成困难,从⽽提⾼⾦属的强度。
规律:变形程度增加,材料的强度、硬度升⾼,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的⼆分之⼀次⽅成正⽐,位错的柏⽒⽮量(b)越⼤强化效果越显著。
⽅法:冷变形(挤压、滚压、喷丸等)。
形变强化的实际意义(利与弊):形变强化是强化⾦属的有效⽅法,对⼀些不能⽤热处理强化的材料可以⽤形变强化的⽅法提⾼材料的强度,可使强度成倍的增加;是某些⼯件或半成品加⼯成形的重要因素,使⾦属均匀变形,使⼯件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提⾼零件或构件在使⽤过程中的安全性,零件的某些部位出现应⼒集中或过载现象时,使该处产⽣塑性变形,因加⼯硬化使过载部位的变形停⽌从⽽提⾼了安全性。
另⼀⽅⾯形变强化也给材料⽣产和使⽤带来⿇烦,变形使强度升⾼、塑性降低,给继续变形带来困难,中间需要进⾏再结晶退⽕,增加⽣产成本。
2、固溶强化随溶质原⼦含量的增加,固溶体的强度硬度升⾼,塑性韧性下降的现象称为固溶强化。
强化机理:⼀是溶质原⼦的溶⼊,使固溶体的晶格发⽣畸变,对滑移⾯上运动的位错有阻碍作⽤;⼆是位错线上偏聚的溶质原⼦形成的柯⽒⽓团对位错起钉扎作⽤,增加了位错运动的阻⼒;三是溶质原⼦在层错区的偏聚阻碍扩展位错的运动。
所有阻⽌位错运动,增加位错移动阻⼒的因素都可使强度提⾼。
固溶强化规律:①在固溶体溶解度范围内,合⾦元素的质量分数越⼤,则强化作⽤越⼤;②溶质原⼦与溶剂原⼦的尺⼨差越⼤,强化效果越显著;③形成间隙固溶体的溶质元素的强化作⽤⼤于形成置换固溶体的元素;④溶质原⼦与溶剂原⼦的价电⼦数差越⼤,则强化作⽤越⼤。
金属学与热处理答案
第4章 习题4-1 分析w C =%、w C =%、w C =%的铁碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图说明各阶段的组织,并分别计算室温下的相组成物和组织组成物的含量;解:在室温下,铁碳合金的平衡相是α-Fe 碳的质量分数是%和Fe 3C 碳的质量分数是%,故1 w C =%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为w C =%的合金在室温下平衡态下的组织是α-Fe 和P,其组织可近似看做和共析转变完时一样,在共析温度下α-Fe 碳的成分是%,P 的碳的成分为%,故w C =%的合金在室温时组织中P 和α的相对量分别为2 w C =%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为w C =%的合金在室温下平衡态下的组织是α-Fe 和P,在室温时组织中P 和α的相对量为3 w C =%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为w C =%的合金在室温下平衡态下的组织是P 和Fe 3C,在室温时组织中P 的相对量为 4-2 分析w C =%、w C =%的铁碳合金从液态平衡冷却至室温的平衡结晶过程,画出冷却曲线和组织变化示意图,并计算室温下的组织组成物和相组成物的含量; 解:w C =%的铁碳合金在室温平衡相是α-Fe 碳的质量分数是0和Fe 3C 碳的质量分数是%,故1 w C =%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为因为刚凝固完毕时,初生γ相和Ld 中碳的成分分别为%和%,所以刚凝固完毕时初生γ相和Ld 的相对量分别为碳的成分为%的初生γ相从共晶温度冷却到共析温度后,它的成分变为%,在冷却过程中它析出Fe 3C II ,每份γ相析出Fe 3C II 的量为现在初生γ相的量是%,所以到共析温度析出的Fe 3C 相对于整体的相对量为 因为合金中的初生γ相到共析温度析出Fe 3C,初生γ相的相对量减少%,余下的γ相在共析温度都转变为P,所以P 的相对量为2 w C =%的合金在室温时平衡状态下α相和Fe 3C 相的相对量分别为因为刚凝固完毕时,初生FeC I 和Ld 中碳的成分分别为%和%,所以刚凝固完毕时初生FeC I 和Ld 的相对量分别为4-3 计算铁碳合金中二次渗碳体和三次渗碳体最大可能含量; 解:3 2.110.77%22.64%6.690.77II Fe C -==-4-4 分别计算变态莱氏体中共晶渗碳体、二次渗碳体和共析渗碳体的含量; 解:共晶渗碳体含量4-5 为了区分两种弄混的碳钢,工作人员分别截取了A 、B 两块试样,加热至850℃保温后以极缓慢的速度冷却至室温,观察金相组织,结果如下: A 试样的先共析铁素体面积为%,珠光体的面积为%; B 试样的二次渗碳体的面积为%,珠光体的面积为%;设铁素体和渗碳体的密度相同,铁素体中的含碳量为零,试求A 、B 两种碳钢含碳量;解:假设A 试样中的碳含量为x 1 假设B 试样中的碳含量为x 24-6 利用Fe-Fe 3C 相图说明铁碳合金的成分、组织和性能之间的关系;答:一、含碳量—相相对量:C%↑→F%↓,Fe3C%↑二、含碳量—组织:F→F+P→P→P+Fe3CII→P+Fe3CII+L’d →L’d→L’d+Fe3CII→Fe3C三、含碳量与力学性能间的关系1、硬度:取决于相及相对量;随碳含量的增加, 由于硬度高的Fe3C增多, 硬度低的F减少,合金的硬度呈直线关系增大,由全部为F的硬度约80HB增大到全部为Fe3C时的约800HB;2、强度:C%↑→σ↑—%↑→σ↓因网状Fe3CII的存在3、塑性、韧性:C%↑→塑性↓、韧性↓;4-7 Fe-Fe3C相图有哪些应用,又有哪些局限性答:一、Fe-Fe3C相图的应用1、在钢铁材料选用方面的应用建筑结构和各种型钢需用塑性、韧性好的材料,选用碳含量较低的钢材;机械零件需要强度、塑性及韧性都较好的材料,应选用碳含量适中的中碳钢;工具要用硬度高和耐磨性好的材料,则选碳含量高的钢种;纯铁强度低,不宜用做结构材料,但由于其导磁率高, 矫顽力低,可作软磁材料使用,例如做电磁铁的铁芯等;白口铸铁硬度高、脆性大,不能切削加工,也不能锻造,但其耐磨性好,铸造性能优良,适用于作要求耐磨、不受冲击、形状复杂的铸件,例如拔丝模、冷轧辊、货车轮、犁铧、球磨机的磨球等;2、在铸造工艺方面的应用C相图可以确定合金的浇注温度;浇注温度一般在液相线以上根据Fe-Fe350~100℃;从相图上可看出,纯铁和共晶白口铸铁的铸造性能最好,它们的凝固温度区间最小,因而流动性好,分散缩孔少,可以获得致密的铸件,所以铸铁在生产上总是选在共晶成分附近;在铸钢生产中,碳质量分数在%~%之间,因为这个范围内钢的结晶温度区间较小,铸造性能较好;3、在热锻、热轧工艺方面的应用钢处于奥氏体状态时强度较低,塑性较好,因此锻造或轧制选在单相奥氏体区进行;一般始锻、始轧温度控制在固相线以下100~200℃范围内;一般始锻温度为1150~1250℃, 终锻温度为750~850℃;4、在焊接工艺方面的应用随着含碳量的增加,可焊性变差,故焊接用钢主要是低碳钢和低合金钢,铸铁主要是修复和焊补;5、在切削加工方面的应用一般认为钢的硬度在160~230HBS时,切削加工性能最好;6、在热处理工艺方面的应用Fe-FeC相图对于制订热处理工艺有着特别重要的意义;一些热处理工艺如退3C相图确定的;火、正火、淬火的加热温度都是依据Fe-Fe3二、Fe-FeC相图的局限性3C相图只反映铁碳二元合金中相的平衡状态,如含有其它元素,相图将1、Fe-Fe3发生变化;C相图反映的是平衡条件下铁碳合金中相的状态,若冷却或加热速度较2、Fe-Fe3快时,其组织转变就不能只用相图来分析了;。
金属学与热处理课后习题答案
金属学与热处理课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。
原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。
因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。
7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。
答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。
答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。
≈δTm,对于工业纯1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再金属来说:δ值为,取计算。
2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。
=,可得:如上所述取T再W=3399×=℃再=1538×=℃Fe再Cu=1083×=℃再7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。
2、再结晶时晶核长大和再结晶后的晶粒长大。
答:1、一次再结晶和二次在结晶。
定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显着下降,性能发生显着变化恢复到冷变形前的水平,称为(一次)再结晶。
金属学及热处理练习题答案
第一章金属的晶体结构马氏体沉淀硬化不锈钢,它是美国ARMCO 钢公司在1949年发表的,其特点是强度高,耐蚀性好,易焊接,热处理工艺简单,缺点是延韧性和切削性能差,这种马氏体不锈钢与靠间隙元素碳强化的马氏体钢不同,它除靠马氏体相变外并在它的基体上通过时效处理析出金属间化合物来强化。
正因为如此而获得了强度高的优点,但延韧性却差。
1、试用金属键的结合方式,解释金属具有良好的导电性、正的电阻温度系数、导热性、塑性和金属光泽等基本特性.答:(1)导电性:在外电场的作用下,自由电子沿电场方向作定向运动。
(2)正的电阻温度系数:随着温度升高,正离子振动的振幅要加大,对自由电子通过的阻碍作用也加大,即金属的电阻是随温度的升高而增加的。
(3)导热性:自由电子的运动和正离子的振动可以传递热能。
(4) 延展性:金属键没有饱和性和方向性,经变形不断裂。
(5)金属光泽:自由电子易吸收可见光能量,被激发到较高能量级,当跳回到原位时辐射所吸收能量,从而使金属不透明具有金属光泽。
2、填空:1)金属常见的晶格类型是面心立方、体心立方、密排六方。
2)金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。
3)物质的原子间结合键主要包括金属键、离子键和共价键三种。
4)大部分陶瓷材料的结合键为共价键。
5)高分子材料的结合键是范德瓦尔键。
6)在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为(( 140 )) .7)在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为(-110),OC晶向指数为(221),OD晶向指数为(121)。
8)铜是(面心)结构的金属,它的最密排面是(111 )。
9) α-Fe、γ-Fe、Al、Cu、Ni、Cr、V、Mg、Zn中属于体心立方晶格的有(α-Fe 、 Cr、V ),属于面心立方晶格的有(γ-Fe、Al、Cu、Ni ),属于密排六方晶格的有( Mg、Zn )。
金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题
第六章1.试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么?2.答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。
在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。
由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。
位错数目n与引起塞积的晶界到位错源的距离成正比。
晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。
在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。
另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。
2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?答:残余内应力存在的原因1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀;2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力;3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。
实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。
3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。
答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。
在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。
金属学与热处理课后习题-参考答案
第十一章参考答案11-1试述影响材料强度的因素及提高强度的方法答:(1)影响材料强度的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
以钢为例,合金元素的加入可能产生固溶强化、沉淀强化、细品强化,对提高钢材的强度有利。
对于同一化学成分的合金而言,组织结构不同,其力学性能也不相同。
为了提高其强度,可通过改变热处理工艺或加工工艺来实现。
一般情况下,降低形变温度或提高应变速率,合金的强度会增大。
(2)提高材料强度的途径:加工硬化/形变强化、固溶强化、第二相强化(沉淀强化和弥散强化)、细晶强化/晶界强度(较低温度)。
11-2试述影响材料塑性的因素及提高塑性的方法答:(1)影响材料塑性的因素:化学成分、组织织构、加工工艺、形变温度、应变速率等。
杂质元素通常对塑性不利,合金元素的加入一般对提高材料的强度有贡献,在等强温度下,只有晶界强化可以提高强度的同时,提高其韧性,使材料获得细品组织结构可提高其塑性。
一般而言,形变温度的降低或应变速率的提高对强度有利,而对提高塑性不利。
(2)提高材料塑性的途径:降低材料中杂质的含量、细化晶粒、加入韧化元素、加入细化晶粒元素、提高变形温度、降低应变速率。
11-4试就合金元素与碳的相互作用进行分类,指出1)哪些元素不形成碳化物?2)哪些元素为弱碳化物形成元素,性能特点如何?3)哪些元素为强碳化物形成元素,性能特点如何?4)何谓合金渗碳体,与渗碳体相比,其性能如何?答:1)非碳化物形成元素:Ni、Si、Co、Al、Cu等。
2)Mn为弱碳化物形成元素,除少量可溶于渗碳体中形成合金渗碳体外,几乎都溶于铁素体和奥氏体中。
3)Zr、Nb、V、Ti为强碳化物形成元素,与碳具有极强的亲和力,只要有足够的碳,就形成碳化物,仅在缺少碳的情况下,才以原子状态融入固溶体中。
4)合金元素溶入渗碳体中即为合金渗碳体,它是合金元素溶入渗碳体中并置换部分铁原子而形成的碳化物,合金渗碳体比一般渗碳体稳定,硬度高,可以提高耐磨性。
金属学与热处理课后答案 全
金属学与热处理课后答案第一章1.什么是金属键?并用其解释金属的特性答:金属键就是金属阳离子和自由电子之间的强烈的相互作用,可以决定金属的很多物理性质。
金属的延展性就是由于在金属被锻造的时候,只是引起了金属阳离子的重新排布,而由于自由电子可以在整块金属内自由流动,金属键并未被破坏。
再如由于自由电子的存在使金属很容易吸收光子而发生跃迁,发出特定波长的光波,因而金属往往有特定的金属光泽。
金属中的自由电子沿着电场定向运动,导电性;自由电子的运动及正离子的震动,使之具有导热性;温度升高,正离子或原子本身振动的幅度加大,阻碍电子的通过,使电阻升高,具有正的电阻温度系数2.画图用双原子模型说明金属中原子为什么会呈现周期性规则排列,并趋于紧密排列答:当大量金属原子结合成固体时,为使体系能量最低,以保持其稳定,原子间必须保持一定的平衡距离,因此固态金属中的原子趋于周期性规则排列。
原子周围最近邻的原子数越多,原子间的结合能越低(因为结合能是负值),把某个原子从平衡位置拿走,克服周围原子对它的作用力所需做的功越大,因此固态金属中的原子总是自发地趋于紧密排列。
4什么是晶体结构?什么是晶格?什么是晶胞?答:晶体结构:指晶体中原子(离子,原子,分子集团)的具体的排列情况,也就是指晶体中这些质点在三维空间内有规律的周期性重复排列;晶格:将阵点用一系列平行的直线连接起来构成的空间格架。
晶胞:构成点阵的最基本单元。
5、作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向6立方晶系的{1 1 1}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
答:{1 1 1}晶面共包括(1 1 1)、(-1 1 1)、(1 -1 1)、(1 1 -1)四个晶面,在一个立方晶系中画出上述四个晶面。
7. 已知铁和铜在室温下的晶格常数分别为0.286nm和0.3607nm,求1cm3中铁和铜的原子数。
金属材料与热处理考题与答案-(1)精选全文完整版
可编辑修改精选全文完整版金属材料与热处理一、填空题(30分,每空1分)1、金属材料抵抗__________载荷作用而__________的能力,称为冲击韧性。
2、金属的结晶是指由原子__________排列的__________转变为原子有序排列的__________过程。
3、一般细晶粒金属比粗晶粒金属具有较高的强度、__________、__________和韧性。
4、常见的金属晶格类型有__________晶格、面心立方晶格和__________晶格三种。
5、合金中成分、结构及性能相同的组成部分称为__________。
6、常见的表面热处理可分为__________和__________。
7、钢在加热时的组织转变,主要包括奥氏体的__________和__________两个过程。
8、传统的淬火冷却介质有__________、水、盐水和__________等。
9、随着不锈钢中含碳量的增加,其强度、硬度和__________提高,但__________下降。
10、合金按照用途可分为__________、__________和特殊性能钢三类。
11、铸铁是含碳量在大于__________铁碳合金,单铸铁中的碳大部分不再以渗碳体的形式存在,而是以游离的__________状态存在。
12、球墨铸铁中的石墨对集体的__________小,因此,可通过__________改变其基体的组织来提高和改善其力学性能。
13、铸铁根据石墨形态不同可分为普通铸铁、__________、__________和蠕墨铸铁四大类。
14、硬质合金的性能特点主要有__________、红硬性高、耐磨性好和__________比高速铁高。
15、淬火时常会产生氧化与脱碳、__________、__________和硬度不足与节软点等缺陷。
二、选择题(30分,每题2分)1、化学热处理与其他热处理的主要区别是()A 组织变化B 加热温度C 改变表面化学成分D 添加剂不同2、一般来说,碳素钢淬火应选择()作为冷却介质。
金属材料与热处理试题+参考答案
金属材料与热处理试题+参考答案一、单选题(共33题,每题1分,共33分)1.a-Fe转变为y-Fe时的温度为()摄氏度。
A、912B、1538C、770正确答案:A2.下列铸铁中石墨以团絮状存在的是()。
A、球墨铸铁B、可锻铸铁C、灰口铸铁D、蠕墨铸铁正确答案:B3.ZG25表示含碳量为()的铸造碳钢。
A、0.0035B、0.0025C、0.0028D、0.0037正确答案:B4.淬火后铝合金的强度和硬度随时间而发生显著提高的现象称为()。
A、退火处理B、淬火处理C、时效或沉淀强化D、正火处理正确答案:C5.灰铸铁中石墨呈什么状态的存在?()。
A、网状B、片状C、球状D、团絮状正确答案:B6.常用不锈钢有铁素体不锈钢、奥氏体不锈钢、马氏体不锈钢和()。
A、马氏体-奥氏体不锈钢B、铁素体-奥氏体不锈钢C、莱氏体不锈钢D、贝氏体不锈钢正确答案:B7.Wc<0.77%铁碳合金冷却至A3线时,将从奥氏体中析出()。
A、铁素体B、渗碳体C、珠光体D、莱氏体正确答案:A8.钢经表面淬火后将获得:()。
A、一定深度的马氏体B、全部马氏体C、下贝氏体D、上贝氏体正确答案:A9.拉伸实验时,试样拉断前所能承受的最大应力称为材料的()。
A、屈服强度B、弹性极限C、抗拉强度正确答案:C10.下列钢中,属于低合金钢的是()。
A、15CrMoB、Q235—BC、20D、20A正确答案:A11.以下哪种铸铁的断口呈灰黑色?()。
A、麻口铸铁B、马口铁C、灰铸铁D、白口铸铁正确答案:C12.反应晶格特征的最小几何单元称()。
A、晶胞B、晶相C、晶格D、晶界正确答案:A13.根据拉伸实验过程中拉伸实验力和伸长量关系,画出的--伸长曲线(拉伸图)可以确定出金属的()。
A、强度和塑性B、塑性和韧性C、强度和硬度D、强度和韧性正确答案:A14.金属材料的强度按照载荷方式的不同分类,下列不正确的是()。
A、抗弯强度B、扭转强度C、抗压强度D、抗塑强度正确答案:D15.()是日前广泛应用于碳钢和碳合金钢的铸、蚪、轧制件等的退火工艺。
金属学与热处理试题及答案精选全文完整版
可编辑修改精选全文完整版复习自测题绪论及第一章金属的晶体结构自测题(一)区别概念1.屈服强度和抗拉强度;2.晶体和非晶体;3 刚度与强度(二)填空1.与非金属相比,金属的主要特性是2.体心立方晶胞原子数是,原子半径是,常见的体心立方结构的金属有。
3.设计刚度好的零件,应根据指标来选择材料。
是材料从状态转变为状态时的温度。
4 TK5 屈强比是与之比。
6.材料主要的工艺性能有、、和。
7 材料学是研究材料的、、和四大要素以及这四大要素相互关系与规律的一门科学;材料性能取决于其内部的,后者又取决于材料的和。
8 本课程主要包括三方面内容:、和。
(三)判断题1.晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。
( )2.因为面心立方和密排六方晶体的配位数和致密度都相同,因此分别具有这两种晶体结构的金属其性能基本上是一样的。
( )3.因为单晶体具有各向异性,多晶体中的各个晶粒类似于单晶体,由此推断多晶体在各个方向上的性能也是不相同的。
( )4.金属的理想晶体的强度比实际晶体的强度高得多。
5.材料的强度高,其硬度就高,所以其刚度也大。
(四)改错题1.通常材料的电阻随温度升高而增加。
3.面心立方晶格的致密度为0.68。
4.常温下,金属材料的晶粒越细小时,其强度硬度越高,塑性韧性越低。
5.体心立方晶格的最密排面是{100}晶面。
(五) 问答题1.从原子结合的观点来看,金属、陶瓷和高分子材料有何主要区别?在性能上有何表现?2.试用金属键结合的方式,解释金属具有良好导电性、导热性、塑性和金属光泽等基本特性。
(六) 计算作图题1.在一个晶胞中,分别画出室温纯铁(011)、(111)晶面及[111)、[011)晶向。
2.已知一直径为11.28mm,标距为50mm的拉伸试样,加载为50000N时,试样的伸长为0.04mm。
撤去载荷,变形恢复,求该试样的弹性模量。
3.已知a-Fe的晶格常数a=0.28664nm,γ-Fe的晶格常数a=0.364nm。
(完整版)金属材料与热处理题库及答案
金属材料与热处理(第五版)练习题及答案第一章金属的结构与结晶一、判断题1、非晶体具有各同性的特点。
(V )2、金属结晶时,过冷度越大,结晶后晶粒越粗。
(V )3、一般情况下,金属的晶粒越细,其力学性能越差。
(X )4、多晶体中,各晶粒的位向是完全相同的。
(X )5、单晶体具有各向异性的特点。
( V )6 、金属的同素异构转变是在恒温下进行的。
( V )7、组成元素相同而结构不同的各金属晶体,就是同素异构体。
( V )8、同素异构转变也遵循晶核形成与晶核长大的规律。
( V )9、钢水浇铸前加入钛、硼、铝等会增加金属结晶核,从而可细化晶粒。
( X )10、非晶体具有各异性的特点。
( X )11 、晶体的原子是呈有序、有规则排列的物质。
( V )12 、非晶体的原子是呈无序、无规则堆积的物质。
( V )13 、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。
(V)14 、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的勺物质。
(V)15 、金银铜铁锌铝等都属于金属而不是合金。
(V)16 、金属材料是金属及其合金的总称。
(V)17 、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。
(V)18 、金是属于面心立方晶格。
(V)19 、银是属于面心立方晶格。
(V)20 、铜是属于面心立方晶格。
(V)21 、单晶体是只有一个晶粒组成的晶体。
(V)22 、晶粒间交接的地方称为晶界。
(V)23 、晶界越多,金属材料的性能越好。
(V)24 、结晶是指金属从高温液体状态冷却凝固为固体状态的过程(V)25 、纯金属的结晶过程是在恒温下进行的。
(V)26 、金属的结晶过程由晶核的产生和长大两个基本过程组成D(V)27 、只有一个晶粒组成的晶体成为单晶体。
(V)28 、晶体缺陷有点、线、面缺陷。
(V)29 、面缺陷分为晶界和亚晶界两种。
(V)30 、纯铁是有许多不规则的晶粒组成。
金属学与热处理课后习题答案
10-1 何谓钢的退火?退火种类及用途如何?答:钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。
退火用途:1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。
2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm(过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。
对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。
对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。
3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。
主要用于共析钢、过共析钢和合金工具钢。
其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。
4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。
其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。
5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后缓慢冷却至室温的热处理工艺。
其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。
金属材料与热处理(第五版)习题册答案精选全文完整版
可编辑修改精选全文完整版金属材料与热处理习题册答案绪论填空题1.成分组织热处理性能2.光泽延展性导电性导热性合金3.成分热处理性能性能思考题答:机械工人所使用的工具、刀、夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理的相关知识。
对我们工作中正确合理地使用这些工具;根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺性能的方法等都具有非常重要的指导意义。
第一章金属的结构与结晶填空题1.非晶体晶体晶体2.体心立方面心立方密排六方体心立方面心立方密排六方3.晶体缺陷间隙空位置代刃位错晶界亚晶界4.无序液态有序固态5.过冷度6.冷却速度冷却速度低7.形核长大8.强度硬度塑性9.固一种晶格另一种晶格判断题1.√2.×3.×4.×5.×6.√7.√8.√9.√10.√11.×12.√13.√14.×15.√选择题1.A2.C B A3.B名词解释1.答:晶格是假想的反映原子排列规律的空间格架;晶胞是能够完整地反映晶体晶格特征的最小几何单元。
2.答:只由一个晶粒组成的晶体称为单晶体;由很多的小晶体组成的晶体称为多晶体。
思考与练习1.冷却曲线上有一段水平线,是说明在这一时间段中温度是恒定的。
结晶实际上是原子由一个高能量级向一个较低的能量级转化的过程,所以在结晶时会放出一定的结晶潜热,结晶潜热使正在结晶的金属处于一种动态的热平衡,所以纯金属结晶是在恒温下进行的。
2.生产中常用的细化晶粒的方法有:增加过冷度、采用变质处理和采用变质处理等。
金属结晶后,一般是晶粒愈细,强度、硬度愈高,塑性、韧性也愈好,所以控制材料的晶粒大小具有重要的实际意义。
3.(1)金属模浇铸的晶粒小于砂型浇铸的晶粒(2)铸成薄件的晶粒小于铸成厚件的晶粒(3)浇铸时采用振动的晶粒小于不采用振动的晶粒4.味精、冰糖、云母、食盐及各类金属均是晶体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属学与热处理习题及参考解一、论述四种强化的强化机理、强化规律及强化方法。
1、形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。
机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。
规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。
方法:冷变形(挤压、滚压、喷丸等)。
形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。
另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。
2、固溶强化随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。
强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。
所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。
固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。
方法:合金化,即加入合金元素。
3、第二相强化钢中第二相的形态主要有三种,即网状、片状和粒状。
①网状特别是沿晶界析出的连续网状Fe 3C ,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降;②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。
符合σs =σ0+KS 0-1/2的规律,S 0 片层间距。
③第二相为粒状分布时,颗粒越细小,分布越均匀,合金的强度越高,符合λτGb =的规律,λ粒子之间的平均距离。
第二相的数量越多,对塑性的危害越大;④片状与粒状相比,片状强度高,塑性、韧性差;⑤沿晶界析出时,不论什么形态都降低晶界强度,使钢的机械性能下降。
第二相无论是片状还是粒状都阻止位错的移动。
方法:合金化,即加入合金元素,通过热处理或变形改变第二相的形态及分布。
4、细晶强化细晶强化:随晶粒尺寸的减小,材料的强度硬度升高,塑性、韧性也得到改善的现象称为细晶强化。
细化晶粒不但可以提高强度又可改善钢的塑性和韧性,是一种较好的强化材料的方法。
机理:晶粒越细小,位错塞集群中位错个数(n )越小,根据0ττn =,应力集中越小,所以材料的强度越高。
细晶强化的强化规律:晶界越多,晶粒越细,根据霍尔-配奇关系式σs =σ0+Kd -1/2 晶粒的平均直(d )越小,材料的屈服强度(σs )越高。
细化晶粒的方法:结晶过程中可以通过增加过冷度,变质处理,振动及搅拌的方法增加形核率细化晶粒。
对于冷变形的金属可以通过控制变形度、退火温度来细化晶粒。
可以通过正火、退火的热处理方法细化晶粒;在钢中加入强碳化物物形成元素。
二、改善塑性和韧性的机理晶粒越细小,晶粒内部和晶界附近的应变度差越小,变形越均匀,因应力集中引起的开裂的机会也越小。
晶粒越细小,应力集中越小,不易产生裂纹;晶界越多,易使裂纹扩展方向发生变化,裂纹不易传播,所以韧性就好。
提高或改善金属材料韧性的途径:① 尽量减少钢中第二相的数量;② 提高基体组织的塑性;③ 提高组织的均匀性;④ 加入Ni 及细化晶粒的元素;⑤ 防止杂质在晶界偏聚及第二相沿晶界析出。
三、Fe —Fe 3C 相图,结晶过程分析及计算1. 分析含碳0.53~0.77%的铁碳合金的结晶过程,并画出结晶示意图。
①点之上为液相L ;①点开始L →γ;②点结晶完毕;②~③点之间为单相γ;③点开始γ→α转变;④点开始γ→ P 共析转变;室温下显微组织为α+ P 。
结晶示意图:2. 计算室温下亚共析钢(含碳量为x )的组织组成物的相对量。
组织组成物为α、P ,相对量为:P P W x W -=⨯--=1 W , %1000218.077.00218.0α或 %1000218.077.077.0⨯--=x W α 3. 分析含碳0.77~2.11%的铁碳合金的结晶过程。
① 点之上为液相L ;①点开始L →γ;①~②之间为L+γ;②点结晶完毕;②~③点之间为单相γ;③点开始γ→Fe 3C 转变;④点开始γ→ P 共析转变;室温下显微组织为P + Fe 3C 。
结晶过程示意图。
4. 计算室温下过共析钢(含碳量为x )的组织组成物的相对量。
组织组成物为P 、Fe 3C Ⅱ,相对量为:P C Fe P W x W -=⨯--=∏1 W , %10077.069.669.63或 %10077.069.677.03⨯--=x W C Fe 5. 相图中共有几种渗碳体?说出各自的来源及形态。
相图中共有五种渗碳体: Fe 3C Ⅰ、Fe 3C Ⅱ 、Fe 3C Ⅲ 、Fe 3C 共析、Fe 3C 共晶 ;Fe 3C Ⅰ:由液相析出,形态连续分布(基体); Fe 3C Ⅱ:由奥氏体中析出,形态网状分布; Fe 3C Ⅲ:由铁素体中析出,形态网状、短棒状、粒状分布在铁素体的晶界上;Fe 3C 共析:奥氏体共析转变得到,片状;Fe3C共晶:液相共晶转变得到,粗大的条状。
6.说出奥氏体与铁素体的异同点。
相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。
不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。
7.说出二次渗碳体与共析渗碳体的异同点。
相同点:都是渗碳体,成份、结构、性能都相同。
不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。
8. 举例说明成分、组织与机械性能之间的关系如亚共析钢。
亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。
随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。
所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降。
四、晶面指数与晶向指数1)、标出图①、图②中晶面的晶面指数及图③中所示晶向(AB,OC)的晶向指数。
①②③①:()011②:(012)AB:[]101OC:[101]2)、标出图①、图②中晶面的晶面指数及图③中所示晶向(AC,OB )的晶向指数。
Y①②③①:()210②:(112)AC:[]011OB:[120]七、锻造或轧制的作用是什么?为什么锻造或轧制的温度选择在高温的奥氏体区?锻造或轧制的作用是:把材料加工成形,通过锻造或轧制使铸锭中的组织缺陷得到明显的改善,如气泡焊合,缩松压实,使金属材料的致密度增加;粗大的柱状晶变细;合金钢中大块状碳化物初晶打碎并较均匀分布;使成分均匀,使材料的性能得到明显的改善。
奥氏体稳定存在是在高温区,温度升高材料的强度、硬度下降,塑性韧性升高,有利于变形;奥氏体为面心结构,塑性比其它结构好,塑性好,有利于变形;奥氏体为单相组织,单相组织的强度低,塑性韧性好,有利于变形;变形为材料的硬化过程,变形金属高温下发生回复与再结晶,消除加工硬化,即为动态回复再结晶,适合大变形量的变形。
八、什么是柯肯达尔效应?如何解释柯肯达尔效应?由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应。
Cu Ni分析表明Ni向左侧扩散过来的原子数目大于Cu向右侧扩散过来的原子数目,且Ni的原子半径大于Cu的原子半径。
过剩的Ni的原子使左侧的点阵膨胀,而右边原子减少的地方将发生点阵收缩,其结果必然导致界面向右侧漂移。
九、影响扩散的因素有哪些?①温度:温度越高,扩散速度越大;②晶体结构:体心结构的扩散系数大于面心结构的扩散系数;③ 固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度;④ 晶体缺陷:晶体缺陷越多,原子的扩散速度越快;⑤ 化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。
十二、固态金属扩散的条件是什么?①温度要足够高,温度越高原子热振动越激烈原子被激活而进行迁移的几率越大;②时间要足够长,只有经过相当长的时间才能造成物质的宏观迁移;③扩散原子要固溶,扩散原子能够溶入基体晶格形成固溶体才能进行固态扩散;④扩散要有驱动力,没有动力扩散无法进行,扩散的驱动力为化学位梯度。
十三、为什么晶体的滑移通常在密排晶面并沿密排晶向进行?晶体滑移的实质是位错在滑移面上运动的结果,位错运动的点阵阻力为:()22exp 11P N G d bp t n n -轾犏=-犏--臌,位错运动的点阵阻力越小,位错运动越容易,从公式中可以看出,d值越大、b值越小,位错运动的点阵阻力越小。
d为晶面间距,密排面的晶面间距最大;b为柏氏矢量,密排方向的柏氏矢量最小。
所以,晶体的滑移通常在密排晶面并沿密排晶向进行。
十四、晶界具有哪些特性?①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。
十五、简述位错与塑性、强度之间的关系。
位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。
晶体塑性变形的方式有滑移和孪晶,多数都以滑移方式进行。
滑移的本质就是位错在滑移面上的运动,大量位错滑移的结果造成了晶体的宏观塑性变形。
位错滑移的结果造成了晶体的宏观塑性变形,使材料发生屈服,位错越容易滑移,强度越低,因此增加位错移动的阻力,可以提高材料的强度。
溶质原子造成晶格畸变还可以与位错相互作用形成柯氏气团,都增加位错移动的摩擦阻力,使强度提高。