哈尔滨市平房区2018届中考调研测试数学试卷(一)附解析

合集下载

2018年黑龙江省哈尔滨市中考数学试卷含答案

2018年黑龙江省哈尔滨市中考数学试卷含答案

BE DG
DG DF
AE CF ,故选 D. BE DF
【考点】平行线的性质.
11.【答案】 9.2 108 【解析】920 000 000= 9.2 108 .
【考点】科学记数法.
12.【答案】 x 4
【解析】由
5x x4
有意义得
x

4

0
,解得
x

4
,所以函数
y=
5x x4
中,自变量
4.【答案】B 【解析】俯视图是从几何体的上方观察几何体得到的平面图形,由图易得 B 选项中的图
形符合题意,故选 B. 【考点】几何体的俯视图.
5.【答案】A 【解析】连接 OA ,则 OA OB 3 ,又因为 PA 为圆 O 的切线,所以 OA PA ,则在
RtPOA 中,由 P 30 得 OP 2OA 6 ,则 BP OP OB 3 ,故选 A. 【考点】圆的切线、含特殊角的直角三角形的性质.
次骰子,骰子向上的一面出现的点数是 3 的倍数的概率是
.
18.一个扇形的圆心角为 135°,弧长为 3πcm,则此扇形的面积是
cm².
19.在 ABC 中,AB=AC,∠BAC=100°,点 D 在 BC 边上,连接 AD,若 ABD 为直
角三角形,则∠ADC 的度数为
.
20.如图,在平行四边形 ABCD 中,对角线 AC,BD 相交于点 O,AB=OB,点 E,点 F
B. y= 5 x 12 1
C. y= 5 x 12 3
D. y= 5 x 12 3

数学试卷第 1页(共 26页)数学试卷第 2页(共 26页)
7.方程 1 = 2 的解为 2x x 3

2018年哈尔滨市中考数学试卷含答案解析

2018年哈尔滨市中考数学试卷含答案解析

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S=AE•DE=•2a•a=a2,△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

最新-哈尔滨1(含答案) 精品

最新-哈尔滨1(含答案) 精品

哈尔滨市2018年初中升学考试数学试卷第I 卷 选择题(30分)(涂卡)一、单项选择题(每小题3分,共30分) 1.下列各式正确的是()(A ) (-a )2 = a 2 (B ) (-a)3 = a 3 (C ) |-a 2 |= -a 2 (D ) |-a 3 |= a 32.以下列各组线段长为边,能组成三角形的是()(A ) 1cm ,2cm ,4cm (B ) 8cm ,6cm ,4cm (C ) 12cm ,5cm ,6cm (D ) 2cm ,3cm ,6cm 3.不等式组 的整数是()(A ) -1,0,1 (B ) -1,1 (C ) -1,0 (D ) 0,1 4.已知坐标平面内点A (m ,n )在第四象限,那么点B(n ,m)在()(A ) 第一象限 (B )第二象限 (C )第三象限 (D ) 第四象限 5.下列图形中,既是轴对称图形又是中心对称图形的是()(A )等边三角形 (B )等腰梯形 (C )平行四边形 (D ) 正六边形 6.下列命题中,正确命题的个数是()①一个锐角的余角还是一个锐角;②垂直于半径的直线是圆的切线; ③一个数的算术平方根一定比这个数小;④平分弦的直径垂直于这条弦.(A )0 (B ) 1 (C ) 2 (D ) 37.如图,已知:Rt△ABC 的斜边AB=13cm ,一条直角边AC=5cm ,以直线BC 为轴旋转一周得一个圆锥,则这个圆锥的表面积为()cm 2.(A )65π (B ) 90π (C ) 156π (D ) 300π8.若 2= -a ,则实数a 在数轴上的对应点一定在()(A )原点左侧 (B )原点右侧(C )原点或原点左侧 (D )原点或原点右侧9. ⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么认P 为圆心,且与⊙O 相切的圆的半径一定是()(A )1或5 (B )1 (C )5 (D )1或4 10.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有()个(A )4 (B )5 (C )7 (D )8第II 卷 非选择题(90分)二、填空题(每小题3分,共30分)11.2018年我国国内生产总值(GDP )为116694亿元,用四舍五入法保留三个有效数字,用科学记数法表示约为 亿元.12.若 = ,则 = .13.分解因式a 2-2ab+b 2-c 2= .14.函数y= + 中自变量x 的取值范围是 .15.如图,在Rt ΔABC,∠ACB=900, ∠A<∠B ,CM 是斜边AB 的中线,将ΔACM 沿直线 CM 折叠,点A 落在点C 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.AB C (第7题图)(第15题图)A B C DM16.如图,已知:AB 和CD 为⊙O 的两条直径,弦CE//AB , 的度数为400,则 ∠BOC= 度.17.观察下列等式9-1=816-4=12 25-9=16 36-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n 的等式表示这个规律为.18.反比例函数y= (k 是常数,k≠0)的图像经过点(a ,-a ),那么k 0(填“>”或“<”).19.一个多边形的每一个外角都等于360,则该多边形的内角和等于 度. 20.若⊙O 的直径AB 为2,弦AC 为 ,弦AD 为 ,则S 扇形OCD (其中,2S 扇形OCD <S ⊙O )为 . 三、解答题(其中21题4分,22题5分,23题4分,24—25题各5分,26—28题各6分,29题9分,30题10分,共60分) 21.(本题4分)先化简 ÷(x-2+ )再求值,其中x=tan450-cos300.22.(本题5分)用换元法解方程:x 2+2x-2= .23.(本题4分)如图,已知E 为平行四边形ABCD 中DC 边的延长线上的一点,且CE=DC , 连结AE ,分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF.求证:AB=2OF. 24.(本题5分)如图,在测量塔高AB 时,选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是300和600.已知测角仪器高CE=1.5米,CD=30米.求塔高AB.(答案保留根号) 25.(本题5分)中小学生的视力状况受到全社会的广泛关注,某市有关部门对全市4万名初中生的视力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如下图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是30.(1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.C(第16题图)(第23题图)FO G A BED(3)如果视力在4.9—5.1(含4.9、5.1)均属正常,那么全市初中生视力正常的约有多少人?26.(本题6分)如图:⊙O 1与⊙O 2外切于点P ,O 1O 2的延长线交⊙O 2于点A ,AB 切⊙O 1于点B ,交⊙O 2于点C ,BE 是⊙O 1的直径,过点B 作BF ┴O 1P ,垂足为F ,延长BF 交PE 于点G.(1)求证:PB 2=PG·PE;(2)若PF= ,tan∠A= ,求:O 1O 2的长.27.(本题6分)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.28.(本题6分)小明同学骑自行车去郊外春游,下图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远? (2)求小明出发两个半小时离家多远? (3)求小明出发多长时间距家12千米?B F G ECD A 300600(第24题图) 视力3.954.25 4.55 4.855.15 5.45 (第25题图)29.(本题9分)如图:已知,△ABC内接于⊙O,弦BC所对的劣弧为1200,∠ABC、∠ACB的平分线BD、CE分别交AC于D,交AB于E,BD、CE相交于点F.(1)求cot∠EFB的值;(2)EF=DF;(3)当BF=3EF,且线段BF、CF的长是关于x的方程x2-(2m+6)x+2m2=0(m>0)的两个实数根时,求AB的长.30.(本题10分)已知:抛物线y=- x2-(m+3)x+m2-12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;(3)过(2)中的点E的直线y= x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M'、N',点P为线段MN上一点,点P的横坐标为t,过点P 作平行于y轴的直线交(1)中所求抛物线于点Q.是否存在t值,使S梯形 MM'N'N:S△QMN=35:12,若存在,求出满足条件的t值;若不存在,请说明理由.哈尔滨市2018年初中升学考试数学试题参考答案及评分标准一、单项选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 A B C B D B B C A C 二、填空题(每小题3分,共30分)11.1.17×118; 12. ; 13.(a-b-c); 14.3<x≤5; 15.30;16.70; 17.(n+2)2-n 2=4(n+1); 18.k<0; 19.1440; 20. 或者 .三、解答题(其中21题4分,22题5分,23题4分,24—25题各5分,26—28题各6分,29题9分,30题10分,共60分)21.解:原式= ………………………………………………(1分)= …………………………………………………………………………………(1分)x=tan450-cot300=1-时,………………………………………………………………………(1分)原式== …………………………………………………………………………………(1分)22.解:设x 2+2x=y ,则原式可化成y 2-2y-3=0,………………………………………………………(1分) 解得y 1=3,y 2=-1……………………………………………………………………………… (1分)当y=3时,x 2+2x-3=0,解得x 1=-3,x 2=1……………………………………………………(1分)当y=-1时,x 2+2x-3=0,解得x 3= x 4=-1………………………………………………………(1分)经检验x 1=-3,x 2=1,x 3= x 4=-1都是原方程的根∴原方程的根是x 1=-3,x 2=1,x 3= x 4=-1………………………………………………………(1分)23.证明:连结BE∵四边形ABCD 为平行四边形∴AB CD ,AO=OC…………………………………(1分) ∵CE=CD ,∴AB CE,∴四边形ABEC 为平行四边形,………………… (1分)∥=∥ =∥DA O∴BF=FC,………………………………………… (1分)=∴OF AB,即:AB=2OF.……………………… (1分)24.解:由题意可知:EG、CD、30,∵∠AEG=300,∠AGF=600∴∠EAG=300,∴EG=AG=30…………………………………(1分)在Rt△AFG中,sin600= ,……………………………………………………………………(1分)∴AF=AG·sin600=30×=15 (米)……………………………………………………………(1分)∴AB、AF+FB=(15 + )米……………………………………………………………………(1分)答:塔高AB为(15 + )米. ……………………………………………………………… (1分)25.解:(1)因为频率之比等于频数之比,设第一小组的频数为2k,所以各组的频数依次为2k、4k、9k、7k、3k,于是3k=30,所以k=10. ……………………………………………………………………………(1分)所以2k=20,4k=40,9k=90,7k=70,所以20+40+90+70+30=250(人).答:本次调查共抽测了250名学生. ………………………………………………………………(1分)(2)中位数应在第三小组. ………………………………………………………………………(1分)∵250个数据的中位数是第125和第126两个数据的平均数,前两个小组的频数之和是20+40=60,60<125第三小组的频数是90,90+60=150,150>126,∴中位数应在第三小组. ……………………………………………………………………(1分)(3)∵视力在4.9—5.1范围内的人有70人,∴频率= =0.28,∴全市初中生视力正常的约有40000×0.28=11200(人),答:全市初中生视力正常的约有11200人. ………………………………………………………(1分)26.(1)∵BE是⊙O1的直径,∴∠BPE=900,∵BF┴O1P,∴∠BPF+∠FBP=900,∵∠GPF+∠BPF=900,∴∠GPF=∠BPF,……………………………………………………(1分)∵O1E= O1P,∴∠E=∠GPF=∠PBF,又∵∠BPG=∠EPB=900,∴△GPB∽△BPE,∴,∴PB2=PE·PG. …………………………………………………………………(1分)(2)∵AB是⊙O1的切线,∴O1B┴AB,∴△O1BF∽△O1AB,∴∠O1BF=∠A,∵tan∠A= , ∴tan∠O1BF= ,……………………………………………………(1分)设O1F=3m,则BF=4m,由勾股定理得:O1B=5m=O1P,∴PF=5m-3m=2m,又∵PF= ,∴m= ,…………………………………………………………………………(1分)∴O1B=O1P= ,∵tan∠A= ,BF=4m,∴AF= m,AP= m-2m= m= ,∴PO2= ,∴O1O2= + =5. ……………………………………………………………(1分)27.解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得:………………(1分)………………(1分)答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,乙种手机购买20部. …………………………………………………………………………………(1分)(2)根据题意,得:………………………………………(1分)解得:………………………………………………(1分)答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部;…………………………………………………………………………………………………(1分)28.解:(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.…………(1分)(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3)…………………………………………………………(1分)当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米. ………(1分)(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30)、F(6,0),代入得y=-15x+90,(4≤x≤6)……………………………(1分)过A、B两点的直线解析式为y=k3x,∵B(1,15)∴y=15x.(0≤x≤1) ………(1分)分别令y=12,得x= (小时),x= (小时).答:小明出发小时或小时距家12千米. ………………………………………………(1分)29.解:(1)∵为1200,∴∠A=600,∴∠ABC+∠ACB=1200,……………………………………(1分)∵BD、CE平分∠ABC和∠ACB,∴∠ABC+ ∠ACB=600=∠BFE,∴cot600= . …………………………………………………………………………(1分)(2)作∠BFC的平分线FM交BC于点M,则∠BFM=∠CFM=600,在△BFM与△BFE中,∴△BFM≌△BFE中,……………………………(1分)∴MF=EF.同理可证:△CFM≌△CDF,…………………… (1分)∴MF=DF,∴EF=DF,…………………………… (1分)(3)设EF=k,则BF=3k,在BF上截取FN=EF=k,则BN=2k,△FEN为等边三角形,∴EN=EF=k,∴∠BNE=1200,∴△BNE∽△BFC,∴,∴CF= ,……………………………………………………………(1分)∵BF、CF的长是方程x2-(2m+6)x+2m2=0的两个实数根,由根与系数的关系可知: BF+CF=3k+ =2m+6,BF·CF= =2m2,联立,消去k得5m2-24m-36=0,解得:m1=6,m2=- , ∵m>0, ∴m=- (舍). ……(1分)当m=6时,方程为x2-18x+72=0,解得:x1=12=BF,x2=6=CF, ∴EF=4.过点E作EH┴BF于H,则FH=2,由勾股定理得:EH= ,BH=12-2=10,由勾股定理得:BE= ,…………………………………………………(1分)∵△BFE∽△BAD,∴,∴AB= . ……………………………………………………(1分)30.解:(1)∵x1<0,x2>0, ∴OA=x1,OB=x2,∵x1,x2是方程 - x2-(m+3)x+m2-12=0的两个实数根,由根与系数关系得:x1+x2=-2(m+3)①x1·x2=-2(m2-12) ②x2=-2x1③…………(1分)联立,整理,得:m2+8m+16=0,解得:m1=m2=-4,……………………………… (1分)∴抛物线的解析式为y=- x2+x+4. ……………………………………………………(1分)(2)设点E(x,0),则OE=-x,∵△ECO与△CAO相似,∴∴∴x=-8∴点E(-8,0),…………………………………(1分)设过E、C两点的直线解析式为y=k′x+b′由题意得:所以直线EC的解析式为:y= x+4……… (1分)∵抛物线的顶点D(1,),当x=1时,y= ,∴点D在直线EC上. ………………(1分)(3)存在t值,使S梯形MM′N′N:S△QMN=35:12. ………………(1分)∵E(-8,0),∴0=×(-8)+b,∴b=2,∴y= x+2, ∴x=4(y-2),∴y=- ×[4(y-2)]2+4(y-2)+4,整理得:8y2-35y+6=0,设M(x m,y m)、N(x n,y n),∴MM′=y m,NN′=y n, ∴y m、y n是方程8y2-35y+6=0的两个实数根,∴y m+y n= ,……………………………………………………………………………(1分)∴S梯形MM′N′N= (y m+y n)(x n-x m),∵点P在直线y= x+2上,点Q在(1)中抛物线上∴点P(t, +2)、点Q(t, - t2+t+4),∴PQ=- t2+t+4- t-2=- t2+ t+2,分别过M、N作直线PQ的垂线,垂足为G、H,则GM=t-x m,NH=x n-t,∴S△QMN= S△QMP+S△QNP= PQ(x n-x m),∵S梯形MM′N′N:S△QMN=35:12∴…………………………………………………………… (1分)∴(- t2+ t+2),整理,得:2t2-3t-2=0,解得:t1=- ,t2=2,∴当t=- 或t=2时,S梯形MM′N′N:S△QMN=35:12. …………………………………………(1分)注:有不同于本评分标准的正确答案,可按相应的解题步骤给分.。

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷(带答案解析)

2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣57的绝对值是( )A .57B .75C .−57D .−75【解答】解:|−57|=57,故选:A .2.(3分)下列运算一定正确的是( ) A .(m +n )2=m 2+n 2 B .(mn )3=m 3n 3C .(m 3)2=m 5D .m•m 2=m 2【解答】解:A 、(m +n )2=m 2+2mn +n 2,故此选项错误; B 、(mn )3=m 3n 3,正确; C 、(m 3)2=m 6,故此选项错误; D 、m•m 2=m 3,故此选项错误; 故选:B .3.(3分)下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【解答】解:A 、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B 、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C 、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D 、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意; 故选:C .4.(3分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.5.(3分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3√3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.6.(3分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为( )A .y=﹣5(x +1)2﹣1B .y=﹣5(x ﹣1)2﹣1C .y=﹣5(x +1)2+3D .y=﹣5(x ﹣1)2+3【解答】解:将抛物线y=﹣5x 2+1向左平移1个单位长度,得到y=﹣5(x +1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x +1)2﹣1. 故选:A .7.(3分)方程12x =2x+3的解为( )A .x=﹣1B .x=0C .x=35 D .x=1【解答】解:去分母得:x +3=4x , 解得:x=1,经检验x=1是分式方程的解, 故选:D .8.(3分)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD=8,tan ∠ABD=34,则线段AB 的长为( )A .√7B .2√7C .5D .10【解答】解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,AO=CO ,OB=OD , ∴∠AOB=90°, ∵BD=8, ∴OB=4,∵tan ∠ABD=34=AOOB,∴AO=3,在Rt △AOB 中,由勾股定理得:AB=√AO 2+OB 2=√32+42=5, 故选:C .9.(3分)已知反比例函数y=2k−3x的图象经过点(1,1),则k 的值为( )A .﹣1B .0C .1D .2【解答】解:∵反比例函数y=2k−3x的图象经过点(1,1), ∴代入得:2k ﹣3=1×1, 解得:k=2, 故选:D .10.(3分)如图,在△ABC 中,点D 在BC 边上,连接AD ,点G 在线段AD 上,GE ∥BD ,且交AB 于点E ,GF ∥AC ,且交CD 于点F ,则下列结论一定正确的是( )A .AB AE =AG AD B .DF CF =DG ADC .FG AC =EG BD D .AE BE =CF DF【解答】解:∵GE ∥BD ,GF ∥AC , ∴△AEG ∽△ABD ,△DFG ∽△DCA ,∴AE AB =AG AD ,DG DA =DF DC , ∴AE BE =AG DG =CF DF. 故选:D .二、填空题(每小题3分,共计30分)11.(3分)将数920000000科学记数法表示为 9.2×108 . 【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10812.(3分)函数y=5xx−4中,自变量x 的取值范围是 x ≠4 .【解答】解:由题意得,x ﹣4≠0, 解得,x ≠4, 故答案为:x ≠4.13.(3分)把多项式x 3﹣25x 分解因式的结果是 x (x +5)(x ﹣5) 【解答】解:x 3﹣25x =x (x 2﹣25) =x (x +5)(x ﹣5).故答案为:x (x +5)(x ﹣5).14.(3分)不等式组{x −2≥15−2x >3x −15的解集为 3≤x <4 .【解答】解:{x −2≥1①5−2x >3x −15②∵解不等式①得:x ≥3, 解不等式②得:x <4,∴不等式组的解集为3≤x <4, 故答案为;3≤x <4.15.(3分)计算6√5﹣10√15的结果是 4√5 .【解答】解:原式=6√5﹣10×√55=6√5﹣2√5=4√5,故答案为:4√5.16.(3分)抛物线y=2(x +2)2+4的顶点坐标为 (﹣2,4) . 【解答】解:∵y=2(x +2)2+4, ∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).17.(3分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是 13.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:26=13.故答案为:13.18.(3分)一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是 6π cm 2.【解答】解:设扇形的半径为Rcm , ∵扇形的圆心角为135°,弧长为3πcm ,∴135π×R 180=3π,解得:R=4, 所以此扇形的面积为135π×42360=6π(cm 2),故答案为:6π.19.(3分)在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为 130°或90° . 【解答】解:∵在△ABC 中,AB=AC ,∠BAC=100°, ∴∠B=∠C=40°,∵点D 在BC 边上,△ABD 为直角三角形, ∴当∠BAD=90°时,则∠ADB=50°, ∴∠ADC=130°, 当∠ADB=90°时,则 ∠ADC=90°,故答案为:130°或90°.20.(3分)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=√10,则线段BC 的长为 4√2 .【解答】解:设EF=x ,∵点E 、点F 分别是OA 、OD 的中点, ∴EF 是△OAD 的中位线, ∴AD=2x ,AD ∥EF , ∴∠CAD=∠CEF=45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC=2x , ∴∠ACB=∠CAD=45°, ∵EM ⊥BC , ∴∠EMC=90°,∴△EMC 是等腰直角三角形, ∴∠CEM=45°, 连接BE , ∵AB=OB ,AE=OE ∴BE ⊥AO ∴∠BEM=45°, ∴BM=EM=MC=x , ∴BM=FE ,易得△ENF ≌△MNB ,∴EN=MN=12x ,BN=FN=√10,Rt △BNM 中,由勾股定理得:BN 2=BM 2+MN 2,∴(√10)2=x 2+(12x)2,x=2√2或﹣2√2(舍),∴BC=2x=4√2.故答案为:4√2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(1﹣1a−2)÷a2−6a+92a−4的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2√3+3原式=a−3a−2•2(a−2)(a−3)2=2 a−3=√3 322.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2√2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.23.(8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×40120=320人.24.(8分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点G,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a ,EG=DE=a ,∴S △ADE =12AE•DE=12•2a•a=a 2,∵BH 是△ABE 的中线, ∴AH=HE=a , ∵AD=CD 、AC ⊥BD , ∴CE=AE=2a ,则S △ADC =12AC•DE=12•(2a +2a )•a=2a 2=2S △ADE ;在△ADE 和△BGE 中, ∵{∠AED =∠BEGDE =GE ∠ADE =∠BGE ,∴△ADE ≌△BGE (ASA ), ∴BE=AE=2a ,∴S △ABE =12AE•BE=12•(2a )•2a=2a 2,S △BCE =12CE•BE=12•(2a )•2a=2a 2,S △BHG =12HG•BE=12•(a +a )•2a=2a 2,综上,面积等于△ADE 面积的2倍的三角形有△ACD 、△ABE 、△BCE 、△BHG .25.(10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元. (1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?【解答】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:{8x +5y =2204x +6y =152,解得:{x =20y =12,答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.26.(10分)已知:⊙O是正方形ABCD的外接圆,点E在AB̂上,连接BE、DE,点F在AD̂上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为74,求线段BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H 作HM ⊥KD ,垂足为点M , ∵∠F=90°, ∴HF ⊥FD , ∵DA 平分∠EDF , ∴HM=FH , ∵FH=BP , ∴HN=BP , ∵KH ∥BN , ∴∠DKH=∠DLN , ∴∠ELP=∠DLN , ∴∠DKH=∠ELP , ∵∠BED=∠A=90°, ∴∠BEP +∠LEP=90°, ∵EP ⊥BN ,∴∠BPE=∠EPL=90°, ∴∠LEP +∠ELP=90°, ∴∠BEP=∠ELP=∠DKH , ∵HM ⊥KD ,∴∠KMH=∠BPE=90°, ∴△BEP ≌△HKM , ∴BE=HK ;(3)解:如图3,连接BD , ∵3HF=2DF ,BP=FH , ∴设HF=2a ,DF=3a , ∴BP=FH=2a ,由(2)得:HM=BP ,∠HMD=90°, ∵∠F=∠A=90°,∴tan ∠HDM=tan ∠FDH ,∴HM DM =FH DF =23,∴DM=3a ,∵四边形ABCD 为正方形, ∴AB=AD ,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE ,∠DBF=45°﹣∠ABF ,∠BDE=45°﹣∠ADE , ∴∠DBF=∠BDE , ∵∠BED=∠F ,BD=BD , ∴△BED ≌△DFB , ∴BE=FD=3a ,过H 作HS ⊥BD ,垂足为S ,∵tan ∠ABH=tan ∠ADE=AH AB =23,∴设AB=3√2m ,AH=2√2m ,∴BD=√2AB=6m ,DH=AD ﹣AH=√2m ,∵sin ∠ADB=HS DH =√22,∴HS=m ,∴DS=√DH 2−HS 2=m , ∴BS=BD ﹣DS=5m ,∴tan ∠BDE=tan ∠DBF=HS BS =15,∵∠BDE=∠BRE ,∴tanBRE=BP PR =15,∵BP=FH=2a , ∴RP=10a ,在ER 上截取ET=DK ,连接BT ,由(2)得:∠BEP=∠HKD , ∴△BET ≌△HKD , ∴∠BTE=∠KDH , ∴tan ∠BTE=tan ∠KDH ,∴BP PT =23,即PT=3a , ∴TR=RP ﹣PT=7a ,∵S △BER ﹣S △DHK=74,∴12BP•ER ﹣12HM•DK=74, ∴12BP•(ER ﹣DK )=12BP•(ER ﹣ET )=74, ∴12×2a ×7a=74, 解得:a=12(负值舍去),∴BP=1,PR=5, 则BR=√12+52=√26.27.(10分)已知:在平面直角坐标系中,点O 为坐标原点,点A 在x 轴的负半轴上,直线y=﹣√3x +72√3与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC ,点P 为△ACD 内一点,连接AP 、BP ,BP 与AC 交于点G ,且∠APB=60°,点E 在线段AP 上,点F 在线段BP 上,且BF=AE ,连接AF 、EF ,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3,在(2)的条件下,当PE=AE 时,求点P 的坐标.【解答】解:(1)如图1中,∵y=﹣√3x+7√3 2,∴B(72,0),C(0,7√32),∴BO=72,OC=7√32,在Rt△OBC中,BC=√OC2+OB2=7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣72=72,∴A(﹣72,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT=√AP2−TP2=√3m,在Rt△ABT中,∵AT2+TB2=AB2,∴(√3m)2+(2m)2=72,解得m=√7或﹣√7(舍弃),∴BF=√7,AT=√21,BP=3√7,sin∠ABT=ATAB =√217,∵OK=PQ=BP•sin∠PBQ=3√7×√217=3√3,BQ=√BP2−PQ2=6,∴OQ=BQ﹣BO=6﹣72=52,∴P(﹣52,3√3)。

2018年哈尔滨市中考数学试卷含答案解析

2018年哈尔滨市中考数学试卷含答案解析

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S=AE•DE=•2a•a=a2,△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,=AE•BE=•(2a)•2a=2a2,∴S△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

黑龙江省哈尔滨市2018年中考数学真题试题(含解析)

黑龙江省哈尔滨市2018年中考数学真题试题(含解析)

黑龙江省哈尔滨市2018年中考数学真题试题一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4 .【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER 的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS ⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR 的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

黑龙江省哈尔滨市2018年中考数学真题试题Word版含解析

黑龙江省哈尔滨市2018年中考数学真题试题Word版含解析

黑龙江省哈尔滨市2018年中考数学真题试题一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3 【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4 .【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分) 21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=AC•DE=•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=AE•BE=•(2a)•2a=2a2,S△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER 的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS ⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR 的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

2018年黑龙江省哈尔滨市中考数学试卷(解析版)

2018年黑龙江省哈尔滨市中考数学试卷(解析版)

2018年省市中考数学试卷一、选择题〔每题3分,共计30分〕1.〔3.00分〕〔2018•〕﹣的绝对值是〔〕A.B.C.D.2.〔3.00分〕〔2018•〕以下运算一定正确的选项是〔〕A.〔m+n〕2=m2+n2B.〔mn〕3=m3n3C.〔m3〕2=m5D.m•m2=m23.〔3.00分〕〔2018•〕以下图形中既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.4.〔3.00分〕〔2018•〕六个大小一样的正方体搭成的几何体如下图,其俯视图是〔〕A.B.C.D.5.〔3.00分〕〔2018•〕如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,那么线段BP的长为〔〕A.3 B.3 C.6 D.96.〔3.00分〕〔2018•〕将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为〔〕A.y=﹣5〔x+1〕2﹣1 B.y=﹣5〔x﹣1〕2﹣1 C.y=﹣5〔x+1〕2+3 D.y=﹣5〔x﹣1〕2+37.〔3.00分〕〔2018•〕方程=的解为〔〕A.x=﹣1 B.x=0 C.x= D.x=18.〔3.00分〕〔2018•〕如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,那么线段AB的长为〔〕A.B.2 C.5 D.109.〔3.00分〕〔2018•〕反比例函数y=的图象经过点〔1,1〕,那么k的值为〔〕A.﹣1 B.0 C.1 D.210.〔3.00分〕〔2018•〕如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A.= B.= C.= D.=二、填空题〔每题3分,共计30分〕11.〔3.00分〕〔2018•〕将数920000000科学记数法表示为.12.〔3.00分〕〔2018•〕函数y=中,自变量x的取值围是.13.〔3.00分〕〔2018•〕把多项式x3﹣25x分解因式的结果是14.〔3.00分〕〔2018•〕不等式组的解集为.15.〔3.00分〕〔2018•〕计算6﹣10的结果是.16.〔3.00分〕〔2018•〕抛物线y=2〔x+2〕2+4的顶点坐标为.17.〔3.00分〕〔2018•〕一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.〔3.00分〕〔2018•〕一个扇形的圆心角为135°,弧长为3πcm,那么此扇形的面积是cm2.19.〔3.00分〕〔2018•〕在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,假设△ABD为直角三角形,那么∠ADC的度数为.20.〔3.00分〕〔2018•〕如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC 于点M,EM交BD于点N,FN=,那么线段BC的长为.三、解答题〔其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.〔7.00分〕〔2018•〕先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.22.〔7.00分〕〔2018•〕如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.〔1〕在图中画出以线段AB为一边的矩形ABCD〔不是正方形〕,且点C和点D均在小正方形的顶点上;〔2〕在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.〔8.00分〕〔2018•〕为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类〞为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?〔必选且只选一种〕〞的问题,在全校围随机抽取局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题:〔1〕本次调查共抽取了多少名学生?〔2〕通过计算补全条形统计图;〔3〕假设军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.〔8.00分〕〔2018•〕:在四边形ABCD中,对角线AC、BD相交于点E,且AC ⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.〔1〕如图1,求证:AD=CD;〔2〕如图2,BH是△ABE的中线,假设AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.25.〔10.00分〕〔2018•〕春平中学要为学校科技活动小组提供实验器材,计划购置A型、B型两种型号的放大镜.假设购置8个A型放大镜和5个B型放大镜需用220元;假设购置4个A型放大镜和6个B型放大镜需用152元.〔1〕求每个A型放大镜和每个B型放大镜各多少元;〔2〕春平中学决定购置A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购置多少个A型放大镜?26.〔10.00分〕〔2018•〕:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.〔1〕如图1,求证:∠CBE=∠DHG;〔2〕如图2,在线段AH上取一点N〔点N不与点A、点H重合〕,连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF 时,求证:BE=HK;〔3〕如图3,在〔2〕的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,假设△BER的面积与△DHK的面积的差为,求线段BR的长.27.〔10.00分〕〔2018•〕:在平面直角坐标系中,点O为坐标原点,点A在x 轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.〔1〕如图1,求点A的坐标;〔2〕如图2,连接AC,点P为△ACD一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,假设∠AFE=30°,求AF2+EF2的值;〔3〕如图3,在〔2〕的条件下,当PE=AE时,求点P的坐标.2018年省市中考数学试卷参考答案与试题解析一、选择题〔每题3分,共计30分〕1.〔3.00分〕〔2018•〕﹣的绝对值是〔〕A.B.C.D.【解答】解:||=,应选:A.【点评】此题主要考察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比拟简单.2.〔3.00分〕〔2018•〕以下运算一定正确的选项是〔〕A.〔m+n〕2=m2+n2B.〔mn〕3=m3n3C.〔m3〕2=m5D.m•m2=m2【解答】解:A、〔m+n〕2=m2+2mn+n2,故此选项错误;B、〔mn〕3=m3n3,正确;C、〔m3〕2=m6,故此选项错误;D、m•m2=m3,故此选项错误;应选:B.【点评】此题主要考察了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法那么是解题关键.3.〔3.00分〕〔2018•〕以下图形中既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;应选:C.【点评】此题考察了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.〔3.00分〕〔2018•〕六个大小一样的正方体搭成的几何体如下图,其俯视图是〔〕A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.应选:B.【点评】此题考察了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.〔3.00分〕〔2018•〕如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,那么线段BP的长为〔〕A.3 B.3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,那么OP=6,故BP=6﹣3=3.应选:A.【点评】此题主要考察了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.〔3.00分〕〔2018•〕将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为〔〕A.y=﹣5〔x+1〕2﹣1 B.y=﹣5〔x﹣1〕2﹣1 C.y=﹣5〔x+1〕2+3 D.y=﹣5〔x﹣1〕2+3【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5〔x+1〕2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5〔x+1〕2﹣1.应选:A.【点评】此题主要考察了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.〔3.00分〕〔2018•〕方程=的解为〔〕A.x=﹣1 B.x=0 C.x= D.x=1【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,应选:D.【点评】此题考察了解分式方程,利用了转化的思想,解分式方程注意要检验.8.〔3.00分〕〔2018•〕如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,那么线段AB的长为〔〕A.B.2 C.5 D.10【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,应选:C.【点评】此题考察了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.〔3.00分〕〔2018•〕反比例函数y=的图象经过点〔1,1〕,那么k的值为〔〕A.﹣1 B.0 C.1 D.2【解答】解:∵反比例函数y=的图象经过点〔1,1〕,∴代入得:2k﹣3=1×1,解得:k=2,应选:D.【点评】此题考察了反比例函数图象上点的坐标特征,能根据得出关于k的方程是解此题的关键.10.〔3.00分〕〔2018•〕如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,那么以下结论一定正确的选项是〔〕A.= B.= C.= D.=【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.应选:D.【点评】此题考察了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题〔每题3分,共计30分〕11.〔3.00分〕〔2018•〕将数920000000科学记数法表示为9.2×108.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.〔3.00分〕〔2018•〕函数y=中,自变量x的取值围是x≠4 .【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】此题考察的是函数自变量的取值围,掌握分式分母不为0是解题的关键.13.〔3.00分〕〔2018•〕把多项式x3﹣25x分解因式的结果是x〔x+5〕〔x﹣5〕【解答】解:x3﹣25x=x〔x2﹣25〕=x〔x+5〕〔x﹣5〕.故答案为:x〔x+5〕〔x﹣5〕.【点评】此题主要考察了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.〔3.00分〕〔2018•〕不等式组的解集为3≤x<4 .【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】此题考察了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.〔3.00分〕〔2018•〕计算6﹣10的结果是 4 .【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考察了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数一样的二次根式进展合并,合并方法为系数相加减,根式不变.16.〔3.00分〕〔2018•〕抛物线y=2〔x+2〕2+4的顶点坐标为〔﹣2,4〕.【解答】解:∵y=2〔x+2〕2+4,∴该抛物线的顶点坐标是〔﹣2,4〕,故答案为:〔﹣2,4〕.【点评】此题考察二次函数的性质,解答此题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.〔3.00分〕〔2018•〕一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】此题考察了概率公式:随机事件A的概率P〔A〕=事件A可能出现的结果数除以所有可能出现的结果数.18.〔3.00分〕〔2018•〕一个扇形的圆心角为135°,弧长为3πcm,那么此扇形的面积是6πcm2.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π〔cm2〕,故答案为:6π.【点评】此题考察了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.〔3.00分〕〔2018•〕在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,假设△ABD为直角三角形,那么∠ADC的度数为130°或90°.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,那么∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,那么∠ADC=90°,故答案为:130°或90°.【点评】此题考察等腰三角形的性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.〔3.00分〕〔2018•〕如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠C EF=45°,EM⊥BC 于点M,EM交BD于点N,FN=,那么线段BC的长为 4 .【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2〔舍〕,∴BC=2x=4.故答案为:4.【点评】此题考察了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题〔其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.〔7.00分〕〔2018•〕先化简,再求代数式〔1﹣〕÷的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】此题考察分式的运算,解题的关键是熟练运用分式的运算法那么,此题属于根底题型.22.〔7.00分〕〔2018•〕如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.〔1〕在图中画出以线段AB为一边的矩形ABCD〔不是正方形〕,且点C和点D均在小正方形的顶点上;〔2〕在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:〔1〕如下图,矩形ABCD即为所求;〔2〕如图△ABE即为所求,CE=4.【点评】此题考察作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.〔8.00分〕〔2018•〕为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类〞为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?〔必选且只选一种〕〞的问题,在全校围随机抽取局部学生进展问卷调查,将调查结果整理后绘制成如下图的不完整的统计图,请你根据图中提供的信息答复以下问题:〔1〕本次调查共抽取了多少名学生?〔2〕通过计算补全条形统计图;〔3〕假设军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:〔1〕本次调查的学生总人数为24÷20%=120人;〔2〕“书法〞类人数为120﹣〔24+40+16+8〕=32人,补全图形如下:〔3〕估计该中学最喜爱国画的学生有960×=320人.【点评】此题考察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映局部占总体的百分比大小.24.〔8.00分〕〔2018•〕:在四边形ABCD中,对角线AC、BD相交于点E,且AC ⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.〔1〕如图1,求证:AD=CD;〔2〕如图2,BH是△ABE的中线,假设AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:〔1〕∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;〔2〕设DE=a,那么AE=2DE=2a,EG=DE=a,∴S△ADE=AE•DE=•2a•a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,那么S△ADC =AC•DE=•〔2a+2a〕•a=2a2=2S△ADE;在△ADE和△BGE中,∵,∴△ADE≌△BGE〔ASA〕,∴BE=AE=2a,=AE•BE=•〔2a〕•2a=2a2,∴S△ABE=CE•BE=•〔2a〕•2a=2a2,S△ACE=HG•BE=•〔a+a〕•2a=2a2,S△BHG综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】此题主要考察全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.〔10.00分〕〔2018•〕春平中学要为学校科技活动小组提供实验器材,计划购置A型、B型两种型号的放大镜.假设购置8个A型放大镜和5个B型放大镜需用220元;假设购置4个A型放大镜和6个B型放大镜需用152元.〔1〕求每个A型放大镜和每个B型放大镜各多少元;〔2〕春平中学决定购置A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购置多少个A型放大镜?【解答】解:〔1〕设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;〔2〕设购置A型放大镜m个,根据题意可得:20a+12×〔75﹣a〕≤1180,解得:x≤35,答:最多可以购置35个A型放大镜.【点评】此题考察二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.〔10.00分〕〔2018•〕:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.〔1〕如图1,求证:∠CBE=∠DHG;〔2〕如图2,在线段AH上取一点N〔点N不与点A、点H重合〕,连接BN交DE 于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF 时,求证:BE=HK;〔3〕如图3,在〔2〕的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,假设△BER的面积与△DHK的面积的差为,求线段BR的长.【解答】〔1〕证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;〔2〕如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;〔3〕解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由〔2〕得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由〔2〕得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•〔ER﹣DK〕=BP•〔ER﹣ET〕=,∴×2a×7a=,解得:a=〔负值舍去〕,∴BP=1,PR=5,那么BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解此题的关键.27.〔10.00分〕〔2018•〕:在平面直角坐标系中,点O为坐标原点,点A在x 轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.〔1〕如图1,求点A的坐标;〔2〕如图2,连接AC,点P为△ACD一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,假设∠AFE=30°,求AF2+EF2的值;〔3〕如图3,在〔2〕的条件下,当PE=AE时,求点P的坐标.【解答】解:〔1〕如图1中,∵y=﹣x+,∴B〔,0〕,C〔0,〕,∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A〔﹣,0〕.〔2〕如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.〔3〕如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,那么AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴〔m〕2+〔2m〕2=72,解得m=或﹣〔舍弃〕,∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P〔﹣,3〕【点评】此题考察一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

【真题】2018年哈尔滨市中考数学试卷含答案解析(Word版)

【真题】2018年哈尔滨市中考数学试卷含答案解析(Word版)

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S=AE•BE=•(2a)•2a=2a2,△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

黑龙江省哈尔滨市2018年中考数学试题(含答案)(精编)

黑龙江省哈尔滨市2018年中考数学试题(含答案)(精编)

哈尔滨市2018年初中升学考试数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分) 1.75-的绝对值是(). (A)75 (B)57 (C)75-(D)57- 2.下列运算一定正确的是(). (A)()222n m n m +=+ (B)()333n m mn = (C)()523m m = (D)22m m m =⋅3.下列图形中既是轴对称图形又是中心对称图形的是().4.六个大小相同的正力体搭成的几何体如图所示,其俯视图是().5. 如图,点P 为⊙O 外一点,PA 为⊙0的切线,A 为切点,PO 交⊙0于点B ,∠P=30°,OB=3,则线段BP 的长为().(A)3 (B)33 (C)6 (D)96.将抛物线y=-5x 2+l 向左平移1个单位长度,再向下平移2个单位长度, 所得到的抛物线为().(A) y=-5(x+1)2-1(B)y=-5(x-1)2-1 (C)y=-5(x+1)2+3(D)y=-5(x-1)2+37.方程3221+=x x 的解为(). (A)x=-1 (B)x=0 (C) x=53 (D)x=1 8.如图,在菱形ABCD 中,对角线AC 、BD 相交于点0,BD=8,tan ∠ABD=43, 则线段AB 的长为(). (A)7(B)27 (C)5 (D)109.已知反比例函数x k y 32-=的图象经过点(1,1),则k 的值为(). (A)-1 (B)0 (C)1 (D)210.如图,在△ABC 中,点D 在BC 边上,连接AD,点G 在线段AD 上,GE ∥BD,且交AB 于点E,GF ∥AC,且交CD 于点F,则下列结论一定正确的是().(A)AD AG AE AB =(B)AD DGCF DF =(C)BDEG AC FG = (D)DF CF BE AE =第Ⅱ卷非选择题(共90分)二、填空题(每小3分,共计30分)11.将数920000000用科学记数法表示为.12.函数45y -=x x 中,自变量x 的取值范围是. 13.把多项式x 3-25x 分解因式的结果是.14.不等式组{1215325≥---x x x >的解集为. 15.计算5110-56的结果是. 16.抛物线y=2(x+2)2+4的顶点坐标为.17.一枚质地均匀的正方体骰子,骰子的六个面上分別刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是.19.在△ABC 中, AB=AC,∠BAC=100°,点D 在BC 边上,连接AD,若△ABD 为直角三角形,则∠ADC 的 度数为.20. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点0,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF,∠CEF=45°EM ⊥BC 于点M,EM 交BD 于点N,FN=10,则线段BC 的长为.三、解答题(其中21~22题各7分,23~24题备8分,25-27题各10分,共计60分21(本题7分)先化简,再求代数式429621-12-+-÷⎪⎭⎫ ⎝⎛-a a a a 的值,其中a=4cos30°+3tan45°. 22.(本题7分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1) 在图中画出以线段AB 为一边的矩形ABCD(不是正方形),且点C 和点D 均在小正方形的顶点上;(2) 在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE,点E 在小正方形的顶点上.连接CE,请直接写出线段CE 的长.23.(本题8分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(本题8分)已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD,作BF ⊥CD 垂足为点F,BF 与AC 交于点G.∠BGE=∠ADE.(1)如图1,求证:AD=CD ;(2)如图2,BH 是△ABE 的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(本题10分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型,B 型两种型号的放大镜,若购买8个A 型放大镜和5个B 型放大镜需用220元;若购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元?(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A 型放大镜?26.(本题10分)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE,点F 在弧AD 上,连接BF,DF,BF 与DE 、DA 分别交于点G 、点H,且DA 平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L,过点H 作HK ∥BN 交DE 于点K,过点E 作EP ⊥BN 垂足为点P ,当BP=HF 时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF 时,延长EP 交⊙0于点R,连接BR,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.27.(本题10分)已知:在平面直角坐标系中,点0为坐标原点,点A 在x 轴的负半轴上,直线3273+-=x y 与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为菱形.(1)如图1,求点A 的坐标;(2)如图2,连接AC,点P 为△ACD 内一点,连接AP 、BP,BP 与AC 交于点G,且∠APB=60°,点E 在线段AP 上,点F 在线投BP 上,且BF=AE.连接AF 、EF,若∠AFE=30°,求AF 2+EF 2的值;(3)如图3在(2)的条件下,当PE=AE 时,求点P 的坐标.。

2018年哈尔滨市中考数学试题及解析

2018年哈尔滨市中考数学试题及解析

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m23.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.210.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为.12.(3.00分)函数y=中,自变量x的取值范围是.13.(3.00分)把多项式x3﹣25x分解因式的结果是14.(3.00分)不等式组的解集为.15.(3.00分)计算6﹣10的结果是.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3.00分)﹣的绝对值是()A.B.C.D.【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(3.00分)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=m2【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m•m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(3.00分)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(3.00分)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(3.00分)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O 于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(3.00分)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3.00分)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(3.00分)已知反比例函数y=的图象经过点(1,1),则k的值为()A.﹣1 B.0 C.1 D.2【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(3.00分)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD 上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(3.00分)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(3.00分)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【分析】首先提取公因式x,再利用平方差公式分解因式即可.【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(3.00分)不等式组的解集为3≤x<4.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(3.00分)计算6﹣10的结果是4.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(3.00分)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【分析】根据题目中二次函数的顶点式可以直接写出它的顶点坐标.【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(3.00分)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(3.00分)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【分析】先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(3.00分)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(3.00分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM 交BD于点N,FN=,则线段BC的长为4.【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=x,BN=FN=,最后利用勾股定理计算x的值,可得BC的长.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7.00分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(7.00分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求;【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(8.00分)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【分析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其他种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比例.【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(8.00分)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【分析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,ADC从而得出答案.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE•DE=•2a•a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,=AC•DE=•(2a+2a)•a=2a2=2S△ADE;则S△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S=AE•BE=•(2a)•2a=2a2,△ABES△ACE=CE•BE=•(2a)•2a=2a2,S△BHG=HG•BE=•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(10.00分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(10.00分)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【分析】(1)由正方形的四个角都为直角,得到两个角为直角,再利用同弧所对的圆周角相等及角平分线定义,等量代换即可得证;(2)如图2,过H作HM⊥KD,垂足为点M,根据题意确定出△BEP≌△HKM,利用全等三角形对应边相等即可得证;(3)根据3HF=2DF,设出HF=2a,DF=3a,由角平分线定义得到一对角相等,进而得到正切值相等,表示出DM=3a,利用正方形的性质得到△BED≌△DFB,得到BE=DF=3a,过H作HS⊥BD,垂足为S,根据△BER的面积与△DHK的面积的差为,求出a的值,即可确定出BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP•ER﹣HM•DK=,∴BP•(ER﹣DK)=BP•(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(10.00分)已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD 为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【分析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图2中,连接CE、CF.想办法证明△CEF是等边三角形,AF⊥CF即可解决问题;(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.想办法证明△APF是等边三角形,AT⊥PB即可解决问题;【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠AOB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACR≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP•sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

黑龙江省哈尔滨市平房区2018届中考调研数学试卷(一)含答案

黑龙江省哈尔滨市平房区2018届中考调研数学试卷(一)含答案

2
y x 2 - 3 D.
2
y x2 3
8. 如图 , 在菱形 ABCB中 , 点 E 在 AD边上 ,EF ∥ CD,交对角线 BD于点 F, 则下列结论中错误的是 ()
第8题
第 9题
第 10 题
A. DE DF
B.
EF DF
EF DF
EF DF
C.
D.
AE BF
AD DB
AD BF
CD DB
9. 如图 , △ ABC为等边三角形 , 将△ ABC绕点 A逆时针旋转 75° , 得到△ AED,过点 E 作 EF⊥AC,
1. 如果冰箱冷藏室的温度是 5℃,冷冻室的温度是 -3 ℃,则冷藏室比冷冻室高(

A.8 ℃
B.-8
℃ C.-2

D.2

2. 下列图形中 , 不是轴对称图形的是 ( )
3. 下列运算中 , 正确的是(

A. 3a 2a 6a2 B.
a2 3 a5 C. a6 - a2 a4 D. 3a 5b 8ab
垂足为点 F, 若 AC=8,则 AF 的长为 (

A. 4
B.3 C.
46
D.
42
10. 在一次越野赛中 , 甲选手匀速跑完全程 , 乙选手 1.5 小时后速度为每小时 10 千米 , 两选手
的行程 y( 千米 ) 随时间 x( 小时)变化的图像(全程)如图所示,则乙比甲晚到(
)小时。
A.0.4
2018 年平房区中考调研测试(一)
数学试卷
考生须知:
1. 本试卷满分为 120 分 , 考试时间 120 分钟。
2. 答题前 , 考生先将白己的“姓名” 、“考场”、“座位号”在答卡上填写清楚 确粘贴在条形码区域内。

黑龙江省哈尔滨市平房区2018届中考调研测试数学试卷(一)及解析

黑龙江省哈尔滨市平房区2018届中考调研测试数学试卷(一)及解析

黑龙江省哈尔滨市平房区2018届中考调研测试数学试卷(一)及解析黑龙江省哈尔滨市平房区2018届九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A. 8℃B. -8℃C. -2℃D. 2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。

2.下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。

3.下列运算中,正确的是()A. x·x2= x2B. (xy)2=xy2C.D. x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。

4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。

2018年黑龙江哈尔滨中考数学试卷及答案解析版

2018年黑龙江哈尔滨中考数学试卷及答案解析版

哈尔滨市2018年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.(2018哈尔滨,1,3分)-13的倒数是( ). A .3 B .-3 C .-13 D .13【答案】B .2.(2018哈尔滨,2,3分)下列计算正确的是( ).A .a 3+a 2=a 3B .a 3·a 2=a 6C .(a 2)3=a 6D .(a 2)2=a 22 【答案】 C .3.(2018哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D .【答案】 D .4.(2018哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).【答案】 A .5.(2018哈尔滨,5,3分)把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =x 2+2D .y =x 2-2【答案】 D .6.(2018哈尔滨,6,3分)反比例函数y =1-2k x的图象经过点(-2,3),则k 的值为( ). A .6 B .-6 C .72 D .-72【答案】 C .7.(2018哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ).A .4B .3C .52D .2(第7题图)【答案】 B .8.(2018哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子第4题 A .。

黑龙江省哈尔滨市中考数学试卷 解析版

黑龙江省哈尔滨市中考数学试卷 解析版

2018年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(分)(2018?哈尔滨)﹣的绝对值是()A.B.C.D.2.(分)(2018?哈尔滨)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m?m2=m2 3.(分)(2018?哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(分)(2018?哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.(分)(2018?哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.96.(分)(2018?哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.(分)(2018?哈尔滨)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=18.(分)(2018?哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.109.(分)(2018?哈尔滨)已知反比例函数y=的图象经过点(1,1),则k 的值为()A.﹣1 B.0 C.1 D.210.(分)(2018?哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G 在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=二、填空题(每小题3分,共计30分)11.(分)(2018?哈尔滨)将数0科学记数法表示为.12.(分)(2018?哈尔滨)函数y=中,自变量x的取值范围是.13.(分)(2018?哈尔滨)把多项式x3﹣25x分解因式的结果是14.(分)(2018?哈尔滨)不等式组的解集为.15.(分)(2018?哈尔滨)计算6﹣10的结果是.16.(分)(2018?哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为.17.(分)(2018?哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.18.(分)(2018?哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.19.(分)(2018?哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.20.(分)(2018?哈尔滨)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(分)(2018?哈尔滨)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.22.(分)(2018?哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.23.(分)(2018?哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?24.(分)(2018?哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.25.(分)(2018?哈尔滨)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?26.(分)(2018?哈尔滨)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.27.(分)(2018?哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,点A 在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.2018年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(分)(2018?哈尔滨)﹣的绝对值是()A.B.C.D.【解答】解:||=,故选:A.【点评】本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.(分)(2018?哈尔滨)下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m?m2=m2【解答】解:A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m?m2=m3,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法则是解题关键.3.(分)(2018?哈尔滨)下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、此图形既不是轴对称图形也不是中心对称图形,此选项不符合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不符合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项符合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不符合题意;故选:C.【点评】本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.4.(分)(2018?哈尔滨)六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【解答】解:俯视图从左到右分别是2,1,2个正方形.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.(分)(2018?哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.9【解答】解:连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6﹣3=3.故选:A.【点评】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.6.(分)(2018?哈尔滨)将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+3【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(分)(2018?哈尔滨)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(分)(2018?哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A.B.2 C.5 D.10【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9.(分)(2018?哈尔滨)已知反比例函数y=的图象经过点(1,1),则k 的值为()A.﹣1 B.0 C.1 D.2【解答】解:∵反比例函数y=的图象经过点(1,1),∴代入得:2k﹣3=1×1,解得:k=2,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k的方程是解此题的关键.10.(分)(2018?哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G 在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的性质找出==是解题的关键.二、填空题(每小题3分,共计30分)11.(分)(2018?哈尔滨)将数0科学记数法表示为×108.【解答】解:0用科学记数法表示为×108,故答案为;×108【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(分)(2018?哈尔滨)函数y=中,自变量x的取值范围是x≠4.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.13.(分)(2018?哈尔滨)把多项式x3﹣25x分解因式的结果是x(x+5)(x﹣5)【解答】解:x3﹣25x=x(x2﹣25)=x(x+5)(x﹣5).故答案为:x(x+5)(x﹣5).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.14.(分)(2018?哈尔滨)不等式组的解集为3≤x<4.【解答】解:∵解不等式①得:x≥3,解不等式②得:x<4,∴不等式组的解集为3≤x<4,故答案为;3≤x<4.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.15.(分)(2018?哈尔滨)计算6﹣10的结果是4.【解答】解:原式=6﹣10×=6﹣2=4,故答案为:4.【点评】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.16.(分)(2018?哈尔滨)抛物线y=2(x+2)2+4的顶点坐标为(﹣2,4).【解答】解:∵y=2(x+2)2+4,∴该抛物线的顶点坐标是(﹣2,4),故答案为:(﹣2,4).【点评】本题考查二次函数的性质,解答本题的关键是由顶点式可以直接写出二次函数的顶点坐标.17.(分)(2018?哈尔滨)一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是3的倍数的概率是.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的有3,6,故骰子向上的一面出现的点数是3的倍数的概率是:=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.(分)(2018?哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是6πcm2.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴=3π,解得:R=4,所以此扇形的面积为=6π(cm2),故答案为:6π.【点评】本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.19.(分)(2018?哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.【点评】本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.(分)(2018?哈尔滨)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°,EM⊥BC于点M,EM交BD于点N,FN=,则线段BC的长为4.【解答】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF≌△MNB,∴EN=MN=x,BN=FN=,Rt△BNM中,由勾股定理得:BN2=BM2+MN2,∴,x=2或﹣2(舍),∴BC=2x=4.故答案为:4.【点评】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(分)(2018?哈尔滨)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=?==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.(分)(2018?哈尔滨)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D 均在小正方形的顶点上;(2)在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.【解答】解:(1)如图所示,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.【点评】本题考查作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题,属于中考常考题型.23.(分)(2018?哈尔滨)为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?【解答】解:(1)本次调查的学生总人数为24÷20%=120人;(2)“书法”类人数为120﹣(24+40+16+8)=32人,补全图形如下:(3)估计该中学最喜爱国画的学生有960×=320人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(分)(2018?哈尔滨)已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.(1)如图1,求证:AD=CD;(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【解答】解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,=AE?DE=?2a?a=a2,∴S△ADE∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S=AC?DE=?(2a+2a)?a=2a2=2S△ADE;△ADC在△ADE和△BGE中,∵,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S=AE?BE=?(2a)?2a=2a2,△ABES△ACE=CE?BE=?(2a)?2a=2a2,S△BHG=HG?BE=?(a+a)?2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.【点评】本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.25.(分)(2018?哈尔滨)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜m个,根据题意可得:20a+12×(75﹣a)≤1180,解得:x≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.26.(分)(2018?哈尔滨)已知:⊙O是正方形ABCD的外接圆,点E在上,连接BE、DE,点F在上连接BF、DF,BF与DE、DA分别交于点G、点H,且DA平分∠EDF.(1)如图1,求证:∠CBE=∠DHG;(2)如图2,在线段AH上取一点N(点N不与点A、点H重合),连接BN交DE于点L,过点H作HK∥BN交DE于点K,过点E作EP⊥BN,垂足为点P,当BP=HF时,求证:BE=HK;(3)如图3,在(2)的条件下,当3HF=2DF时,延长EP交⊙O于点R,连接BR,若△BER的面积与△DHK的面积的差为,求线段BR的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,∵∠F=∠A=90°,∴∠F=∠ABC,∵DA平分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ABE=∠ADF,∵∠CBE=∠ABC+∠ABE,∠DHG=∠F+∠ADF,∴∠CBE=∠DHG;(2)如图2,过H作HM⊥KD,垂足为点M,∵∠F=90°,∴HF⊥FD,∵DA平分∠EDF,∴HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠BPE=∠EPL=90°,∴∠LEP+∠ELP=90°,∴∠BEP=∠ELP=∠DKH,∵HM⊥KD,∴∠KMH=∠BPE=90°,∴△BEP≌△HKM,∴BE=HK;(3)解:如图3,连接BD,∵3HF=2DF,BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由(2)得:HM=BP,∠HMD=90°,∵∠F=∠A=90°,∴tan∠HDM=tan∠FDH,∴==,∴DM=3a,∵四边形ABCD为正方形,∴AB=AD,∴∠ABD=∠ADB=45°,∵∠ABF=∠ADF=∠ADE,∠DBF=45°﹣∠ABF,∠BDE=45°﹣∠ADE,∴∠DBF=∠BDE,∵∠BED=∠F,BD=BD,∴△BED≌△DFB,∴BE=FD=3a,过H作HS⊥BD,垂足为S,∵tan∠ABH=tan∠ADE==,∴设AB=3m,AH=2m,∴BD=AB=6m,DH=AD﹣AH=m,∵sin∠ADB==,∴HS=m,∴DS==m,∴BS=BD﹣DS=5m,∴tan∠BDE=tan∠DBF==,∵∠BDE=∠BRE,∴tanBRE==,∵BP=FH=2a,∴RP=10a,在ER上截取ET=DK,连接BT,由(2)得:∠BEP=∠HKD,∴△BET≌△HKD,∴∠BTE=∠KDH,∴tan∠BTE=tan∠KDH,∴=,即PT=3a,∴TR=RP﹣PT=7a,∵S△BER﹣S△DHK=,∴BP?ER﹣HM?DK=,∴BP?(ER﹣DK)=BP?(ER﹣ET)=,∴×2a×7a=,解得:a=(负值舍去),∴BP=1,PR=5,则BR==.【点评】此题属于圆综合题,涉及的知识有:正方形的性质,角平分线性质,全等三角形的判定与性质,三角形的面积,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.27.(分)(2018?哈尔滨)已知:在平面直角坐标系中,点O为坐标原点,点A 在x轴的负半轴上,直线y=﹣x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【解答】解:(1)如图1中,∵y=﹣x+,∴B(,0),C(0,),∴BO=,OC=,在Rt△OBC中,BC==7,∵四边形ABCD是菱形,∴AB=BC=7,∴OA=AB﹣OB=7﹣=,∴A(﹣,0).(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∵△CEF是等边三角形,∴∠CEF=60°,EC=CF,∵∠AFE=30°,∠CEF=∠H+∠EFH,∴∠H=∠CEF﹣∠EFH=30°,∴∠H=∠EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠PEC=∠AEH,∴△CPE≌△HAE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠TCF=∠CTP﹣∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,∴AT⊥PF,设BF=m,则AE=PE=m,∴PF=AP=2m,TF=TP=m,TB=2m,BP=3m,在Rt△APT中,AT==m,在Rt△ABT中,∵AT2+TB2=AB2,∴(m)2+(2m)2=72,解得m=或﹣(舍弃),∴BF=,AT=,BP=3,sin∠ABT==,∵OK=PQ=BP?sin∠PBQ=3×=3,BQ==6,∴OQ=BQ﹣BO=6﹣=,∴P(﹣,3)【点评】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省哈尔滨市平房区2018届九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A. 8℃B. -8℃C. -2℃D. 2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。

2.下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。

3.下列运算中,正确的是()A. x·x2= x2B. (xy)2=xy2C.D. x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。

4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。

5.反比例函数(k为常数,k≠0)的图象位于( )A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限【答案】C【考点】反比例函数的图象【解析】【解答】解:∵k≠0,∴k2>0,∴﹣k2<0,∴反比例函数(k为常数,k≠0)的图象位于第二、四象限.故答案为:C.【分析】根据偶次方的非负性及已知条件可知:k2>0,故﹣k2<0,根据双曲线的比例系数小于0,则图像位于第二、四象限.即可得出答案。

6.如图,飞机在空中B处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A的俯角α的正切值为则飞机与指挥台之间AB的距离为( )米A. 1200B. 1600C. 1800D. 2000【答案】D【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:∵tanα=tanB= ,且tanB= ,∴BC= = =1600(米),则AB= = =2000.故答案为:D.【分析】根据等角的同名三角函数值相等得出tanα=tanB=,再根据正切函数的定义得出BC=,再根据勾股定理得出AB的长。

7.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是( )A. B. C. D.【答案】C【考点】二次函数图象的几何变换【解析】【解答】解:依题意可知:平移后得到的抛物线的解析式为:y=(x+2)2﹣3.故答案为:C.【分析】依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,﹣3),又因为平移不改变二次项系数,从而根据平移规律得出所得抛物线解析式。

8.如图,在菱形ABCB中,点E在AD边上,EF∥CD,交对角线BD于点F,则下列结论中错误的是( )A. B. C. D.【答案】C【考点】平行线分线段成比例,相似三角形的判定与性质【解析】【解答】解:∵四边形ABCD是菱形∴AB∥CD,AB=CD=AD.∵EF∥CD,∴EF∥AB,∴,△DEF ∽△DAB,∴.∵AB=CD,∴,∴选项A、B、D不符合题意;选项C符合题意.故答案为:C.【分析】根据菱形的性质得出AB∥CD,AB=CD=AD,又EF∥CD,故EF∥AB,根据平行线分线段成比例定理,及相似三角形判定方法的准备定理得出DE∶AE=DF ∶BF ,△DEF∽△DAB,根据相似三角形对应边成比例得出EF∶AB=DF∶DB,又AB=CD=AD,从而得出EF∶CD=DF∶DB,EF∶AD=DF∶DB,故选项A、B、D不符合题意,从而得出答案。

9.如图,△ABC为等边三角形,将△ABC绕点A逆时针旋转75°,得到△AED,过点E作EF⊥AC,垂足为点F,若AC=8,则AF的长为( )A. B. 3 C. D.【答案】D【考点】旋转的性质【解析】【解答】解:∵△ABC为等边三角形,∴∠CAB=60°,由旋转可得,AC=AD=AE=8,∠EAB=75°,∴∠EAF=180°﹣60°﹣75°=45°.∵EF⊥AC,∴△AEF是等腰直角三角形,∴AF= AE=4 .故答案为:D.【分析】根据等边三角形的性质得出∠CAB=60°,由旋转可得,AC=AD=AE=8,∠EAB=75°,根据平角的定义得出∠EAF 的度数,进而判断出△AEF是等腰直角三角形,根据等腰直角三角形的边之间的关系即可得出答案。

10.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到()小时.A. 0.4B. 0.3C. 0.2D. 0.1【答案】B【考点】通过函数图像获取信息并解决问题【解析】【解答】解:由图可知:甲的速度=10÷1=10(千米/时),甲的时间=2小时,总路程=10×2=20(千米).根据0.5~1.5小时内,乙半小时跑2km,可得1小时跑4km,故1.5小时跑了12km,剩余的8km需要的时间为8÷10=0.8小时,根据1.5+0.8﹣2=0.3,可得乙比甲晚到0.3小时,故答案为:B.【分析】根据图像解决问题,由于甲是匀速行完全程,根据图像可以得出甲的速度10千米/时,甲行的时间为2小时,根据路程=速度乘以时间得出总路程是20千米;根据0.5~1.5小时内,乙半小时跑2km,可得1小时跑4km,故1.5小时跑了12km,剩余的8km需要的时间为8÷10=0.8小时,根据1.5+0.8﹣2=0.3,可得乙比甲晚到0.3小时,二、填空题11.把384000000用科学记数法表示为________.【答案】【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:384 000 000=3.84×108.故答案为:3.84×108.【分析】用科学计数法表示绝对值比较大的数,一般表示成a×10n的形式,其中1≤|a|<10,n等于原数的整数位数减1。

12.函数的自变量的取值范围是________.【答案】x≠-3【考点】分式有意义的条件【解析】【解答】解:由题意得:2x+6≠0,解得:x≠﹣3.故答案为:x≠﹣3.【分析】根据分式有意义的条件:分母不能为0,得出不等式,求解即可得出x的取值范围。

13.计算: ________.【答案】【考点】二次根式的加减法【解析】【解答】解:原式=3 ﹣= .故答案为:.【分析】根据二次根式的性质分别化简各个二次根式,再合并同类二次根式即可。

14.不等式组的解集为________.【答案】x>3【考点】解一元一次不等式组【解析】【解答】解:由(1)得:x≥1;由(2)得:x>3,∴原不等式的解集为:x>3.故答案为:x>3.【分析】解出不等式组中的每一个不等式的解集,然后按照同大取大的方法得出不等式组的解集。

15.把多项式分解因式的结果是________.【答案】【考点】提公因式法与公式法的综合运用【解析】【解答】解:原式=3a(a2﹣4a+4)=3a(a﹣2)2.故答案为:3a(a﹣2)2.【分析】先利用提公因式法分解因式,再利用完全平方公式分解到每一个因式都不能再分解为止。

16.分式方程= 的解是________.【答案】x=2【考点】分式方程的解【解析】【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.【分析】观察可得这个分式方程的最简公分母为x(x﹣1),去分母,转化为整式方程求解,结果要检验.17.一个扇形的面积为12πcm2,圆心角为120°,则该扇形的半径是________.【答案】6cm【考点】扇形面积的计算【解析】【解答】解:设扇形半径为r,则,解得:r=6(cm).故答案为:6cm.【分析】设扇形半径为r,根据扇形的面积计算公式及扇形的面积列出方程,求解即可得出答案。

18.星期一早晨,小红、小丽两人同在新疆大街公交站等车去同一所学校上学,此时恰好有途经该校公交站的三辆车同时进站(不考虑其它因素),则小红和小丽同乘一辆车的概率为________.【答案】【考点】列表法与树状图法,概率公式【解析】【解答】解:将三辆车分别记为1,2,3,画树状图得:∵共有9种等可能的结果,小红和小丽同乘一辆车的有3种情况,∴小红和小丽同乘一是:= .故答案为:.【分析】根据题意画出树状图,由图可知:共有9种等可能的结果,小红和小丽同乘一辆车的有3种情况,根据概率公式即可得出小红和小丽同乘一辆车的概率。

19.在正方形ABCD中,点0为正方形的中心,直线m经过点0,过A、B两点作直线m的垂线AE、BF,垂足分别为点E、F,若AE=2,BF=5,则EF长为________.【答案】3或7【考点】正方形的性质【解析】【解答】解:分两种情况:①如图1,连接AO,BO.∵O是正方形ABCD的中心,∴OA=OB,∠AOB=90°,∴∠EOA+∠FOB=90°.∵∠EOA+∠EAO=90°,∴∠EAO=∠FOB.在△AEO和△OFB中,∵∠EAO=∠FOB,∠AEO=∠OFB,AO=OB,∴△AEO≌△OFB,∴AE=OF,EO=BF,∴EF=OE+OF=BF+AE=5+2=7.②如图2,同理可得:AE=OF,EO=BF,∴EF=OE-OF=BF-AE=5-2=3.综上所述:EF长为3或7.故答案为:3或7.【分析】分两种情况:①如图1,连接AO,BO.根据正方形的性质得出OA=OB,∠AOB=90°,然后根据同角的余角相等得出∠EAO=∠FOB,利用AAS判断出△AEO≌△OFB,根据全等三角形的性质得出AE=OF,EO=BF,根据线段的和差及等量代换得出EF的长;②如图2,同理可得:AE=OF,EO=BF,由EF=OE-OF=BF-AE得出答案;综上所述即可。

相关文档
最新文档