算法分析与设计实验报告实验2:回溯法的应用
回溯法应用
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{ x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
(实验提示
template<class Typew, class Typep>
Typep Knap<Typew, Typep>::Bound(int i)
{//计算上界
Typew cleft = c - cw; //剩余容量
Typep b = cp;
//以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入背包容量:"<<endl;
算法设计与分析实验报告——基于回溯法的0-1背包等问题
实验报告. 基于回溯法的0-1背包等问题实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。
求解的问题为0-1背包。
作为挑战:可以考虑回溯法在如最大团、旅行商、图的m着色等问题中的应用。
实验目的◆理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的剪枝函数即约束函数与限界函数);◆掌握对几种解空间树(子集树、排列数、满m叉树)的回溯方法;◆从算法分析与设计的角度,对0-1背包等问题的基于回溯法求解有进一步的理解。
环境要求对于环境没有特别要求。
对于算法实现,可以自由选择C, C++或Java,甚至于其他程序设计语言如Python等。
实验步骤步骤1:理解问题,给出问题的描述。
步骤2:算法设计,包括策略与数据结构的选择。
步骤3:描述算法。
希望采用源代码以外的形式,如伪代码或流程图等;步骤4:算法的正确性证明。
需要这个环节,在理解的基础上对算法的正确性给予证明;步骤5:算法复杂性分析,包括时间复杂性和空间复杂性;步骤6:算法实现与测试。
附上代码或以附件的形式提交,同时贴上算法运行结果截图;步骤7:技术上、分析过程中等各种心得体会与备忘,需要言之有物。
说明:步骤1-6在“实验结果”一节中描述,步骤7在“实验总结”一节中描述。
实验结果步骤1:问题描述。
给定 n个物品,其中第 i 个物品的重量为w i ,价值为 v i 。
有一容积为 W 的背包,要求选择一些物品放入背包,使得物品总体积不超过W的前提下,物品的价值总和最大。
0-1背包问题的限制是,每种物品只有一个,它的状态只有放和不放两种。
0-1背包问题是特殊的整数规划问题,其可用数学语言表述为:对于给定 n >0,W >0,v,w (v i ,w i >0,1≤i ≤n),找出一个 n 元0-1向量x =( x 1, x 2,⋯, x n ) 其中x i ∈{0,1},1≤i ≤n ,使得∑v i n i=1x i 最大,并且∑w i n i=1x i ≤W ,即:max x (∑v i ni=1x i ) s.t.∑w i ni=1x i ≤W, x i ∈{0,1},1≤i ≤n步骤2:算法设计,即算法策略与数据结构的选择。
算法设计与分析实验指导4_回溯法
防卫点
角色
1
2
3
4
5
1
60
40
80
50
60
2
90
60
80
70
20
3
30
50
40
50
80
4
90
40
30
70
5
60
80
90
60
50
2.0-1背包问题(选做)
编程实现0-1背包问题的回溯算法。
数据文件见附件。
四、实验报告
1.实验报告只写实验⑴。
2.写出算法思想、主要程序代码、算法复杂性分析。
void Print1(Type a[],int n)
{
for(int i=1; i<=n; i++)
cout<<a[i]<<' ';
cout<<endl;
}
三、实验内容及要求:
1.排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为Aij。试设计一个布阵方案,使总的攻击力最大。
void TwoDimArray(Type** &p,int r,int c)
{
p=new Type *[r];
for(int i=0; i<r; i++)
p[i]=new Type[c];
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
回朔法实验报告
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法设计与分析:回溯法-实验报告
应用数学学院信息安全专业班学号姓名实验题目回溯算法实验评分表指导教师评分标准序号评分项目评分标准满分打分1 完成度按要求独立完成实验准备、程序调试、实验报告撰写。
202 实验内容(1)完成功能需求分析、存储结构设计;(2)程序功能完善、可正常运行;(3)测试数据正确,分析正确,结论正确。
303 实验报告内容齐全,符合要求,文理通顺,排版美观。
404 总结对实验过程遇到的问题能初步独立分析,解决后能总结问题原因及解决方法,有心得体会。
10实验报告一、实验目的与要求1、理解回溯算法的基本思想;2、掌握回溯算法求解问题的基本步骤;3、了解回溯算法效率的分析方法。
二、实验内容【实验内容】最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。
【回溯法解题步骤】1、确定该问题的解向量及解空间树;2、对解空间树进行深度优先搜索;3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。
4、达到叶结点时记录下当前最优解。
5、实验数据n,m,]][[jiw,]][[ji c的值由自己假设。
三、算法思想和实现【实现代码】【实验数据】假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。
总价不超过7(c<=7)。
部件重量表:重量供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 2 2部件3 3 4 1部件价格表:价格供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 3 1部件3 1 1 3【运行结果】实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。
四、问题与讨论影响回溯法效率的因素有哪些?答:影响回溯法效率的因素主要有以下这五点:1、产生x[k]的时间;2、满足显约束得x[k]值的个数;3、计算约束函数constraint的时间;4、计算上界函数bound的时间;5、满足约束函数和上界函数约束的所有x[k]的个数。
算法分析与设计实验报告--回溯法
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
算法实验报告:回溯法(C语言)
实验报告
(2015/ 2016学年第一学期)
课程名称算法设计与分析
实验名称回溯法
实验时间2016年5月5日指导单位计算机软件学院
指导教师费宁
学生姓名罗熊班级学号B14050123
学院(系)自动化专业自动化
实验报告
NQUEENS(0);
printf("%d", sum);
system("pause");
return 0;
}:
实验结果:
四、实验小结
回溯法以深度优先次序生成状态空间树中的结点,并使用剪纸函数减少实际生成的结点数,回溯法是一种广泛适用的算法设计技术。
是要问题的解是元组形式,可用状态空间树描述,并采用判定函数识别答案结点,就能采用回溯法求解。
回溯法使用约束函数剪去不含可行解的分枝。
当使用回溯法求最优化问题时,需要设计界限函数用于剪去分枝。
五、指导教师评语
成绩批阅人日期。
回溯算法实验报告
回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。
本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。
实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。
八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。
算法步骤:1. 创建一个二维数组,表示棋盘。
初始化所有元素为0,表示棋盘上无皇后。
2. 逐行进行操作,尝试在每一列放置皇后。
在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。
3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。
4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。
5. 当所有皇后都放置好后,得到一个解。
将该解加入结果集中。
6. 继续回溯,尝试寻找下一个解。
7. 当所有解都找到后,算法终止。
实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。
根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。
实验中,我们使用的是普通的回溯算法,没有进行优化。
对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。
回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。
对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。
在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。
回溯算法是一种非常有价值的算法,值得进一步研究和应用。
《算法设计与分析》课程实验报告 (回溯法(二))
《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
回溯法的应用(实验报告)
华南师范大学本科生实验报告姓名_张俊发_学号***********院系_计算机学院_专业_计算机科学与技术_年级2008级班级_2班_小组实验任务分工_独立完成实验时间2010 年_6_月 1 _日实验名称回溯法的应用指导老师及职称陈振洲华南师范大学教务处编印实验课程:算法分析与设计实验名称:回溯法的应用(综设型实验)第一部分实验内容1.实验目标(1)熟悉使用回溯法求解问题的基本思路。
(2)掌握回溯算法的程序实现方法。
(3)理解回溯算法的特点。
2. 实验任务(1)从所给定的题目中选择一题,使用回溯法求解之。
(2)用文字来描述你的算法思路,包括解空间、限界函数、算法主要步骤等。
(3)在Windows环境下使用C/C++语言编程实现算法。
(4)记录运行结果,包括输入数据,问题解答及运行时间。
(5)分析算法最坏情况下时间复杂度和空间复杂度。
(6)谈谈实验后的感想,包括关于该问题或类似问题的求解算法的建议。
3. 实验设备及环境PC;C/C++等编程语言。
4. 实验主要步骤(1)根据实验目标,明确实验的具体任务;(2)设计求解问题的回溯算法,并编写程序实现算法;(3)设计实验数据并运行程序、记录运行的结果;(4)分析算法时空性能;(5)实验后的心得体会。
第二部分问题及算法1.问题描述国际象棋的棋盘上有八八六十四个格子(这里简化为5*6=30个格子), 黑白相间, 棋子放在格子中. 棋中的马走“日”字, 即横二竖一, 或横一竖二. 马从棋盘的某个格子出发, 走29 步, 是否能走过其他29 个格子各一次? 如果能够, 则说存在一条马的周游路线. 如果马从某个格子出发, 不重复地走过了其余29个格子, 第30 步又回到了出发点, 则说存在一条马的周游闭路.按照从上到下,从左到右对棋盘的方格编号,如下所示:1 2 3 4 5 67 8 9 10 11 1213 14 15 16 17 1819 20 21 22 23 2425 26 27 28 29 30马的走法是“日”字形路线,例如当马在位置15的时候,它可以到达2、4、7、11、19、23、26和28。
算法设计与分析---回溯实验报告
《算法设计与分析》实验报告实验三回溯法3.迷宫问题一天Luna在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,. 和#,前者表示可以通行后者表示不能通行。
同时当Luna处在某个格点时,她只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Luna想要从点A走到点B(不能走出迷宫)。
如果起点或者终点有一个不能通行(为#),则看成无法办到。
[输入]第1行是测试数据的组数k,后面跟着k组输入。
每组测试数据的第1行是一个正整数n (1 <= n <= 100),表示迷宫的规模是n * n 的。
接下来是一个n * n的矩阵,矩阵中的元素为. 或者#。
再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb 行, 第lb列。
注意到ha, la, hb, lb全部是从0开始计数的。
1.八皇后问题1.1解题思路八皇后问题的解法,很简单的解法。
通过回溯实现枚举。
对于当前行,尝试是否可在当前列放置皇后,然后进入下一行的尝试,同时尝试完毕以后,要将当前行回复(回溯),来进行下一次尝试。
到达最后一行的时候,即递归结束条件,打印结果即可。
1.2程序运行情况1.3所有的皇后解见附录。
(毕竟92个解...)1.4程序源码(含注释)2. 24点问题2.1 解题思路这题虽然使用dfs很简单,但是有一点思维在里面。
我很惭愧,自己没有想出来怎么如意的独立AC此题。
遇到的最大的问题——如何插入括号?枚举插入、和运算符一同排列都不靠谱。
解决方法是:用同等的办法转化。
每一次从待组合的是数字中,任取两个数,随机用运算符计算完毕后,再放回去。
下一次计算,再次重复这个过程,可以等价为有括号的运算方式了。
遇到第二个问题——如何实现这种“任取两个数”的选择方式。
这里就直接体现出了我个人能力的不足。
居然没想到。
尝试使用STL的set,但是没成功。
算法分析实验报告--回溯法
《算法设计与分析》实验报告回溯法姓名:XXX专业班级:XXX学号:XXX指导教师:XXX完成日期:XXX一、试验名称:回溯法(1)写出源程序,并编译运行(2)详细记录程序调试及运行结果二、实验目的(1)掌握回溯算法思想(2)掌握回溯递归原理(3)了解回溯法典型问题三、实验内容(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度(3)数字全排列问题四、算法思想分析(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入:1、作业数2、每个作业完成时间表:要求输出:1、最佳完成时间2、最佳调度方案提示提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。
(3)数字全排列问题:任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
五、算法源代码及用户程序(1)编写一个简单的程序,解决8皇后问题N皇后问题代码1:#include<stdio.h>#define NUM 8 //定义数组大小int a[NUM + 1];int main (){int a[100];int number;int i;int k;int flag;int notfinish = 1;int count = 0; i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求,正在处理第i个元素a[1] = 1; //为数组的第一个元素赋初值printf ("Result:\n"); while (notfinish) //处理尚未结束{while (notfinish && i <= NUM) //处理尚未结束且还没处理到第NUM个元素{for (flag = 1, k = 1; flag && k < i; k++) //判断是否有多个皇后在同一行{if (a[k] == a[i])flag = 0;}for (k = 1; flag && k < i; k++) //判断是否有多个皇后在同一对角线{if ((a[i] == a[k] - (k - i)) || (a[i] == a[k] + (k - i)))flag = 0;} if (!flag) //若存在矛盾不满足要求,需要重新设置第i个元素{if (a[i] == a[i - 1]) //若a[i]的值已经经过一圈追上a[i-1]的值{i--; //退回一步,重新试探处理前的一个元素if (i > 1 && a[i] == NUM){a[i] = 1; //当a[i]的值为NUM时将a[i]的值置1}else if (i == 1 && a[i] == NUM){notfinish = 0; //当第一位的值达到NUM时结束}else{a[i]++; //将a[i]的值取下一个值}}else if (a[i] == NUM){a[i] = 1;}else{a[i]++; //将a[i]的值取下一个值}}else if (++i <= NUM) //第i位已经满足要求则处理第i+1位{if (a[i - 1] == NUM) //若前一个元素的值为NUM则a[i]=1 {a[i] = 1;}else{a[i] = a[i - 1] + 1; //否则元素的值为前一个元素的下一个值}}}if (notfinish){++count;printf ((count - 1) % 3 ? "[%2d]:" : "\n[%2d]:", count);for (k = 1; k <= NUM; k++) //输出结果{printf (" %d", a[k]);} if (a[NUM - 1] < NUM) //修改倒数第二位的值{a[NUM - 1]++;}else{a[NUM - 1] = 1;} i = NUM - 1; //开始寻找下一个满足条件的解}}//whileprintf ("\n");return 0;}(2)批处理作业调度import java.util.*;public class FlowShop{static int n; //作业数static int f1; //机器1完成处理时间static int f; //完成时间和static int bestf; //当前最优值static int[][] m; //各作业所需要的处理时间static int[] x; //当前作业调度static int[] bestx; //当前最优作业调度static int[] f2; //机器2完成处理时间public static void trackback(int i) {if (i == n) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}bestf = f;} else {for (int j = i; j < n; j++) {f1 += m[x[j]][0];if (i > 0) {f2[i] = ((f2[i - 1] > f1) ? f2[i - 1] : f1) + m[x[j]][1]; } else {f2[i] = f1 + m[x[j]][1];}f += f2[i];if (f < bestf) {swap(x, i, j);trackback(i + 1);swap(x, i, j);}f1 -= m[x[j]][0];f -= f2[i];}}}private static void swap(int[] x, int i, int j) {int temp = x[i];x[i] = x[j];x[j] = temp;}private static void test() {n = 3;int[][] testm = {{2, 1}, {3, 1}, {2, 3}};m = testm;int[] testx = {0, 1, 2};x = testx;bestx = new int[n];f2 = new int[n];f1 = 0;f = 0;bestf = Integer.MAX_V ALUE;trackback(0);System.out.println(Arrays.toString(bestx)); System.out.println(bestf);}public static void main(String[] args){test();System.out.println("Hello World!");}}(3)数字全排列问题#include "stdio.h"#include "conio.h"int num,cont=0;main(){ int i,n,a[30];printf("enter N :");scanf("%d",&num);for(i=1;i<=num;i++)a[i]=i;perm(a,1);printf("\n%d",cont);getch();}int perm(int b[], int i){int k,j,temp;if(i==num){for(k=1;k<=num;k++)printf("%d ",b[k]);printf("\t");cont++;}elsefor(j=i;j<=num;j++){temp=b[i];b[i]=b[j],b[j]=temp;perm(b,i+1);temp=b[i];b[i]=b[j],b[j]=temp;}return(0);}六、实验结果与思想这次的实验是回溯法,我也对回溯法有了一个基本印象,所谓回溯法,就是把所有的可行解都遍历一遍,遇到不可行的就回溯到上一步,然后通过添加约束条件和限界条件就可以得到最优解。
回溯法实验报告
回溯法实验报告一、实验目的本实验旨在通过应用回溯法解决一系列问题,并验证回溯法在问题求解中的有效性和实用性。
通过实际的案例分析和实验结果,掌握回溯法的应用方法和技巧。
二、实验原理回溯法是一种求解问题的通用方法,适用于那些可以分解为一组相互排斥的子问题的求解过程。
回溯法通过尝试可能的解决方案,并根据约束条件逐步构建问题的解。
实际使用回溯法求解问题时,按照如下步骤进行:1. 定义解空间:将问题的解表示为一个n维向量或n维数组,定义问题的解空间。
2. 约束条件:确定问题的约束条件,即问题的解必须满足的条件。
3. 逐步构造解:按照问题的解空间和约束条件,逐步构造问题的解。
4. 解空间的搜索:通过递归或迭代的方式,搜索解空间中的所有可能解。
5. 解的选取与判定:根据需要选择符合要求的解,并进行最优解的判定。
三、实验步骤在本次实验中,我们选择了数独问题和八皇后问题作为实验案例进行分析和求解。
1. 数独问题:数独问题是一个9×9的格子,其中每个格子中都填有一个1到9的数字。
数独谜题的目标是在每个格子中填写数字,使得每一行、每一列和每一个宫(3×3的格子)中的数字均不重复。
通过回溯法求解数独问题的步骤如下:(1)定义解空间:将数独问题的解定义为一个9×9的二维数组。
(2)约束条件:每一行、每一列和每一个宫中的数字不能重复。
(3)逐步构造解:从数独问题的左上角开始,按照行优先的顺序逐个格子地填写数字,并保证数字的唯一性。
(4)解空间的搜索:当需要填写一个新的格子时,先确定该格子可能的数字范围,然后选择一个数字填入,再递归地进行下一步搜索。
(5)解的选取与判定:当所有的格子都被填满时,即找到了一个满足条件的解。
在求解过程中,需要判断填入的数字是否符合约束条件,并进行回退操作,直到找到所有可能的解。
2. 八皇后问题:八皇后问题是一个经典的回溯法问题,要求在一个8×8的棋盘上放置8个皇后,使得它们互相之间不能攻击到对方。
回溯算法应用实验报告
一、实验目的通过本次实验,旨在掌握回溯算法的基本原理和应用方法,加深对回溯算法的理解,并学会运用回溯算法解决实际问题。
实验内容包括:设计回溯算法解决八皇后问题、0-1背包问题以及TSP问题,并对算法进行时间复杂度和空间复杂度的分析。
二、实验内容1. 八皇后问题问题描述:在8x8的国际象棋棋盘上,放置8个皇后,使得它们互不攻击。
即任意两个皇后不能在同一行、同一列或同一斜线上。
算法设计:使用回溯算法,通过递归尝试在棋盘上放置皇后,当出现冲突时回溯到上一步,重新尝试。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n):def backtrack(row):if row == n:result.append(board[:])returnfor col in range(n):if is_valid(board, row, col):board[row] = colbacktrack(row + 1)board[row] = -1board = [-1] nresult = []backtrack(0)return result```2. 0-1背包问题问题描述:给定n个物品,每个物品有一个价值v[i]和重量w[i],以及一个背包容量W,如何选择物品使得背包中的物品总价值最大且不超过背包容量。
算法设计:使用回溯算法,递归尝试选择每个物品,当背包容量不足或物品价值超过剩余容量时回溯到上一步。
代码实现:```pythondef knapsack(weights, values, capacity):def backtrack(i, cw, cv):if cw > capacity or i == len(weights):return cvif not backtrack(i + 1, cw, cv):return cvif cw + weights[i] <= capacity:return max(backtrack(i + 1, cw, cv), backtrack(i + 1, cw + weights[i], cv + values[i]))else:return cvreturn backtrack(0, 0, 0)```3. TSP问题问题描述:给定n个城市,以及每对城市之间的距离,求出一条最短路径,使得路径上的城市互不相同,并且最终回到起点。
算法设计与分析 回溯算法2
解空间树第j层的成员由 的值进行分割
24
解空间
子集树: n=4
1
1
0
0
1
0
25
0-1背包问题
约束函数
用cw(i)到达第i层时扩展节点的重量,即
=
=
那么,约束函数为:
= − +
剪枝
如果C(i)>W,那么停止搜索第i层及该节点以下的层搜索,否则继续搜索。
—许多着色问题可以用回溯法来解决
2
着色问题
●四色定理
表述任何一个平面地图可以用不超过四种颜色进行着色,使得
拥有同一边界线的国家有着不同的颜色。
●对大多数地图,要找到合法的着色方案很容易
●对某些地图,要找到合法的着色方案却是很困难的
●更一般的问题
你可以把地图着色问题转化为m-着色问题
3
四色原理
●世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。
解空间
假设解可以有向量( , ,…, )表示, ∈{0,1}, =1表示物品i被放进
背包, =0表示物品i不被放进背包。
23
0-1背包问题
σ
●0-1背包问题可以被形式地描述为如下形式: =
使得σ= <
●解空间树
有 个叶子节点的子集树
2
If w[i,j]=1 and x[j]=x[i] then return False
3
return True
10
时间复杂度分析
算法的计算时间上界可由状态空间树内部节点的个数得到,n个节点的
回溯法实验报告
回溯法实验报告回溯法实验报告一、引言回溯法是一种经典的算法解决方法,广泛应用于组合优化、图论、人工智能等领域。
本实验旨在通过实际案例,深入探讨回溯法的原理、应用和优化方法。
二、实验背景回溯法是一种通过不断尝试和回退的方式,寻找问题的解的方法。
它适用于那些问题空间巨大且难以直接求解的情况。
回溯法通过逐步构建解空间树,深度优先地搜索可能的解,并在搜索过程中剪枝,以提高搜索效率。
三、实验过程我们选择了一个经典的回溯法问题——八皇后问题作为实验案例。
该问题要求在一个8x8的棋盘上放置8个皇后,使得它们两两之间无法互相攻击。
我们采用了递归的方式实现回溯法,并通过剪枝操作来减少搜索空间。
具体实验步骤如下:1. 定义一个8x8的棋盘,并初始化为空。
2. 从第一行开始,逐行放置皇后。
在每一行中,尝试将皇后放置在每一个位置上。
3. 检查当前位置是否与已放置的皇后冲突。
如果冲突,则回溯到上一行,并尝试下一个位置。
4. 如果成功放置了8个皇后,则找到了一个解,将其保存。
5. 继续尝试下一个位置,直到所有可能的解都被找到。
四、实验结果通过实验,我们找到了92个不同的解,符合八皇后问题的要求。
这些解展示了八皇后问题的多样性,每个解都有其独特的棋盘布局。
五、实验分析回溯法的优点在于可以找到所有解,而不仅仅是一个解。
然而,在问题空间较大时,回溯法的搜索时间会变得非常长。
因此,为了提高搜索效率,我们可以采用一些优化方法。
1. 剪枝操作:在搜索过程中,当发现当前位置与已放置的皇后冲突时,可以立即回溯到上一行,而不是继续尝试下一个位置。
这样可以减少不必要的搜索。
2. 启发式搜索:通过引入启发函数,可以在搜索过程中优先考虑最有希望的分支,从而更快地找到解。
例如,在八皇后问题中,可以优先考虑放置在当前行与已放置皇后冲突最少的位置。
3. 并行计算:对于一些复杂的问题,可以利用并行计算的优势,同时搜索多个分支,从而加快搜索速度。
六、实验总结通过本次实验,我们深入了解了回溯法的原理和应用。
算法分析设计回溯法求解装载问题实验报告
(mi-1)
,|Si| =mi,i=1,2,…,n。从根开始,
让 T 的第 I 层的每一个结点都有 mi 个儿子。这 mi 个儿子到它们的双亲的边,按从左到右的 ,xi+1
(2)
,…,xi+1
,i=0,1,2,…,n-1。照这种构造方式,E
中的一个 n 元组(x1,x2,…,xn)对应于 T 中的一个叶子结点,T 的根到这个叶子结点的路 径上依次的 n 条边的权分别为 x1,x2,…,xn,反之亦然。另外,对于任意的 0≤i≤n-1,E 中 n 元组(x1,x2,…,xn)的一个前缀 I 元组(x1,x2,…,xi)对应于 T 中的一个非叶子 结点,T 的根到这个非叶子结点的路径上依次的 I 条边的权分别为 x1,x2,…,xi,反之亦 然。特别,E 中的任意一个 n 元组的空前缀() ,对应于 T 的根。 因而, 在 E 中寻找问题 P 的一个解等价于在 T 中搜索一个叶子结点, 要求从 T 的根到该
叶子结点的路径上依次的 n 条边相应带的 n 个权 x1,x2,…,xn 满足约束集 D 的全部约束。 在 T 中搜索所要求的叶子结点, 很自然的一种方式是从根出发, 按深度优先的策略逐步深入, 即依次搜索满足约束条件的前缀 1 元组(x1i) 、前缀 2 元组(x1,x2) 、…,前缀 I 元组(x1, x2,…,xi) ,…,直到 i=n 为止。 在回溯法中, 上述引入的树被称为问题 P 的状态空间树; 树 T 上任意一个结点被称为问 题 P 的状态结点; 树 T 上的任意一个叶子结点被称为问题 P 的一个解状态结点; 树 T 上满足 约束集 D 的全部约束的任意一个叶子结点被称为问题 P 的一个回答状态结点, 它对应于问题 P 的一个解。
算法设计与分析 回溯算法 实验报告
武 夷 学 院实验报告数学与计算机系实验七 回溯算法一、实验目的与要求1、掌握装载问题的回溯算法;2、初步掌握回溯算法;二、实验题有一批共n 个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱I 的重量为wi ,且装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
三.实验步骤1.程序输入:import java.util.*;public class huisuo {public static int nn ;public static int cc ;public static int bestww ;public static int [] ww ;public static int [] xx ;public static int [] bestxx ;public static int maxLoadingRE(int [] w, int c, int [] bestx) {nn = w.length ;cc = c;bestww = 0;ww = w;bestxx = bestx;xx = new int [nn ];int r = 0;for (int i = 0; i < nn ; i++) {r += ww [i];}trackback (0, 0, r);return bestww ;}private static void trackback(int i, int cw, int r) { / if (i == nn ) {for (int j = 0; j < nn ; j++) {bestxx [j] = xx [j];}bestww = cw;return ;}if (cw + ww [i] <= cc ) {xx [i] = 0;211c c w ni i +≤∑=trackback(i + 1, cw + ww[i], r); }if (r - ww[i] > bestww) { xx[i] = 1;trackback(i + 1, cw, r - ww[i]);}}public static int maxLoading(int[] w, int c, int[] bestx) {int i = 0;int n = w.length;int[] x = new int[n];Arrays.fill(x, -1);int bestw = 0;int[] cw = new int[n];int[] r = new int[n];int tor = 0;for (int item : w) {tor += item;}r[0] = tor;cw[0] = 0;while (i > -1) {do {x[i] += 1;if (x[i] == 0) {if (cw[i] + w[i] <= c) {if (i < n - 1) {cw[i + 1] = cw[i] + w[i];r[i + 1] = r[i];}break;}}else {if (r[i] - w[i] > bestw) {if (i < n - 1) {r[i + 1] = r[i] - w[i];cw[i + 1] = cw[i];}break;}}} while (x[i] < 2);if (x[i] < 2) {if (i == n - 1) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}if (x[i] == 0) {bestw = cw[i] + w[i];}else {bestw = cw[i];}}else {i++;x[i] = -1;}}else {i--;}}return bestw;}public static void main(String[] args) {int[] w = {20, 10, 40};int n = w.length;int c = 50;int[] bestx = new int[n];int bestw = maxLoadingRE(w, c, bestx);System.out.println("bestw : " + bestw);System.out.println(Arrays.toString(bestx));}}2.运行结果:四.实验结果与体会1.通过本实验能比较清楚的了解回溯算法的基本思想。
回溯法实验报告
一、实验目的1. 理解回溯法的概念和基本原理。
2. 掌握回溯法的应用场景和实现方法。
3. 通过具体实例,验证回溯法在解决实际问题中的有效性。
二、实验内容本次实验主要围绕回溯法进行,通过以下实例来验证回溯法在解决实际问题中的有效性:1. 八皇后问题2. 0/1背包问题3. 数独游戏三、实验步骤1. 八皇后问题(1)定义问题:在8×8的国际象棋棋盘上,放置8个皇后,使得它们不能相互攻击。
(2)设计回溯算法:① 初始化棋盘为全空状态。
② 从第一行开始,尝试将皇后放置在每一列。
③ 如果某一列放置皇后后,不会与已放置的皇后发生冲突,则继续在下一行尝试放置。
④ 如果某一列放置皇后后,与已放置的皇后发生冲突,则回溯至上一个放置皇后的行,尝试在下一列放置。
⑤ 当所有行都放置了皇后,则找到一个解。
(3)实现代码:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or \board[i] - i == col - row or \board[i] + i == col + row:return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if x == row else '.' for x in range(len(board))]))def n_queens():board = [-1] 8if solve_n_queens(board, 0):print_board(board)else:print("No solution exists")n_queens()```2. 0/1背包问题(1)定义问题:给定n个物品,每个物品有重量和价值,背包容量为W,求出能够装入背包的物品组合,使得背包内物品的总价值最大。
回溯法实验报告总结
回溯法实验报告总结
回溯法实验报告总结
引言
回溯法是一种常见的求解问题的算法,它通过不断尝试并回溯来寻找问题的最优解。
本次实验旨在探究回溯法在解决不同类型问题中的应用和效果。
实验一:八皇后问题
八皇后问题是一个经典的回溯法问题,其目标是在一个 8*8 的棋盘上放置 8 个皇后,使得每个皇后都不会互相攻击。
通过实现该问题,我们可以更好地理解回溯法的思想和过程。
实验二:0/1 背包问题
0/1 背包问题是另一个经典的回溯法问题,其目标是在给定一组物品和一个背包容量时,选择哪些物品放入背包中,使得背包中物品价值之和最大。
该问题可以用于优化算法设计和资源分配等领域。
实验三:数独游戏
数独游戏是一种基于逻辑推理和填空的益智游戏,也可以用回溯法来求解。
该游戏需要填写一个 9*9 的数独表格,使得每行、每列和每个
3*3 的小方格内都恰好包含数字 1~9,且不重复。
实验结果
通过对以上三个问题的实验,我们可以得出以下结论:
1. 回溯法在解决八皇后问题、0/1 背包问题和数独游戏等经典问题中具有较好的应用效果。
2. 在实现回溯法时,需要注意剪枝和优化等技巧,以提高算法效率和减少时间复杂度。
3. 回溯法虽然能够求解一些 NP 难问题,但在面对大规模数据和高维空间时往往会遇到困难。
结论
回溯法是一种常见的求解问题的算法,在许多领域中都有着广泛的应用。
通过本次实验,我们更加深入地了解了回溯法的思想和过程,并探究了其在不同类型问题中的应用和效果。
在今后的学习和研究中,我们将继续深入探究回溯法及其相关算法,并在实践中不断提高自己的编程能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
if(queen[i]==queen[row]||queen[i]-queen[row]==i-row||queen[i]-q ueen[row]==row-i)
{ return 0;
} } return 1; } /* print 函数输出摆放结果 */ void print(int n) { printf("(");
que[k]++; while(que[k]<n && judge(que,k)==0) {
que[k]++; } if(que[k]<n && k==n-1)
{ output(que,n); count++;
} if(que[k]<n && k<n-1) {
k++; } else {
que[k]=-1; k--; }
境
(1)n 皇后问题
2018/4/2
在一个 n×n 格的棋盘上放置 n 个皇后,使得它们彼此不受攻击。按照国际象
棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任
实
验
何棋子。因此,n 皇后问题等价于要求在一个 n×n 格的棋盘上放置 n 个皇后,
内
使的任何 2 个皇后不能被放在同一行或同一列或同一斜线上。编写算法求出所
课程实验报告
课程名称 算法分析与设计 班级 计算 161 实验日期
姓名
何严鸿
学号 20160701 实验成绩 9
实验名称
实验 2:回溯法的应用
实
1.理解状态空间树的剪枝搜索策略;
验
目
2.掌握用回溯法解题的算法框架;
的
3.掌握回溯法的基本思想。
及
要
求
实
操作系统:Windows
验
环
IDE:Visual C++
return 0; }
容
有的可能的摆放方法。要求用递归和非递归两种方法完成。
例如:
输入:4
输出:(2,4,1,3)、(3,1,4,2)
(2)奇怪的比赛
某电视台举办了低碳生活大奖赛。题目的计分规则相当奇怪:每位选手需要回
答 10 个问题(其编号为 1 到 10),越后面越有难度。答对的,当前分数翻倍;
答错了则扣掉与题号相同的分数(选手必须回答问题,不回答按错误处理)。每
tag=1; for(int i=1;i<=10;i++) {
printf("%d",result[i]); } printf("\n"); return; } else if(n>=11||sum<=0) { return; } result[n]=1; func(sum*2,n+1,score); result[n]=0;
总
而这种减少不是一个一个解的减少,而是对搜索空间进行大规模剪枝,从而使
结
得实际搜索空间远远小于问题的解空间。
1.1(非递归) #include<stdio.h>
附
录
int count=0;
int judge(int que[],int k)
{
int i;
for(i=0;i<k;i++)
{
if(que[i]==que[k]
print(n); count++; return; } for(int col=1;col<=n;col++) //从第一列开始遍历到最后一列 { queen[row]=col; /*如果符合摆放条件,进入递归,摆放下一行*/ if(judge(row)==1) {
func(n,row+1); } /*不符合条件,则进行下一次循环,重新寻找摆放位置*/ } } int main() {
||
que[i]-que[k]==i-k
||
que[i]-que[k]==k-i)
{
return 0;
}
}
return 1;
}
void output(int que[],int n)
{
printf("( ");
for(int i=0;i<n;i++)
{
printf("%d ",que[i]+1);
} printf(")\n"); } void queen(int que[],int n) { int k=0; while(k>=0) {
位选手都有一个起步的分数为 10 分。某获胜选手最终得分刚好是 100 分,如
果不让你看比赛过程,你能推断出 Ta 的答题情况吗?
例如:
输入:100
输出:
1011010000
0111010000
0010110011
输入:92
No Answer
1.
调
试Leabharlann 过程及实
验
2.
结
果
回溯法是有组织的进行穷举,在试探过程中不断通过题设要求减少搜索空间,
1.2(递归) #include<stdio.h>
int queen[50]={0}; //初始化皇后摆放的位置
int count=0;
//存放摆法的种类
/* 判断第 row 行皇后是否符合要求 */
int judge(int row)
{
int i;
for(i=0;i<row;i++)
{
/* 判断与前 i 个已经摆放的元素是否处于同一列和同一斜线 */
for(int i=0;i<n-1;i++) {
printf("%d,",queen[i]); } printf("%d)\n",queen[n-1]); }
void func(int n,int row) //参数 row 表示当前从第 row 行开始摆放,n 表示 一共有 n 个皇后 {
if(n==row) //摆放完 n 个皇后,输出结果 {
}
} int main() {
int n,que[50]; for(int i=0;i<50;i++) {
que[i]=-1; } printf("请输入皇后的个数:"); scanf("%d",&n); queen(que,n); printf("结果数:%d\n",count);
return 0; }
func(sum-n,n+1,score); } void fn(int sum,int n,int score) {
func(sum,n,score); if(tag==0) {
printf("No Answer\n"); } } int main() { int n; printf("请输入某选手的分数:"); scanf("%d",&n); fn(10,1,n);
int n; printf("请输入一共有几个皇后:"); scanf("%d",&n); func(n,0); printf("结果数:%d\n",count); return 0; } 2.#include<stdio.h> int result[11]={0}; int tag=0; void func(int sum,int n,int score) { if(sum==score&&n==11) {