研究生数理考试试卷4

合集下载

2004考研数四真题及解析

2004考研数四真题及解析

2004年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 若0sin lim(cos )5x x xx b e a→-=-,则a =,b =.(2) 设1ln arctan 22+-=x xxe e e y ,则1x dy dx ==.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 设⎪⎪⎪⎭⎫⎝⎛--=100001010A ,AP P B 1-=,其中P 为三阶可逆矩阵, 则200422B A -=.(5) 设()33⨯=ij a A 是实正交矩阵,且111=a ,Tb )0,0,1(=,则线性方程组b Ax =的解是.(6) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P .二、选择题:本题共8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界( ) (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3).(8) 设f (x )在(,)-∞+∞内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则( )(A)0x =必是()g x 的第一类间断点. (B) 0x =必是()g x 的第二类间断点. (C) 0x =必是()g x 的连续点.(D) ()g x 在点0x =处的连续性与a 的取值有关.(9) 设()(1)f x x x =-, 则 ( )(A) 0x =是()f x 的极值点, 但(0,0)不是曲线()y f x =的拐点. (B) 0x =不是()f x 的极值点, 但(0,0)是曲线()y f x =的拐点. (C) 0x =是()f x 的极值点, 且(0,0)是曲线()y f x =的拐点. (D) 0x =不是()f x 的极值点, (0,0)也不是曲线()y f x =的拐点.(10) 设⎪⎩⎪⎨⎧<-=>=0,10,00,1)(x x x x f ,⎰=x dt t f x F 0)()(,则 ( )(A) ()F x 在0x =点不连续.(B) ()F x 在(,)-∞+∞内连续,但在0x =点不可导. (C) ()F x 在(,)-∞+∞内可导,且满足)()(x f x F ='.(D) ()F x 在(,)-∞+∞内可导,但不一定满足)()(x f x F ='.(11) 设)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是( )(A) 至少存在一点0(,)x a b ∈,使得)(0x f >()f a . (B) 至少存在一点),(0b a x ∈,使得)(0x f > ()f b . (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.(12) 设n 阶矩阵A 与B 等价, 则必有( )(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B .(13) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于( ) (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1.(14) 设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则( )(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分)设(,)f u v f (u , v )具有连续偏导数,且满足(,)(,)u v f u v f u v uv ''+=. 求),()(2x x f e x y x -=所满足的一阶微分方程,并求其通解. (18) (本题满分9分) 设某商品的需求函数为1005Q P =-,其中价格(0,20)P ∈,Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加.(19) (本题满分9分)设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何0t >,)(1t S 表示矩形t x t -≤≤,0()y F x ≤≤的面积. 求(I) ()S t = S -)(1t S 的表达式; (II) ()S t 的最小值.(20) (本题满分13分)设线性方程组⎪⎩⎪⎨⎧=+++++=+++=+++,14)4()2(3,022,0432143214321x x μx λx x x x x x x μx λx 已知T)1,1,1,1(--是该方程组的一个解,试求(I) 方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (II) 该方程组满足32x x =的全部解. (21) (本题满分13分)设三阶实对称矩阵A 的秩为2,621==λλ是A 的二重特征值.若Tα)0,1,1(1=,T α)1,1,2(2=, T α)3,2,1(3--=, 都是A 的属于特征值6的特征向量.(I) 求A 的另一特征值和对应的特征向量; (II) 求矩阵A .(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求:(I) 二维随机变量),(Y X 的概率分布;(II) X 与Y 的相关系数 XY ρ; (III) 22Y X Z +=的概率分布.(23) (本题满分13分)设随机变量X 在区间)1,0(内服从均匀分布,在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求(I) 随机变量X 和Y 的联合概率密度;(II) Y 的概率密度; (III) 概率}1{>+Y X P .2004年全国硕士研究生入学统一考试数学四试题解析一、填空题(1)【答案】1,4a b ==-【详解】本题属于已知极限求参数的反问题. 方法1:根据结论:)()(limx g x f =A ,(1) 若()0g x →,则()0f x →;(2) 若()0f x →,且0A ≠,则()0g x →因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x (否则根据上述结论(2)给极限是0,而不是5),由 0lim()lim lim 10xxx x x e a e a a →→→-=-=-=得a = 1.极限化00sin lim(cos )lim (cos )151x x x x xx b x b b e x→→- -=-=-等价无穷小,得b = -4.因此,a = 1,b = -4.方法2:由极限与无穷小的关系,有sin (cos )5x xx b e aα-=+-,其中0lim 0x α→=,解出 (5)(cos )sin ,5x e x b xa αα+--=+上式两端求极限,000(5)(cos )sin (cos )sin limlim lim 10155x x x x x e x b x x b xa e ααα→→→+---==-=-=++ 把a = 1代入,再求b ,(5)(1)cos sin x e b x xα+-=-,两端同时对0x →取极限,得0(5)(1)lim(cos )sin x x e b x xα→+-=-000(5)(1)(5)limcos lim 1lim 15sin x x x x e x x x xαα→→→+-+=-=-=-4=- 因此,a = 1,b = -4.(2)【答案】211e e -+. 【详解】因为()()()222222111ln ln 12ln 1ln 11222x x xx x x e e e x e x e e ⎡⎤⎡⎤=-+=-+=-+⎣⎦⎣⎦+ 由 1ln arctan 22+-=x x xe e e y ,得 )1ln(21arctan 2++-=xx e x e y ,所以 222222222()1()1211112112111x x x x x xx x x x x xe e e e e e y e e e e e e '''=-+=-+=-+++++++,所以22222221111111111x x x x x x dye e e e e dxe e e e e ==⎛⎫-=-+=-+= ⎪+++++⎝⎭.(3)【答案】12- 【详解】方法1:作积分变换,令1x t -=,则11:2:122x t →⇒-→ 所以211122(1)()f x dx f t dt --=⎰⎰=1121122()(1)f t dt dt -+-⎰⎰22211112222111122221111(1)(1)2222xx xxe dx dx e dx e ---=+-=--=-⎰⎰⎰11022=-=.(也可直接推出212120x xe dx -=⎰,因为21212x xe dx -⎰积分区间对称,被积函数是关于x 是奇函数,则积分值为零) 方法2:先写出的(1)f x -表达式()()21111,122(1)11,12x x e x f x x -⎧--≤-<⎪⎪-=⎨⎪- -≥⎪⎩即:2(1)13(1),22(1)31,2x x e x f x x -⎧-≤<⎪⎪-=⎨⎪-≥⎪⎩所以2322(1)2131222(1)(1)(1)x f x dx x edx dx --=-+-⎰⎰⎰2233(1)2(1)2211221311(1)22222x x e d x e --⎛⎫=---=- ⎪⎝⎭⎰11441111()02222e e =--=-=-.(4)【答案】⎪⎪⎪⎭⎫ ⎝⎛-100030003【详解】因为2A 010010100100001001--⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭100010001-⎛⎫ ⎪=- ⎪ ⎪⎝⎭,为对角阵,故有422100100()010*********A A E --⎛⎫⎛⎫⎪⎪==--= ⎪⎪ ⎪⎪⎝⎭⎝⎭所以 211B P APP AP --=11()P A PP AP --=12,,P A P -=L200412004B P A P -=()50114P A P -=11P EP P P --==E =所以 200422B A -1002010001E -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭300030001⎛⎫ ⎪= ⎪ ⎪-⎝⎭.(5)【答案】T)0,0,1( 【详解】方法1:设12132122233132331a a A a a a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,是正交矩阵,故的每个行(列)向量都是单位向量 所以有 22121311a a ++=,22213111a a ++=,得121321310,0.a a a a ====故 2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,又由正交矩阵的定义T AA E =知A 是可逆矩阵,且1TA A -=. 则b Ax =,有唯一解.1x A b -=T A b =2232233310011000000a a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦方法2:同方法1,求得111=a 的正交阵为2223323310000A a a a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 是正交阵,由正交矩阵的性质可知,11A =-或不等于零,故A 22231122233233323310(1)0a a a a a a a a +==-222332330a a a a =≠,即有222332330a a a a ≠,则原方程b Ax =为1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩ 解得1231,0x x x ===,即方程组有唯一解. (其中,由222332330a a a a ≠及齐次线性方程组0Ax =只有零解的充要条件是0A ≠,可知,方程组22223332233300a x a x a x a x +=⎧⎨+=⎩ 只有零解,故230x x ==. 进而1222233322333100x a x a x a x a x =⎧⎪+=⎨⎪+=⎩的解为1231,0x x x ===.)(6) 【答案】e1 【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算. 指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{DX X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题 (7)【答案】(A) 【详解】方法1:如果()f x 在(,)a b 内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数()f x 在(,)a b 内有界.当x ≠ 0 , 1 , 2时()f x 连续,而2211sin(2)sin(12)sin 3lim ()lim (1)(2)(11)(12)18x x x x f x x x x ++→-→------===-------,220sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x --→→----===-----,22sin(2)sin(02)sin 2lim ()lim (1)(2)(01)(02)4x x x x f x x x x ++→→--===----, 22111sin(2)sin(12)lim ()limlim (1)(2)(1)(12)x x x x x f x x x x x →→→--===∞----,222222sin(2)sin(2)1lim ()limlim lim (1)(2)(2)2x x x x x x x f x x x x x x →→→→--====∞----, 所以,函数f (x )在(-1 , 0)内有界,故选(A).方法2:因为0lim ()x f x -→存在,根据函数极限的局部有界性,所以存在0δ>,在区间[,0)δ-上()f x 有界,又如果函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界,根据题设()f x 在[1,]δ--上连续,故()f x 在区间上有界,所以()f x 在区间(1,0)-上有界,选(A).(8)【答案】 (D) 【详解】考查极限)(lim 0x g x →是否存在,如果存在,是否等于g (0),通过换元xu 1=, 可将极限)(lim 0x g x →转化为)(lim x f x ∞→.因为 011lim ()lim ()lim ()x x u g x f u f u x x→→→∞= = = a ,又(0)0g =,所以, 当0a =时,)0()(lim 0g x g x =→,即()g x 在点0x =处连续,当0a ≠时,)0()(lim 0g x g x ≠→,即0x =是()g x 的第一类间断点,因此,()g x 在点0x =处的连续性与a 的取值有关,故选(D).(9) 【答案】C【详解】由于是选择题,可以用图形法解决,也可用分析法讨论.方法1:由于是选择题,可以用图形法解决, 令()(1)x x x ϕ=-,则211()24x x ϕ⎛⎫=-- ⎪⎝⎭,是以直线12x =为对称轴,顶点坐标为11,24⎛⎫- ⎪⎝⎭,开口向上的一条抛物线,与x 轴相交的两点坐标为()()0,0,1,0,()()y f x x ϕ==的图形如图.点0x =是极小值点;又在点(0,0)左侧邻近曲线是凹的,右侧邻近曲线是凸的,所以点(0,0)是拐点,选C.方法2:写出()y f x =的分段表达式: ()f x =(1),10(1),01x x x x x x ---<≤⎧⎨-<<⎩,从而()f x '=12,1012,01x x x x -+-<<⎧⎨-<<⎩, ()f x ''=2,102,01x x -<<⎧⎨-<<⎩,()0lim ()lim 1210x x f x x ++→→'=-=>,所以01x <<时,()f x 单调增, ()00lim ()lim 1210x x f x x --→→'=-+=-<,所以10x -<≤时,()f x 单调减, 所以0x =为极小值点.当10x -<<时, ()20f x ''=>,()f x 为凹函数; 当10x >>时,()20f x ''=-<,()f x 为凸函数, 于是(0,0)为拐点.(10)【答案】 (B)【详解】先求分段函数()f x 的变限积分⎰=xdt t f x F 0)()(,再讨论函数()F x 的连续性与可导性即可.方法1:关于具有跳跃间断点的函数的变限积分,有下述定理:设()f x 在[,]a b 上除点(),c a b ∈ 外连续,且x c =为()f x 的跳跃间断点,又设()()xcF x f t dt =⎰,则(1)()F x 在[],a b 上必连续;(2))()(x f x F =',当[],x a b ∈ ,但x c ≠;(3)()F c '必不存在,并且()(),()()F c f c F c f c +-+-''= =直接利用上述结论,这里的0c =,即可得出选项(B)正确. 方法2:当0x <时,x dt x F x-=-=⎰0)1()(;当0x >时,x dt x F x==⎰01)(,当0x =时,(0)0F =. 即()F x x =,显然,()F x 在(,)-∞+∞内连续,排除选项(A),又0(0)lim 10x x F x ++→-'==-,0(0)lim 10x x F x --→--'==--,所以在0x =点不可导. 故选 (B).(11)【答案】(D) 【详解】利用介值定理与极限的保号性可得到三个正确的选项,或应用举例法找出错误选项. 方法1:举例说明(D)是错误的. 例:2()4,11f x x x =--≤≤,11(1)220,(1)220x x f x f x =-=''-=-=>=-=-<.但在[1,1]-上()30f x ≥>.方法2:证明(A)、(B)、(C)正确.由已知)(x f '在[,]a b 上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ,所以选项(C)正确;另外,由导数的定义0)()(lim)(>--='+→ax a f x f a f a x ,根据极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >,所以选项(A)正确.同理,()()()lim 0x bf b f x f b b x-→-'=<-,根据极限的保号性,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以选项(B)正确,故选(D).(12)【答案】(D ) 【详解】方法1:矩阵等价的充分必要条件:矩阵A 与B 等价⇔A ,B 是同型矩阵且有相同的秩,故由A 与B 等价,知A 与B 有相同的秩.因此,当0||=A 时, n A r <)(, 则有n B r <)(, 即0||=B , 故选(D).方法2:矩阵等价的充分必要条件:A 与B 等价⇔存在可逆,P Q ,使得PAQ B =. 两边取行列式,由矩阵乘积的行列式等于行列式的积,得PAQ P A Q B ==. ,P Q 可逆,由矩阵A 可逆的充分必要条件:0A ≠,故00P Q ≠≠,但不知具体数值.由P A Q B =,知0A ≠时,B 不能确定.但0A =有0B =.故应选(D).方法3:由经过若干次初等变换变为矩阵的初等变换对矩阵的行列式的影响有:(1)A 中某两行(列)互换得B ,则B A =-. (2)A 中某行(列)乘(0)k k ≠得B ,则B k A =. (3)A 中某行倍加到另一行得B ,则B A =.又由A 与B 等价,由矩阵等价的定义:矩阵A 经有限次初等变换变成矩阵B ,则称A 与B 等价,知.B k A =±故当0A ≠时,0B k A =±≠,虽仍不等于0,但数值大、小、正负要改变,但0||=A ,则0B =,故有结论:初等变换后,矩阵的行列式的值要改变,但不改变行列式值的非零性,即若0||=A 0B ⇒=,若0A ≠0B ⇒≠.故应选(D).(13) 【答案】(C)【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>. 或直接利用图形求解. 方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C). 方法2:图一 图二Oxy()f x{}P X u αα=Oxy{}P X x <=12α- ()f x如图一所示题设条件.图二显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n Λ独立同分布,所以必有:2, (,)0, i j i jCov X X i j σ⎧==⎨≠⎩又 222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n =21nσ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算. 可以看本题(C),(D)选项. 因为X 与Y 独立时,有()()()D X Y D X D Y ±=+. 所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n n σσ++-+=+++=+L =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-Λ=.222222σσn n nn n -=- 所以本题选 (A)三、解答题(15)【详解】求“∞-∞”型极限的首要步骤是通分,或者同乘、除以某一式以化简.22201cos lim()sin x x x x →- 通分222220sin cos lim sin x x x x x x →-sin x x :等价22240sin cos lim x x x x x →- 22401sin 24lim x x x x →-=洛()22041sin 24lim x x x x→'⎛⎫- ⎪⎝⎭'3012sin 42lim 4x x x x →-= 洛()0312sin 42lim 4x x x x →'⎛⎫- ⎪⎝⎭'201cos 4lim 6x x x →-=2202sin 2lim 6x x x →=sin 22x x :等2202(2)lim 6x x x →43=.(16)【详解】利用对称性与极坐标计算.方法1:令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,根据二重积分的极坐标变换:()()12{(,)|,}D x y r r r αθβθθ=≤≤≤≤,则:()()()()21,cos ,sin r r Df x y d f r r rdr βθαθσθθ=⎰⎰⎰⎰122D x y d σ+化为极坐标:221{(,)|4}{(,)|02,0D x y x y x y θπ=+≤=≤≤所以122D x y d σ+222220cos sin d r r rdr πθθθ=+⎰⎰2220d r dr πθ=⎰⎰;222D x y d σ+化为极坐标:2223{(,)|(1)1}{(,)|,02cos }22D x y x y x y r ππθθ=++≤=≤≤≤≤-所以222D x y d σ+32cos 222222cos sin d r r rdr πθπθθθ-=+⎰⎰32cos 222d r dr πθπθ-=⎰⎰所以⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d 22cos 33322020033r rd d θπππθθ-=-⎰⎰332288cos 233d ππθπθ-=⋅-⎰()32228821sin sin 33d πππθθ=⋅+-⎰332288sin 2sin 333ππθπθ⎛⎫=⋅+- ⎪⎝⎭16822333π⎛⎫=+-+ ⎪⎝⎭)23(916932316-=-=ππ 区域D 关于x 轴对称,Dyd σ⎰⎰中被积函数y 为y 的奇函数,根据区域对称性与被积函数的奇偶性:设(),f x y 在有界闭区域D 上连续,若D 关于x 轴对称,(),f x y 对y 为奇函数,则(),0Df x y d σ=⎰⎰,所以0=⎰⎰Dyd σ所以22()Dx y y d σ+⎰⎰22DDx y d yd σσ=++⎰⎰16(32)9π=-. 方法2:22()Dx y y d σ++⎰⎰22DDx y d yd σσ=++⎰⎰22D 20x y d σ=++⎰⎰上半极坐标变换22222002cos 22[]d r dr d r dr πππθθθ-+⎰⎰⎰⎰2233202cos 2[]233r r d ππθπθ-=⋅+⎰32888cos 2333d πππθθ⎛⎫=++ ⎪⎝⎭⎰()2288161sin sin 333d ππππθθ=++-⎰ 321616sin sin 333πππθθ⎛⎫=+- ⎪⎝⎭16(32)9π=-.(17)【详解】求复合函数的偏导数,求一阶线性微分方程的解 方法1:由2()(,)xy x ef x x -=,两边对x 求导有,222122(,)(,)(,)x x x y e f x x e f x x e f x x ---'''=-++()22122(,)(,)(,)x x e f x x e f x x f x x --''=-++()2122(,)(,)x y e f x x f x x -''=-++已知uv v u f v u f v u='+'),(),(,即12(,)(,)f u v f u v uv ''+=,则212(,)(,)f x x f x x x ''+=. 因此,()y x 满足下述一阶微分方程为 x e x y y 222-=+'.由一阶线性微分方程()()dyP x y Q x dx+=通解公式:()()()()P x dx P x dx f x e C Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 这里()()222,x P x Q x x e -= =,代入上式得:2222()dx dxx y e x e e dx C --⎰⎰=+⎰2222()x x x e x e e dx C --=+⎰22()xex dx C -=+⎰323xx eC -⎛⎫=+ ⎪⎝⎭(C 为任意常数). 方法2:由2()(,)xy x ef x x -=有 2(,)()x f x x e y x = (1)已知(,)f u v 满足 (,)(,)u v f u v f u v uv ''+= (2)这是一个偏微分方程,当,u x v x ==时(2)式变为212(,)(,)f x x f x x x ''+=2(,)df x x x dx= 以(1)代入,有 22(())xe y x x '=,即2222()()xxe y x e y x x '+=, 化简得 22()2()xy x y x x e -'+=,由通解公式得x dxx dx e C x C dx e e x e y 232222)31()(---+=+⎰⎰=⎰(C 为任意常数).(18)【详解】(I) 由于需求量对价格的弹性d E > 0,所以dPdQQ P E d =1005Q P =-()10051005P P P '--20P P -=-(0,20)P ∈ 20P P -; (II) 由R PQ =,得dR dP ()d PQ dP =dQ Q P dP =+(1)P dQ Q Q dP =+(1)20PQ P-=+-(1)d Q E =-要说明在什么范围内收益随价格降低反而增加,即收益为价格的减函数,0<dPdR,即证(1)01d d Q E E -<⇒>,换算成P 为120PP>-,解之得:10P >,又已知(0,20)P ∈,所以2010P >>,此时收益随价格降低反而增加.(19)【详解】当0x >时,0x -<,所以()()22()x x F x ee F x ---===,同理:当0x <时,x->,所以()()22()x xF x e e F x---===,所以()y F x=是关于y轴对称的偶函数.又2lim()lim0xx xF x e-→+∞→+∞==,2lim()lim0xx xF x e→-∞→-∞==,所以x轴与曲线()y F x=围成一无界区域,面积S可用广义积分表示.()y F x=图形如下:(I) ()S F x dx+∞-∞=⎰()F x偶函数22xe dx+∞-⎰2(2)xe d x+∞-=--⎰201xe+∞-=-= )(1tS表示矩形t x t-≤≤,0()y F x≤≤的面积,所以ttetS212)(-=,因此21()()12tS t S S t te-=-=-,(0,)t∈+∞.(II) 由于tettS2)21(2)(---=',令()0S t'=,得()S t的唯一驻点为21=t,又()S t''()22(12)tt e-'=--222448t t te e te---=+-28(1)tt e-=-,04)21(>=''eS,所以eS11)21(-=为极小值,它也是最小值.(20)【详解】已知T)1,1,1,1(--是该方程组的一个解,故可将T)1,1,1,1(--代入方程组,有110,21120,3(2)(4)41,λμλμ-+-=⎧⎪-++=⎨⎪-+++-=⎩解得μλ=.代入原方程,并对方程组的增广矩阵A施以初等行变换, 得1102112032441Aλλλλ⎛⎫⎪= ⎪⎪++⎝⎭1101(-2),(-3)0121200230224211λλλλλλ⎛⎫⎪--⎪⎪--⎝⎭u u u u u u u u u u u u u u u u r行乘分别加到,行110110(-1)012120001311 3013110121200λλλλλλλλ⎛⎫⎛⎫⨯ ⎪ ⎪--⎪ ⎪⎪ ⎪--⎝⎭⎝⎭u u u u u u u u u r u u u u u u u r2行2,3行加到行互换1102(21)013113002(21)2121λλλλλλ⎛⎫⨯- ⎪⎪ ⎪---⎝⎭u u u u u u u u u u u u u u r 行加到行 ()I 当21≠λ时,有 A 3(21)λ÷-u u u u u u u u u u u u u u r 行 1100131100211λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭,故43)()(<==A r A r . 定理:设A 是m n ⨯矩阵,方程组Ax b =,则,(1)有唯一解()()r A r A n ⇔==;(2)有无穷多解()()r A r A n ⇔=<;(3)无解:()1()r A r A ⇔+=,故方程组有无穷多解.所以,该方程组有无穷多解,对应的齐次线性方程组同解方程组为1234234343020x x x x x x x x x λλ+++=⎧⎪++=⎨⎪+=⎩ 由于此方程组的系数矩阵的秩为3,则基础解系的个数为43n r -=-=1,故有1个自由未知量.选2x 为自由未知量,取21x =-,得方程组的基础解系为Tη)2,1,1,2(--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0k ηξ+(k 为任意常数).当21=λ时,有 11110220131100000A ⎛⎫ ⎪⎪→ ⎪ ⎪⎪⎝⎭, 可知,42)()(<==A r A r ,所以该方程组有无穷多解,对应的齐次线性方程组的同解方程组为12342341102230x x x x x x x ⎧+++=⎪⎨⎪++=⎩ 则基础解系的个数为42n r -=-=2,故有2个自由未知量.选34,x x 为自由未知量,将两组值:(1,0),(0,2)代入,得方程组的基础解系为Tη)0,1,3,1(1-=,Tη)2,0,2,1(2--=,取非齐次方程的一个特解为0(1,0,0,1)Tξ=-,故方程组的全部解为0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--(21,k k 为任意常数).()II 当21≠λ时,方程组的通解为 0(1,0,0,1)(2,1,1,2)(21,,,21)T T T k k k k k k ξξη=+=-+--=---+若32x x =,即k k =-得0k =,故原方程组满足条件32x x =的全部解为(1,0,0,1)T-.当21=λ时,方程组的通解为 0112212(1,0,0,1)(1,3,1,0)(1,2,0,2)T T T k k k k ξξηη=++=-+-+--=121212(1,32,,21)Tk k k k k k ----+若32x x =,即 12132k k k --=,得212k k =-,代入通解,得满足条件32x x =的全部解为1(3,1,14)(1,0,0,1)T Tk -+-(21)【分析】由矩阵A 的秩为2, 立即可得A 的另一特征值为0. 再由实对称矩阵不同特征值所对应的特征向量正交可得相应的特征向量, 此时矩阵A 也立即可得.【详解】()I A 的秩为2,于是0||=A ,所以|0|0E A A ⋅-==,因此A 的另一特征值03=λ.特征值的性质:若i λ是矩阵A 的k 重特征值,则矩阵A 属于的线性无关的特征向量的个数不超过k 个又621==λλ是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量个数2≤. 因此123,,ααα必线性相关.由题设知T α)0,1,1(1=,T α)1,1,2(2=为A 的属于特征值6的线性无关的两个特征向量.定理:实对称矩阵对应与不同特征值的特征向量是正交的.设03=λ所对应的特征向量为Tx x x α),,(321=,所以,01=ααT,02=ααT,即⎩⎨⎧=++=+,02,032121x x x x x则基础解系的个数为32n r -=-=1,故有1个自由未知量. 选2x 为自由未知量,取21x =得方程组的基础解系为Tα)1,1,1(-=,故A 的属于特征值03=λ全部特征向量为T k αk )1,1,1(-= (k 为任意不为零的常数).()II 令矩阵),,(21αααP =,求1P -121100111010011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭M M M 1211001(1)2012110011001-⎛⎫ ⎪⨯--- ⎪ ⎪⎝⎭MM u u u u u u u u u u u u u u u u u u u r M 行加到行 12110012012110003111-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u u u r M 行加到行1211000121100011/31/31/3-⎛⎫ ⎪÷-- ⎪ ⎪-⎝⎭M M u u u u u u u r M 3行3 1211000101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪⎪-⎝⎭M M u u u u u u u u u u u u u u u u r M 3行(-2)+2行10001120101/31/32/30011/31/31/3-⎛⎫ ⎪⨯--- ⎪ ⎪-⎝⎭M Mu u u u u u u u u u u u u u u u u u u u u u u u u u u u u r M 3行,2行依次加到1行, 1000112(1)0101/31/32/30011/31/31/3-⎛⎫ ⎪⨯-- ⎪ ⎪-⎝⎭M M u u u u u u u u u u r M 行则 1P -=011112333111333⎛⎫ ⎪- ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭,⎪⎪⎪⎭⎫ ⎝⎛=-0661AP P ,所以 1066-⎪⎪⎪⎭⎫⎝⎛=P P A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=3131313231311100661********⎪⎪⎪⎭⎫ ⎝⎛--=422242224.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意。

数学4考研试题及答案

数学4考研试题及答案

数学4考研试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集ID. 复数集C答案:B2. 函数f(x)=x^2在区间[0,1]上是:A. 增函数B. 减函数C. 常数函数D. 非单调函数答案:A3. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. ∞答案:B4. 集合{1, 2, 3}与{3, 4, 5}的交集是:A. {1, 2, 3}B. {3, 4, 5}C. {3}D. 空集二、填空题(每题5分,共20分)1. 若函数f(x)=3x+1,则f(-2)=____。

答案:-52. 圆的方程(x-2)^2+(y-3)^2=9的圆心坐标为____。

答案:(2, 3)3. 已知等差数列的第3项为9,第6项为15,则该数列的公差d=____。

答案:24. 函数y=x^3-6x^2+11x-6的导数为y'=____。

答案:3x^2-12x+11三、解答题(每题10分,共60分)1. 求函数y=x^3-3x^2+4x-1在x=1处的切线方程。

答案:首先求导数y'=3x^2-6x+4,然后将x=1代入得到y'|_{x=1}=3-6+4=1。

切点为(1, 0),所以切线方程为y-0=1*(x-1),即y=x-1。

2. 计算定积分∫(0到1) (2x+1)dx。

答案:首先求原函数F(x)=x^2+x,然后计算F(1)-F(0)=1^2+1-(0^2+0)=2。

3. 证明:若a>b>0,则a^3>b^3。

答案:证明:由a>b>0,可得a-b>0,a^2>b^2>0。

则a^3- b^3=(a-b)(a^2+ab+b^2)>0,所以a^3>b^3。

4. 解方程组:\begin{cases}x+y=1 \\\end{cases}答案:由方程组可得y=2x,代入第一个方程得x+2x=1,解得x=1/3,y=2/3。

研究生数学试题及答案

研究生数学试题及答案

研究生数学试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是函数f(x)=x^2+3x+2的导数?A. 2x+3B. 2x+6C. x^2+3D. 3x+2答案:A2. 矩阵A和矩阵B的乘积AB中,如果A是3x2矩阵,B是2x4矩阵,那么AB的维度是多少?A. 3x4B. 3x3C. 2x4D. 4x4答案:A3. 以下哪个级数是收敛的?A. 1/nB. 1/n^2C. 1/n^3D. 1/n^(1/2)答案:B4. 函数f(x)=sin(x)在区间[0, π]上的定积分是多少?A. 0B. πC. 2D. -π答案:A二、填空题(每题5分,共20分)1. 如果函数f(x)在x=a处连续,那么lim(x→a)f(x) = _______。

答案:f(a)2. 矩阵A的特征值是特征多项式det(A-λI)=0的解,其中I是单位矩阵,λ代表_______。

答案:特征值3. 微分方程y''+y=0的通解是y=C1cos(x)+C2sin(x),其中C1和C2是常数,那么这个方程的特解y_p=_______。

答案:04. 函数f(x)=x^3-3x+1在x=1处的二阶导数是_______。

答案:6三、解答题(每题15分,共30分)1. 证明函数f(x)=x^3在实数域R上是单调递增的。

证明:由于f'(x)=3x^2≥0对所有x∈R成立,且仅在x=0时取等号,因此f(x)在R上单调递增。

2. 求解微分方程y'+2y=e^(-2x)的通解。

解:首先找到齐次方程y'+2y=0的解,得到y_h=Ce^(-2x)。

然后使用待定系数法找到特解y_p=A,代入原方程得到A=1/2e^(-2x)。

因此,通解为y=Ce^(-2x)+1/2e^(-2x)。

结束语:本试题及答案旨在考察研究生数学的基本概念、计算能力和证明技巧,希望同学们通过练习能够加深对数学知识的理解与应用。

考研数学2024试卷

考研数学2024试卷

考研数学2024试卷一、选择题(每题1分,共5分)1.若函数f(x)在区间(a,b)内连续,且f(a)与f(b)异号,则下列说法正确的是()A.f(x)在(a,b)内必有零点B.f(x)在(a,b)内至多有一个零点C.f(x)在(a,b)内必有无限多个零点D.f(x)在(a,b)内可能有零点,也可能没有零点2.设矩阵A为对称矩阵,则下列说法正确的是()A.A的逆矩阵也是对称矩阵B.A的特征值一定为实数C.A的行列式值一定大于0D.A的对角线元素一定相等3.设函数f(x)在区间(-∞,+∞)内可导,且f'(x)>0,则下列说法正确的是()A.f(x)在(-∞,+∞)内单调递减B.f(x)在(-∞,+∞)内单调递增C.f(x)在(-∞,+∞)内有极值点D.f(x)在(-∞,+∞)内为常数函数4.设级数Σan收敛,则下列说法正确的是()A.Σan^2也收敛B.Σanbn也收敛C.Σan为绝对收敛D.Σan为条件收敛5.设f(x)为偶函数,则下列说法正确的是()A.f(x)的导数f'(x)为奇函数B.f(x)的导数f'(x)为偶函数C.f(x)的导数f'(x)为非奇非偶函数D.f(x)的导数f'(x)不存在二、判断题(每题1分,共5分)1.若函数f(x)在区间(a,b)内单调递增,则f'(x)>0。

()2.矩阵A与矩阵B相乘的结果与矩阵B与矩阵A相乘的结果相同。

()3.若函数f(x)在点x0处可导,则f(x)在点x0处连续。

()4.若级数Σan收敛,则Σan的绝对值级数Σ|an|也收敛。

()5.函数f(x)=x^3在原点处不可导。

()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x在区间(-∞,+∞)内单调递增,则x的取值范围为______。

2.设矩阵A为3阶矩阵,且|A|=0,则矩阵A的秩为______。

3.设函数f(x)=e^x,则f'(x)=______。

研究生数理统计期末考试

研究生数理统计期末考试

数理统计学复习题1.设总体(0,1)X N ,125,,,X X X 是来自总体X 的简单随机样本,试确定C 使统计量1212222345()()C X X Y X X X +=++服从t 分布。

2.设12,,,n X X X 是来自总体2(0,)X N σ 的简单随机样本,问统计量2221(1)nii X U n X ==-∑服从什么分布?试说明你的理由。

3.求总体(20,3)N 的容量分别为10、15的两独立样本的均值差的绝对值大于0.3的概率。

4.设12,,,n X X X 为取自总体2(,)X N μσ 的简单随机样本,求常数C ,使得12111()n i i i X X C-+=-∑为2σ的无偏估计量。

5.设总体X 服从参数为θ的指数分布,其分布密度函数为11,0()0,0x ex f x x θθ-⎧>⎪=⎨⎪≤⎩12,,,n X X X 为取自总体X 的样本,试求参数θ的矩估计、极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

6.设总体X 的密度函数为22(),0xxf x ex θθ-=>,12,,,n X X X 为取自总体X 的样本,试求参数θ的极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

7.设总体X 服从参数为λ的泊松分布,12,,,n X X X 为取自总体X 的样本,试求参数λ的矩估计、极大似然估计,并讨论估计的无偏性、有效性、相合性和充分性。

8.设总体X 的密度函数为111()(01)f x x x θθ-=<<,12,,,n X X X 为取自总体X 的简单随机样本,求参数θ的矩估计和极大似然估计量,并讨论极大似然估计量的无偏性、有效性、相合性和充分性。

9.设铅的比重近似服从正态分布,今测量比重16次,得 2.705x =,0.029s =,试求铅的比重的均值μ和标准差σ的置信水平为0.95的置信区间。

已知0.025(15) 2.1315t =,20.025(15)27.488χ=,20.975(15) 6.262χ=。

1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1990年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1990 年全国硕士研究生入学统一考试数学一、二、三、四、五试题 完整版附答案及评分标准数 学(试卷一)一、填空题:(本题满分15分,每小题3分)(1)过点)1,2,1(-M 且与直线⎪⎩⎪⎨⎧-=-=+-=1432t z t y t x 垂直的平面方程是 x -3y -z +4=0 .(2)设a 为非零常数,则a xx e a x a x 2)(lim =-+∞→.(3)设函数11,0,1)(>≤⎩⎨⎧=x x x f , 则)]([x f f = ___1___. (4)积分dy e dx xy ⎰⎰-2022的值等于4(1)/2e --.(5)已知向量组 1α=(1,2,3,4),2α=(2,3,4,5),3α=(3,4,5,6),4α=(4,5,6,7),则该向量组的秩是2二、选择题:(本题满分15分,每小题3分) (1)设()f x 是连续函数,且⎰-=x e xdt t f x F )()(则)(x F '等于(A)(A ))()(x f e f e x x ----(B) )()(x f e f e x x +---(C))()(x f e f e x x ---(D) )()(x f e f e x x +--(2)已知函数()f x 具有任意阶导数,且[]2)()(x f x f =', 则当n 为大于2的正整数时,()f x 的n 阶导数)()(x fn 是(A)(A) 1)]([!+n x f n (B) 1)]([+n x f n (C) nx f 2)]([ (D) nx f n 2)]([!(3)设α为常数,则级数]1)sin([12nn na n -∑∞=(C )(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与α的取值有关.(4)已知()f x 在0x =的某个邻域内连续 ,且(0)0f =,2cos 1)(lim0=-→xx f x 则在点0x =处()f x (D)(A)不可导(B)可导,且0)0(≠'f (C)取得极大值(D)取得极小值(5)已知1β和2β是非齐次线性方程组AX = b 的两个不同的解,21,αα是对应导出组AX = 0基础解系,21,k k 为任意常数,则方程组AX = b 的通解(一般解)必是(B)(A) 2)(2121211ββααα-+++k k (B) 2)(2121211ββααα++-+k k (C) 2)(2121211ββββα-+++k k (D) 2)(2121211ββββα++-+k k 三、(本题满分15分,每小题5分)(1)求dx x x ⎰-+102)2()1ln(.解:11200ln(1)1ln(1)(2)2x dx x d x x +=+--⎛⎛⎜⎜⎠⎠110011ln(1)2(1)(2)x dx x x x =+--+-⎛⎜⎠……2分 101111ln 2()ln 232(1)3dx x x =-+=-+⎰.……5分 (2)设(2,sin )z f x y y x =-,其中(,)f u v 具有连续的二阶偏导数,求yx z∂∂∂2.解:2cos z f fy x x u v ∂∂∂=+∂∂∂.……2分 2222222(2sin cos )sin cos cos z f f f fx y x y x x x x y u u v v v∂∂∂∂∂=-+-++∂∂∂∂∂∂∂. ……5分 (3) 求微分方程x e y y y 244-=+'+''的通解(一般解).解:特征方程为2440r r ++=的根为1,22r =-.对应齐次方程的通解为212()x Y C C x e -=+,其中12,C C 为任意常数. ……2分 设原方程的特解为*2()x y x Ax e 2-=,代入原方程得12A =.……4分 因此,原方程的通解为2*2212()()2xx x y x Y y C C x ee --=+=++. ……5分四、(本题满分6分) 求幂级数∑∞=+0)12(n nxn 的收敛域, 并求其和函数.解:因为123limlim 121n n n n a n a n ρ+→∞→∞+===+,所以11R ρ==.显然幂级数(21)nn n x∞=+∑在1x =±时发散,故此幂级数的收敛域为(1,1)-.……2分又0()(21)2nnnn n n S x n x nx x ∞∞∞====+=+∑∑∑012()1n n x x x∞='=+-∑……5分 2221111(1)1(1)x xx x x x +=+=-<<---.……6分五、(本题满分8分) 求曲面积分I=⎰⎰+sdxdy yzdzdx .2其中S 是球面4222=++z y x外侧在0≥z 的部分解:令2214x y S z ⎧+≤=⎨=⎩,其法向量与z 轴的负向相同. 设1S S 和所围成的区域为Ω,则由奥-高公式有12S I yzdzdx dxdy zdxdydz Ω++=⎰⎰⎰⎰⎰. ……2分而221140,228S S x y yzdzdx dxdy dxdy π+≤==-=-⎰⎰⎰⎰⎰⎰.……4分2222cos sin 4zdxdydz d d r r dr ππθϕϕϕπΩ=⋅=⎰⎰⎰⎰⎰⎰.……7分 所以12I π=.……8分六、(本题满分8分)设不恒为常数的函数)(x f 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()()f a f b =. 证明:在(,)a b 内至少存在一点ξ, 使0)(>'ξf .证:因()()()f a f b f x =且不恒为常数,故至少存在一点(,)c a b ∈,使得()()()f c f a f b ≠=.于是()()()()f c f a f c f a ><或.……2分现设()()f c f a >,则在[,]a c 上因()f x 满足拉格朗日定理的条件,故至少存在一点(,)(,)a c a b ξ∈⊂,使得1()[()()]0f f c f a c a ξ'=->-. ……6分对于()()f c f a <情形,类似地可证得此结果.……7分七、(本题满分8分) 设四阶矩阵=B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000110001100011,=C ⎪⎪⎪⎪⎪⎭⎫⎝⎛2000120031204312且矩阵A 满足关系式E C B C E A =''--)(1, 其中E 为四阶单位矩阵, 1-C 表示C 的逆矩阵,C '表示C 的转置矩阵, 将上述关系化简并求矩阵A .解:因11()[()]()A E C B C A C E C B A C B --''''-=-=-,故()A C B E '-=……2分因此 1[()]A C B -'=-11000210032104321-⎛⎫⎪⎪= ⎪⎪⎝⎭……4分1000210012100121⎛⎫⎪-⎪= ⎪-⎪-⎝⎭……6分八、(本题满分8分)求一个正交变换化二次型32312123222184444x x x x x x x x x f -+-++=成标准形.解:二次型的矩阵122244244-⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ……1分由2122||244(9)244λλλλλλ---=---=----A E ,A 的特征值为1230,9λλλ===.……3分对于120λλ==,122122244000244000λ--⎛⎫⎛⎫⎪ ⎪-=--→ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A E ,从而可取特征向量1011P ⎛⎫ ⎪= ⎪ ⎪⎝⎭及与1P 正交的另一特征向量2411P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. ……5分 对于39λ=,822245254099245000λ----⎛⎫⎛⎫ ⎪ ⎪-=---→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A E ,取特征向量3122P ⎛⎫⎪=- ⎪ ⎪⎝⎭. ……6分将上述相互正交的特征向量单位化,得1231032,,323ξξξ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===- ⎪ ⎪⎪ ⎪⎝⎭, ……7分故在正交变换1122331032323x y x y x y ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=-=⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎭下,二次型239f y =. ……8分九、(本题满分8分)质点P 沿着以A,B 为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力→F 作用 (见图),→F 的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且于y 轴正向的夹角小于2π.求变力→F 对质点P 所作的功.解:按题意,变力y x =-+F i j .……3分圆弧AB的参数方程是23443x y θππθθ⎧=⎪-≤≤⎨=⎪⎩.……5分 变力F 所作的功ABW ydx xdy =-+⎰434)sin )cos ]d ππθθθθθ-=⎰()21π=-……8分十、填空题:(本题满分6分,每小题2分)(1)已知随机变量X 的概率密度函数f (x )=x e -21, +∞<<∞-x ,则X 的概率分布函数()F x =1212010xx e x ex -⎧<⎨-≥⎩.(2)设随机事件A ,B 及其事件A B 的概率分别为6.0,3.0,4.0和,若_B 表示B 的对立事件,那么积事件B A 的概率3.0)B A (P =(3)已知离散型随机变量X 服从参数为2的泊松分布,则随机变量32Z X =-的数学期望()E Z = 4 .十一、(本题满分6分)设二维变量(X ,Y )在区域 x y x D <<<,10:内服从均匀分布,求关于X 的边缘概率密度函数及随机变量 Z =2X +1的方差D (Z ).解:(,)X Y 的联合概率密度函数是1,01,||,(,)0,x y x f x y <<<⎧=⎨⎩其它,因此关于X 的边缘概率密度函数是2,01()(,)0,X x x f x f x y dy +∞-∞<<⎧==⎨⎩⎰其它. ……2分22D(Z)(21)4[()(())]D X E X E X =+=-()22X X 4()()x f x dx xf x dx +∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰……4分()21132001424224299x dx x dx ⎡⎤⎛⎫=-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰.……6分数 学(试卷二)一、填空题【 同数学一 第一题 】 二、选择题【 同数学一 第二题 】三、(本题满分15分,每小题5分)【 同数学一 第三题 】 四、(本题满分18分,每小题6分) (1)【 同数学一 第四、(1)题 】(2)求微分方程0)ln (ln =-+dx x y xdy x 满足条件1==ex y的特解.解:将原方程化为11,(1)ln y y x x x x'+=≠.……1分 由公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰……3分 得2ln ln 111ln ln 2dx dx x x x xy e e dx C x C x x -⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭. ……4分 又由|1x e y ==,可解出12C =,所以方程的特解是11ln 2ln y x x ⎛⎫=+ ⎪⎝⎭.……6分(3)过点(1,0)P 作抛物线2-=x y 的切线与上述抛物线及x 轴围成一平面图形,求此图形绕x 轴旋转一周所成旋转体的体积.解:设所作切线与抛物线相切于点0(x .因00|x x y =='==,故此切线的方程为)y x x =-.……1分又因该切线过点(1,0)P ,所以有03x =. 从而切线的方程为1(1)2y x =-. ……3分 因此,所求旋转体的体积332121(1)(2)4V x dx x dxππ=---⎰⎰……5分 6π=.……6分五、(本题满分8分)【 同数学一第五题 】 六、(本题满分7分)【 同数学一 第六题 】 七、(本题满分6分)【 同数学一 第七题 】 八、(本题满分8分)【 同数学一 第八题 】 九、(本题满分8分)【 同数学一 第九题】数 学(试卷三)一、填空题:(本题满分15分,每小题3分)(1)曲线⎩⎨⎧==ty t x 33sin cos 上对应于6π=t 点处的法线方程是13-=x y .(2)设x e y x tg 1sin 1⋅=,则='y 1tan 221111(sec sin cos )x e x x x x-⋅+.(3)=-⎰11dx x x15/4(4)下列两个积分的大小关系是:dx e dxe x x ⎰⎰----->121233.(5)【 同数学一 第一、(3) 题 】二、选择题:(本题满分15分,每小题3分)(1)已知0)1(lim 2=--+∞→b ax x x x ,其中,a b 常数,则(C)(A)1,1a b ==(B)1,1a b =-=(C)1,1a b ==-(D)1,1a b =-=-(2)设函数)(x f 在),(+∞-∞上连续,则⎰])([dx x f d 等于(B)(A))(x f (B)dxx f )((C)cx f +)((D)dxx f )('(3)【 同数学一 第二、(3) 题 】(4)【 同数学一 第二、(4) 题 】(5)设⎪⎩⎪⎨⎧=≠=0),0(0,)()(x f x x x f x F ,其中()f x 在0x =处可导,(0)0,(0)0f f '≠=,则0x =是()F x 的 (B )(A)连续点 (B) 第一类间断点 (C) 第二类间断点(D)连续点或间断点不能由此确定三、(本题满分15分,每小题3分) (1)已知9)(lim =-+∞→xx ax a x ,求常数a . 解:因2(1)lim()lim (1)x x a x x xa x a x e ax a x→∞→∞++==--……3分 故29a e =,ln 3a =.……5分(2)求由2()ln()y x x y x y -=--所确定的函数()y y x =的微分dy .解:对方程两边求微分2()ln()()dx dydy dx dx dy x y x y x y--=--+--, ……3分故2ln(),3ln()2x y xdy dx dy dx x y x y +-==+--或.……5分 (3)求曲线)0(112>+=x xy 的拐点. 解:22223231,2(1)(1)x x y y x x -'''=-=++. ……2分 令0y ''=,解得x =.因在x =的左右邻近"y 变号,故x =是拐点的横坐标.所以曲线的拐点是3)4.……5分 (4)计算 ⎰-dx x x2)1(ln . 解:原式1ln 1xd x =-⎰ln 11(1)x dxxx x =---⎰……2分 10ln 11()11x dxx x x =-+--⎰……4分 ln |1|ln 1x x C x x-=++-.……5分 (5)见【 数学二 第四(2)题 】四、(本题满分9分)在椭圆12222=+by a x 的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小(其中0,0a b >>).解:设00(,)P x y 为所求之点,则此点处的切线方程为00221xx yya b+=. ……2分令0x =,得该切线在y 轴上的截距20b y .令0y =,得该切线在x 轴上的截距2a x . ……4分于是所围图形的面积为2200011,(0,)24a b S ab x a x y π=⋅-∈.……6分 求S的最小值时,不妨设00A x y ==22b A a '=. ……7分令0A '=,解得在(0,)a 内唯一驻点0x =……8分由A '在0x =右侧为负,得知0x =A 的极大点,即S 的极小点.所以0x =S 为最小,此时0y =,即为所求之点.……9分 五、(本题满分9分)证明:当0x >时,有不等式 21π>+x arctgx . 解:考虑函数1()arctan ,02f x x x x π=+->.……2分 有2211()0,01f x x x x '=-<>+. ……4分 所以()f x 在(0,)+∞上是单调减少的.……5分 又lim ()0x f x →+∞=……7分知当10,()arctan 02x f x x x π>=+->时. ……8分 即1arctan 2x x π+>. ……9分六、(本题满分9分)设dt t t x f x⎰+=11ln )(, 其中0,x >求 1()().f x f x+解:111ln ()1xt f dt xt =+⎰. 令1t y =,得11ln ()(1)x y f dy x y y =+⎰. ……3分 于是111ln ln ()()(1)(1)x x t t f x f dt dt x t t t +=+++⎰⎰111()ln (1)(1)x tdtt t t =+++⎰……5分 1111()ln 11x tdt t t t =+-++⎰……7分 21ln 1ln 2x t dt x t ==⎰. ……9分七、(本题满分9分)【 同数学二 第四、(3)题 】 八、(本题满分9分)求微分方程ax e y y y =+'+''44之通解,其中a 为实数.解:特征方程为2440r r ++=,特征根为1,22r =-.对应齐次方程的通解为212()x y C C x e -=+ .……2分 当2a ≠-时,设非齐次方程的特解为*()ax y x Ae =, ……3分代入原方程,可得21(2)A a =+,*21()(2)axy x e a =+. 当2a =-时,设非齐次方程的特解为*21()xy x A x e 2-=.代入原方程,得12A =,*21()2x y x x e 2-=.……8分故通解为212222121()2(2)()()()22x axx C C x e e a a y x x y x C C x e a --⎧++≠-⎪+⎪=⎨⎪=++=⎪⎩,当,当.……9分数 学(试卷四)一、填空题:(本题满分15分,每小题3分) (1)极限n →∞=2(2)设函数()f x 有连续的导函数,0)0(=f 且b f =')0(,若函数00,sin )()(=≠⎪⎩⎪⎨⎧+=x x A xx a x f x F 在0x =处连续,则常数A = a + b .(3)曲线2y x =与直线2y x =+所围成的平面图形的面积为 4.5 .(4)若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足条件04321=+++a a a a (5)一射手对同一目标独立的进行四次射击,若至少命中一次的概率为8180,则射手的命中率为2/3二、选择题:(本题满分15分,每小题3分) (1)设函数x e tgx x x f sin )(⋅⋅=,则)(x f 是 (B )(A )偶函数(B)无界函数(C)周期函数(D)单调函数(2)设函数()f x 对任意x 均满足等式(1)()f x a f x +=, 且有b f =')0(,其中,a b 为非零常数,则 (D)(A )()f x 在1x =处不可导(B )()f x 在1x =处可导,且a f =')1((C )()f x 在1x =处可导,且 f (1)b '= (D )()f x 在1x =处可导,且 f (1)ab '=. (3)向量组s ααα,,21⋅⋅⋅⋅线性无关的充分条件是(A)s ααα,,21⋅⋅⋅⋅均不为零向量(B) s ααα,,21⋅⋅⋅⋅中任意两个向量的分量不成比例(C) s ααα,,21⋅⋅⋅⋅中任意一个向量均不能由其余1s -个向量线形表示 (D) s ααα,,21⋅⋅⋅⋅中有一部分向量线形无关(4)设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是(A)(A)P (A+B )= P (A )(B)P(AB )=P(A )(C)P (A B )= P (B )(D)P (B -A )=P (B )-P (A )(5)设随机变量X 和Y 相互独立,其概率分布为则下列式子正确的是 (C )(A )X =Y(B ){}0P X Y ==(C ){}P X Y ==21(D ){}1P X Y ==三、(本题满分20分,每小题5分) (1)求函数()I x =dt t t t xe ⎰+-12ln 2在区间[2,e e ]上的最大值.解:由222ln ln ()0,[,]21(1)x x I x x e e x x x '==>∈-+-, ……1分可知()I x 在2[,]e e 上单调增加,故222ln max ()(1)e e x e e t I x dt t ≤≤==-⎛⎜⎠21ln 1e e tdt --⎛⎜⎠22ln 1111e e e e t dt t t t =-+⋅--⎛⎜⎠……3分 22121ln11e e t e e t -=-+--11ln ln(1)11e e e e e e+=+=+-++. ……5分(2)计算2y Dxe dxdy -⎰⎰,其中D 是曲线24y x =和29y x =在第一象限所围成的区域.解:原式2302yy y edy xdx+∞-=⎰⎰……2分 20111()249y y y e dy +∞-=-⎰……3分 205572144y ye dy +∞-==⎰.……5分(3)求级数的∑∞=-12)3(n nn x 收敛域. 解:21n a n=,121(1)n a n +=+,212lim lim 1(1)n n n n a n a n +→∞→∞==+, ……2分 因此当131x -<-<,即24x <<级数收敛. ……3分当2x =时,得交错级数211(1)n n n ∞=-∑;当4x =时,得级数211n n∞=∑,二者都收敛,于是原级数的收敛域为[2,4].……5分(4)求微分方程x e x x y y sin )(ln cos -=+'的通解解:cos cos sin (ln )xdxxdx x y e x e e dx C --⎰⎰=⋅⋅+⎰……3分 sin (ln )x e xdx C -=+⎰……4分 sin (ln )x e x x x C -=-+.……5分四、(本题满分9分)某公司可通过电台和报纸两种方式做销售某种商品广告,根据统计资料,销售收入R (万 元)与电台广告费用1x (万元) 及报纸广告费用2x (万元) 之间的关系有如下经验公式:222121211028321415x x x x x x R ---++=. (1)在广告费用不限的情况下, 求最优广告策略;(2)若提供的广告费用为1.5 万元, 求相应的最优广告策略.解:(1) 利润函数为22121212121514328210()x x x x x x x x π=++----+221212121513318210x x x x x x =++---……1分 由12121248130,820310x x x x x x ππ∂∂=--+==--+=∂∂……2分 解得10.75x =(万元),2 1.25x =(万元). 因利润函数12(,)x x ππ=在(0.75,1.25)处的二阶偏导数为:2222211224,8,20A B C x x x x πππ∂∂∂==-==-==-∂∂∂∂. ……3分 故有26480160,40B AC A -=-=-<=-<,……4分 所以函数12(,)x x ππ=在(0.75,1.25)处达到极大值,亦即最大值.……5分(2)若广告费用为1.5万元,则只需求利润12(,)x x ππ=在12 1.5x x +=时的条件极值.拉格朗日函数为221212121212(,,)1513318210( 1.5)L x x x x x x x x x x λλ=++---++-……7分令120,0,0L L L x x λ∂∂∂===∂∂∂,有121212481308203101.50x x x x x x λλ--++=⎧⎪--++=⎨⎪+-=⎩……8分由此可得10x =,2 1.5x =,即将广告费1.5万元全部用于报纸广告,可使利润最大.……9分五、(本题满分6分)设)(x f 在闭区间[0,c]上连续,其导数)(x f '在开区间(0,)c 内存在且单调减少.(0)0f =,试应用拉格郎日中值定理证明不等式()()()f a b f a f b +≤+,其中常 数,a b 满足条件c b a b a ≤+≤≤≤0.证:当0a =时,(0)0f =有()()()()f a b f b f a f b +==+. ……1分当0a >时,在[0,]a 和[,]b a b +上分别应用拉格朗日定理,有()11()(0)()(),0,0f a f f a f a a aξξ-'==∈-;……3分 ()22()()()()(),,()f a b f b f a b f b f b a b a b b aξξ+-+-'==∈++-.……4分 显然120a b a b c ξξ<<≤<<+≤. 因()f x '在[0,]c 上单调减少,故21()()f f ξξ''≤.从而有()()()f a b f b f a a a+-≤.……5分 故由0a >,有()()()f a b f a f b +≤+. ……6分六、(本题满分8分)已知线性方程组 1234512345234512345323022654332x x x x x ax x x x x x x x x bx x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩(1)问,a b 为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时, 求出方程组的全部解.解:(1) 考虑方程组的增广矩阵1111111111321130012263012260000035433120000022a aa A bb a a ⎛⎫⎛⎫ ⎪⎪- ⎪ ⎪=→ ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭……2分当30b a -=且220a -=,即13a b ==且时,方程组的系数矩阵与增广矩阵之秩相等,故1,3a b ==时,方程组有解.……3分(2)当1,3a b ==时,有11111101152012263012263000000000000000000000000a a A ----⎛⎫⎛⎫⎪⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,因此,原方程组的同解方程组为13452345522263x x x x x x x x ---=-⎧⎨+++=⎩,故导出组的基础解系为123115226,,100010001v v v ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ……6分(3)令3450x x x ===,得原方程组的特解23000u -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,于是原方程组的全部解为1231234521153226010000100001x x u x c c c x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,其中123,,c c c 为任意常数.……8分 七、(本题满分5分)已知对于n 阶方阵A ,存在自然数k ,使得0=kA ,试证明矩阵E A -可逆,并写出 其逆矩阵的表达式(E 为n 阶单位阵).解:由0kA =及1k k E A E A A E A --+++=-()() ,得1k E A E A A E--+++=()() ……3分 可知E A -可逆,且有11()k E A E A A ---=+++ .……5分八、(本题满分6)设A 为n 阶矩阵,1λ和2λ是A 的两个不同的特征值,21,x x 是分别属于1λ和2λ的特征向量,试证明:21x x +不是A 的特征向量.解:因11122212,,Ax x Ax x λλλλ==≠,故12121122()A x x Ax Ax x x λλ+=+=+……2分 设21x x +是A 的特征向量,则1212()()A x x x x λ+=+,即112212()x x x x λλλ+=+, 于是有1122()()0x x λλλλ-+-=.……4分由于12,x x 属于不同的特征值,所以12,x x 线性无关,故有120,0λλλλ-=-=,即12λλ=, 这与假设矛盾,因此21x x +不是A 的特征向量.……6分九、(本题满分4分)从0,1,2,…,9等十个数字中任意选出三个不同的数字,试求下列事件的概率:=1A { 三个数字中不含0和5 } ;=2A { 三个数字中含0但不含5 }解:3813107()15C P A C ==……2分 33982310214()15C C P A C -==. ……4分十、(本题满分5分)一电子仪器由两个部件构成,以X 和Y 分别表示两个部件的寿命(单位:千小时),已知X 和Y 的联合分布函数为:⎩⎨⎧≥≥+--=+---它其00,01),()(5.05.05.0y x e e e y x F y x y x .(1)问X 和Y 是否独立?(2)求两个部件的寿命都超过100小时的概率α.解 X 的分布函数1()F x 和Y 的分布函数2()F y 分别为:0.511,0;()(,)0,0x e x F x F x x -⎧-≥=+∞=⎨<⎩若若,0.521,0;()(,)0,0y e y F y F y y -⎧-≥=+∞=⎨<⎩若若……2分 显然12(,)()()F x y F x F y =,故X 和Y 独立,……3分 于是{0.1,0.1}{0.1}{0.1}P X Y P X P Y α=>>=>⋅>……4分 0.050.050.112[1(0.1)][1(0.1)]F F e e e ---=-⋅-=⋅=.……5分十一、(本题满分7分)某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72 分,96分以上的占考生总数的2.3 %,试求考生的外语成绩在60分至84分之间的概率.[附表] (表中)(x Φ是标准正态分布函数)解:设X 为考生的外语成绩,由题设知2~(,)X N μσ,其中72μ=. ……1分由条件知{96}0.023P X ≥=,即9672{}0.023X P μσσ--≥=,亦即24()0.977σΦ=,由()x Φ的数值表,可见242σ=.因此12σ=.这样2~(72,12)X N .……4分所求概率为60728472{6084}{}{11}1212X X P X P P μμσσ----≤≤=≤≤=-≤≤(1)(1)2(1)120.84110.682=Φ-Φ-=Φ-=⨯-=.……7分数 学(试卷五)一、填空题 (本题满分15分,每小题3分) (1)【 同数学四 第一、(1) 题 】(2)【 同数学四 第一、(2) 题 】(3)【 同数学四 第一、(3) 题 】(4)【 同数学四 第一、(4) 题 】(5)已知随机变量(3,1),(2,1)X N Y N - ,且,X Y 相互独立,设随机变量27Z X Y =-+,则Z ~ N (0,5) .二、选择题 (本题满分15分,每小题3分) (1)【 同数学四 第二、(1) 题 】(2)【 同数学四 第二、(2) 题 】(3)【 同数学四 第二、(1) 题 】(4)设A 为n 阶可逆矩阵,*A 是A 的伴随矩阵,则*A =(A)(A) 1-n A(B) A (C) nA(D) 1-A(5)已知随机变量X 服从二项分布,且EX=2.4,DX=1.44,则二项分布的参数n ,p 的值为 (B )(A )n = 4,p = 0.6(B )n = 6,p = 0.4(C )n = 8,p = 0.3(D )n = 24,p = 0.1三、(本题满分20分,每小题5分) (1)求极限dte t x x t x x 22)1(1lim20-∞→⎰+解:原式22222202(1)(1)limlim(12)xt x x x x x t e dt x e xex e→∞→∞++==+⎰……3分22(1)1lim (12)2x x x →∞+==+. ……5分(2)求不定积分dx x x x ⎰34sin 2cos . 解 443333cos cos cos1222sin 88sin cos sin 222x x x x x x dx dx dx x x x x ==⎰⎰⎰……2分3211sin sin sin 42282x x x x d xd --==-⎛⎛⎜⎜⎠⎠……3分 22111sin 828sin 2x x dx x-=-+⎛⎜⎜⎠……4分 21cot 428sin 2x x C x -=-+211csc cot 8242x xx C =--+.……5分 (3)设)(22y z y z x ϕ=+,其中ϕ为可微函数,求 yz∂∂.解 将原式两边同时对y 求偏导,得2112()()()z z z z z y z y y y y y yϕϕ∂∂'=+-∂∂ ……3分 解出z y ∂∂,得 ()()()()2()2()z z z z z y z zy y yy y zzyz yz y yyϕϕϕϕϕϕ''--∂==∂''--. ……5分(4)【 同数学四 第三、(2) 题 】四、(本题满分9分)【 同数学四 第四题 】五、(本题满分6分)证明不等式1ln(()x x x +≥-∞<<+∞证:记()1ln(f x x x =++()ln(ln(f x x x x '=+=.……2分 令()0f x '=,知0x =为驻点.由()0f x ''=>……4分可知0x =为极小值点,亦即最小值点.()f x 的最小值为(0)0f =,于是,对于一切(,)x ∈-∞+∞,有()0f x ≥,即1ln(()x x x +≥-∞<<+∞. ……6分六、(本题满分4分)设A 为1010⨯矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡00001010000 (0010000010)10,计算行列式E A λ-,其中E 为10阶单位矩阵,λ为常数.解:1010000100().......................00011000A E λλλλλ---=--按第一列展开……1分101000100000100100010..............................................00010001101λλλλλλλ-------=-……2分9101010()()1010λλλ=---=-.……4分七、(本题满分5分)设方阵A 满足条件TA A E =,其中TA 是A 的转置矩阵,E 为单位阵.试证明所对应的 特征值的绝对值等于1.证:设x 是A 的实特征向量,其所对应的特征值为λ,则Ax x λ=,即T T Tx A x λ=,于是有2T T T x A Ax x x λ=,即2T Tx x x x λ=,2(1)0T x x λ-=.……3分 因为x 为实特征向量,故0Tx x >,所以得210λ-=,即||1λ=.……5分八、(本题满分8分)【 同数学四 第六题 】九、(本题满分5分)【 同数学四 第九题 分值不同 】 十、(本题满分6分)甲乙两人独立地各进行两次射击,假设甲的命中率为0.2,乙的为0.5,以X 和Y 分别表示甲和乙的命中次数,试求X 和Y 联合概率分布.解:X Y 和都服从二项分布,参数相应为(2,0.2)和(2,0.5).因此X Y 和的概率分布分别为:0120.640.320.04X ⎛⎫⎪⎝⎭,0120.250.50.25Y ⎛⎫ ⎪⎝⎭ ……3分故由独立性,知X Y 和的联合分布为6分十一、(本题满分7分)【 同数学四第十一题 】。

New_全国硕士研究生入学统一考试数学四试题及答案.pdf

New_全国硕士研究生入学统一考试数学四试题及答案.pdf

DX }
1
.
e
【分析】 根据指数分布的分布函数和方差立即得正确答案.
【详解】
由于 DX

1 λ2
,
X 的分布函数为
F
(x)

1

e

λx
,
0,
x 0, x 0.

P{X DX } 1 P{X DX } 1 P{X 1} 1 F (1 ) 1 .
(A) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (a).
(B) 至少存在一点 x0 (a,b) ,使得 f (x0 ) > f (b).
(C) 至少存在一点 x0 (a,b) ,使得 f (x0 ) 0 .
(D) 至少存在一点 x0 (a,b) ,使得 f (x0 ) = 0.
考查 f (x)在 x = 0 的左、右两侧的二阶导数的符号,判断拐点情况.
【详解】设 0 < < 1,当 x ( , 0) (0 , )时,f (x) > 0,而 f (0) = 0,所以 x = 0 是 f (x)
的极小值点.
显然,x = 0 是 f (x)的不可导点. 当 x ( , 0)时,f (x) = x(1 x), f (x) 2 0 ,
【详解】因为 x A1b , 而且 A aij 33 是实正交矩阵, 于是 AT A1 , A 的每一个行
(列)向量均为单位向量, 所以
x

A1b

AT b

a11 a12


1 0
.
a13 0
(6) 设随机变量 X 服从参数为 λ 的指数分布, 则 P{X

2003年全国硕士研究生入学统一考试数学四试题及答案详解

2003年全国硕士研究生入学统一考试数学四试题及答案详解

2003年考研数学四真题及评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限xx x 20)]1ln(1[lim ++→= 2e .【分析】 本题属∞1型未定式,化为指数函数求极限即可.【详解】 xx x 20)]1ln(1[lim ++→=)]1ln(1ln[2lim x xx e++→=.2)1ln(2lim)]1ln(1ln[2lim00e eex x x x x x ==+++→→【评注】 对于∞1型未定式)()(lim x g x f 的极限,也可直接用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算,因此本题也可这样求解:xx x 2)]1ln(1[lim ++→=.2)1ln(2lim 0e ex xx =+⋅→(2)dx ex x x⎰--+11)(= )21(21--e .【分析】 对称区间上的积分应注意利用被积函数的对称性,这里有.011=⎰--dx xex【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11=⎰⎰---=11022xxxdedx xe=][2110dx e xex x⎰----=)21(21--e .【评注】 本题属基本题型,主要考查对称区间上的积分性质和分布积分法.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(= 2a .【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】 ⎰⎰-=D dxdy x y g x f I )()(=dxdy ax y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+【评注】 若被积函数只在某区域内不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可.(4)设A,B 均为三阶矩阵,E 是三阶单位矩阵. 已知AB=2A+B,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡202040202,则 1)(--E A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 .【分析】 应先化简,从AB=2A+B 中确定1)(--E A . 【详解】 由AB=2A+B, 知AB-B=2A-2E+2E, 即有 E E A B E A 2)(2)(=---, E E B E A 2)2)((=--, E E B E A =-⋅-)2(21)(, 可见 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.【评注】 本题实质上是已知矩阵等式求逆的问题,应先分解出因式A-E ,写成逆矩阵的定义形式,从而确定(A-E) 的逆矩阵.(5)设n 维向量0,),0,,0,(<=a a a Tα;E 为n 阶单位矩阵,矩阵TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a= -1 .【分析】 这里Tαα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.【详解】 由题设,有)1)((T Ta E E AB αααα+-= =TT T T aa E αααααααα⋅-+-11=T T T Ta a E αααααααα)(11-+- =TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有 0121=+--a a ,即 0122=-+a a ,解得 .1,21-==a a 由于A<0 ,故a=-1.(6)设随机变量X 和Y 的相关系数为0.5, EX=EY=0,222==EY EX, 则2)(Y X E += 6 .【分析】 利用期望与相关系数的公式进行计算即可.【详解】 因为2)(Y X E +=22)(2EY XY E EX ++ =4+]),([2EY EX Y X Cov ⋅+=4+2.625.024=⨯⨯+=⋅⋅DY DX XY ρ【评注】 本题的核心是逆向思维,利用公式EY EX Y X Cov XY E ⋅+=),()(.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)曲线21x xe y =(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. [ D ] 【分析】 先考虑是否有水平渐近线,若无水平渐近线应进一步考虑是否存在斜渐近线,而是否存在铅直渐近线,应看函数是否存在无定义点.【详解】 当±∞→x 时,极限y x ±∞→lim 均不存在,故不存在水平渐近线;又因为 1lim lim 21==∞→∞→x x x e x y ,0)(lim 21=-∞→x xe x x ,所以有斜渐近线y=x.另外,在 x=0 处21x xe y =无定义,且∞=→1lim x x xe ,可见 x=0为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选(D).(2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x=1处连续,则0)1(=ϕ是f(x)在x=1处可导的(A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. [ A ] 【分析】 被积函数含有绝对值,应当作分段函数看待,利用f(x)在x=1处左右导数定义讨论即可.【详解】 因为)1(3)(11lim 1)1()(lim 311ϕϕ=⋅--=--++→→x x x x f x f x x , )1(3)(11lim 1)1()(lim311ϕϕ-=⋅---=----→→x x x x f x f x x , 可见,f(x)在x=1处可导的充分必要条件是 .0)1()1(3)1(3=⇔-=ϕϕϕ 故应选(A). 【评注】 函数表达式中含有绝对值、取极值符号(max,min)等,均应当作分段函数处理.一般地,函数)()(0x x x x g ϕ-=在点0x x =处可导的充要条件是.0)(0=x ϕ(3)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ A ]【分析】 可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】 可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零, 故应选(A).【评注1】 本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】 本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D), 故正确选项为(A).(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B . 已知矩阵A 相似于B ,则秩(A-2E)与秩(A-E)之和等于(A) 2. (B) 3. (C) 4. (D) 5. [ C ]【分析】 利用相似矩阵有相同的秩计算,秩(A-2E)与秩(A-E)之和等于秩(B-2E)与秩(B-E)之和.【详解】 因为矩阵A 相似于B ,于是有矩阵A-2E 与矩阵B-2E 相似,矩阵A-E 与矩阵B-E 相似,且相似矩阵有相同的秩,而秩(B-2E)=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩(B-E)=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,可见有 秩(A-2E)+秩(A-E)= 秩(B-2E)+秩(B-E)=4,故应选(C).【评注】 若B A ~,则)(~)(B f A f ,且相似矩阵有相同的行列式、相同的秩和相同的特征值等性质.(5)对于任意二事件A 和B(A) 若φ≠AB ,则A,B 一定独立. (B) 若φ≠AB ,则A,B 有可能独立. (C) 若φ=AB ,则A,B 一定独立. (D) 若φ=AB ,则A,B 一定不独立. [ B ]【分析】 本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.【详解】 φ≠AB 推不出P(AB)=P(A)P(B), 因此推不出A,B 一定独立,排除(A); 若φ=AB ,则P(AB)=0,但P(A)P(B)是否为零不确定,因此(C),(D) 也不成立,故正确选项为(B).【评注】 当P(A)0≠,P(B)0≠时,若A,B 相互独立,则一定有0)()()(≠=B P A P AB P ,从而有φ≠AB . 可见,当A,B 相互独立时,往往A,B 并不是互斥的.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则(A) X 与Y 一定独立. (B) (X,Y)服从二维正态分布.(C) X 与Y 未必独立. (D) X+Y 服从一维正态分布. [ C ] 【分析】 本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(X,Y) 服从二维正态分布时,不相关与独立才是等价的.【详解】 只有当(X,Y) 服从二维正态分布时,X 与Y 不相关⇔X 与Y 独立,本题仅仅已知X 和Y 服从正态分布,因此,由它们不相关推不出X 与Y 一定独立,排除(A); 若X 和Y 都服从正态分布且相互独立,则(X,Y)服从二维正态分布,但题设并不知道X,Y 是否独立,可排除(B); 同样要求X 与Y 相互独立时,才能推出X+Y 服从一维正态分布,可排除(D).故正确选项为(C).【评注】 ① 若X 与Y 均服从正态分布且相互独立,则(X,Y)服从二维正态分布. ② 若X 与Y 均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(X,Y)服从二维正态分布,则X 与Y 相互独立⇔X 与Y 不相关.三 、(本题满分8分) 设],21,0(,)1(11sin 1)(∈---=x x x x x f πππ 试补充定义f(0),使得f(x)在]21,0[上连续.【详解】)(lim 0x f x +→= -.1π+xx xx x ππππsin sin lim 0-+→= -220sin lim 1ππππx xx x -++→ = -xxx 202cos lim 1πππππ-++→= -2202sin lim 1ππππxx +→+= -.1π由于f(x)在]21,0(上连续,因此定义π1)0(-=f ,使f(x)在]21,0[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.完全类似例题在一般教科书上都可找到.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂vf u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 【分析】 本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv fv u f ∂∂∂=∂∂∂ 【详解】vf x u f y xg ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂ 故 v f vf x v u f xy u f y xg ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222, .2222222222vf v f y u v f xy u f x yg ∂∂-∂∂+∂∂∂-∂∂=∂∂所以 222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂ =.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.五 、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x eI Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算. 【详解】 作极坐标变换:θθsin ,cos r y r x ==,有 dxdy y x eeI Dy x )sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d e r ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记 t d te A t s i n 0⎰-=π,则 t t de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos t tde=]sin cos [0tdt e t e t t⎰--+-ππ=.1A e-+-π因此 )1(21π-+=e A , ).1(2)1(2πππππe e e I +=+=-【评注】 本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.六、(本题满分9分)设a>1,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,t(a)最小?并求出最小值.【分析】 先由f(t)的导数为零确定驻点t(a),它是关于a 的函数,再把此函数对a 求导,然后令此导数为零,得到可能极值点,进一步判定此极值为最小值即可.【详解】 由0ln )(=-='a a a t f t ,得唯一驻点 .ln ln ln 1)(aaa t -= 考察函数aaa t ln ln ln 1)(-=在a>1时的最小值. 令 0)(l n ln ln 1)(ln ln ln 11)(22=--=--='a a a a aa a a t , 得唯一驻点 .ee a =当e e a >时,0)(>'a t ;当ee a <时,0)(<'a t ,因此ee t e11)(-=为极小值,从而是最小值.【评注】 本题属基本题型,只是函数表达式由驻点给出,求极值与最值的要求均是最基本的.七、(本题满分9分)设y=f(x) 是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM的面积之和为3163+x ,求f(x)的表达式. 【分析】 梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,可得一含有变限积分的等式,两边求导后可转化为一阶线性微分方程,然后用通解公式计算即可.【详解】 根据题意,有316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导,得.21)()(21)](1[212x x f x f x x f =-'++ 当0≠x 时,得.1)(1)(2xx x f x x f -=-' 此为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ O C B x =.12Cx x ++当x=0时,f(0)=1.由于x=1时,f(1)=0 ,故有2+C=0,从而C=-2. 所以.)1(21)(22-=-+=x x x x f【评注】 本题一阶线性微分方程的求解比较简单,一般教材中都可找到标准的求解方法.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,T]上的平均剩余量.【分析】 在时刻t 的剩余量y(t)可用总量A 减去销量x(t)得到; 由于y(t)随时间连续变化,因此在时间段[0,T] 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示. 【详解】 (1) 在时刻t 商品的剩余量为 )()(t x A t y -==kt A -, ].,0[T t ∈ 由kt A -=0,得TA k =, 因此,)(t TAA t y -= ].,0[T t ∈ (2) 依题意,)(t y 在[0,T]上的平均值为⎰=Tdt t y T y 0)(1=⎰-T dt t T AA T 0)(1=.2A因此在时间段[0,T] 上的平均剩余量为.2A 【评注】 函数f(x)在[a,b] 上的平均值记为⎰-ba dx x f ab .)(1 本题考查了函数平均值的概念,但大纲中只对数学一、二明确提出要求,而数学三、四的考试大纲中没有相应的要求,因此本题有超纲的嫌疑.九、(本题满分13分)设有向量组(I ):T)2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II ):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I )与(II )等价?当a 为何值时,向量组(I )与(II )不等价?【分析】 两个向量组等价也即两个向量组可以相互线性表示,而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可. 而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断. 一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】 作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式[]01321≠+=a ααα,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以,321,,βββ可由向量组(I )线性表示.同样,行列式[]06321≠=βββ,秩(3),,321=βββ,故321,,ααα可由向量组(II )线性表示. 因此向量组(I )与(II )等价.(2) 当a=-1时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 . 由于秩(321,,ααα)≠秩(),,1321βααα,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I )与(II )不等价.【评注1】 涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I )与(II )等价.(2) 当a=-1时,,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠r (),,,1321βααα=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I )与(II )不等价.【评注2】 向量组(I )与(II )等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论. 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求a,b 和λ的值.【分析】 题设已知特征向量,应想到利用定义:λαα=*A ,又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A . 两边同时左乘矩阵A ,得 αλαA AA =*, αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b或2-=b ;由式(1),(3)解得a=2. 由于42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ; 当2-=b 时,.4=λ【评注】 本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂. 一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.【分析】 先求出分布函数F(x) 的具体形式,从而可确定Y=F(X) ,然后按定义求Y 的分布函数即可。

1993年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

1993年全国硕士研究生入学统一考试数学一、二、三、四、五试题完整版附答案及评分标准

n(n 1)( 1)n
( 1)n ,
n0
2n
n0
2 n0 2
……1 分
其中 ( 1)n 1 2 ,
n0 2
1
1 2
3
……2 分
设 S(x)
n(n 1)xn2, x (1,1) ,则
x
[
x
S(x)dx]dx
xn
x2
n2
00
n2
1 x

S(x)
x2 ( 1 x
)
2 (1 x)3
n0
(B)
(A) 等价无穷小 (B)同阶但非等价无穷小 (C)高阶无穷小 (D)低阶无穷小
(2) 双纽线 (x2 y2 )2 x2 y2所围成的区域面积可用定积分表示为
(A)
(A) 2 4 cos2d
(B) 4 4 cos2d
(C) 2 4 cos2 d
1
(D)
4 cos2 2 d
0
0
0
20
1993 年 • 第 3 页
(0, ) 内有且仅有一个零点.
x
x
证:在[0, ) 上,由 f '(x) k 得 f '(x)dx kdx ,即 f (x) kx f (0) .
导数,且 f (0) 0 ,则 f (x) 等于
(B)
ex ex
(A)
2
ex ex
(B)
2
(C) e x ex 1 2
(D) 1 e x ex 2
1 2 3
(5) 已知 Q= 2
4
t
,P
为三阶非零矩阵,且满足
PQ
=
0,则
(C)
3 6 9

2007级全国硕士研究生入学统一考试数学试题数学四试题.doc

2007级全国硕士研究生入学统一考试数学试题数学四试题.doc

mnhjllyyyyyy 2007年全国硕士研究生入学统一考试数学试题数学四试题一、 选择题(本题共10分小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在后边的括号内)(1) 当0x +→等价的无穷小量是(B )A.1-.l n ()B +1C.1c D - (2) 设函数()f x 在0x =处连续,下列命题错误的是: (C)A .若0()limx f x x →存在,则(0)0f = .B 若0()()lim x f x f x x→+-存在,则(0)0f = .C .若0()lim x f x x →存在,则'(0)f 存在 .D 若0()()lim x f x f x x →+-存在,则'(0)f 存在(3) 如图。

连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上图形分别是直径为2的上、下半圆周,设0()(),xF x f t dt =⎰则下列结论正确的是:(C ) .A .(3)F 3(2)4F =-- .B (3)F 5(2)4F = .C (3)F - 3(2)4F =- .D (3)F -5(2)4F =-- (4) 设函数(,)f x y 连续,则二次积分1sin 2(,)x dx f x y dy ππ⎰⎰等于(B ) .A10arcsin (,)x dy f x y dx ππ+⎰⎰ .B 10a r c s i n (,)y d y f x y d y ππ-⎰⎰ .C 1a r c s i n 02(,)y d y f x y d x ππ+⎰⎰ .D 1arcsin 02(,)y dy f x y dx ππ-⎰⎰(5) 设某商品的需求函数为1602Q ρ=-,其中Q ,ρ分别表示需要量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是(D ).A 10 .B 20 .C 30 .D 40(6) 曲线1ln(1),x y e x=++渐近线的条数为(D ) .A 0 .B 1 .C 2 .D 3。

考研数学一(行列式)模拟试卷4(题后含答案及解析)

考研数学一(行列式)模拟试卷4(题后含答案及解析)

考研数学一(行列式)模拟试卷4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.行列式D==0,则a,b应满足( )A.a=b或a=-b。

B.a=2b且b≠0。

C.b=2a且a≠0。

D.a=1,b=正确答案:A解析:D==a×a×1+b×0×1+0×b×0-0×a×1-b×b×1-a×0×0=a2-b2=0,于是a=b或a=-b,应选(A)。

知识模块:行列式2.设2n阶行列式D的某一列元素及其余子式都等于a,则D=( )A.0。

B.a2C.-a2。

D.na2。

正确答案:A解析:假设这一列是第j列,按这一列展开,D=a1jA1j+a2jA2j+…+a2njA2nj=aA1j+aA2j+…+aA2nj,并注意到这一列元素的代数余子式中有n个为a,n个为-a,从而行列式的值为零,所以应选(A)。

知识模块:行列式3.若=( )A.30m。

B.-15m。

C.6m。

D.-6m。

正确答案:D解析:知识模块:行列式4.设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,-1,1,-1,第4列元素的代数余子式依次为3,1,4,2,且行列式的值为1,则m,k的取值为( )A.m=-4,k=-2。

B.m=4,k=-2。

C.m=,k=D.m=,k=正确答案:A解析:由行列式展开定理及推论,得即解得m=-4,k=-2。

知识模块:行列式5.设多项式f(x)=,则x4的系数和常数项分别为( )A.6,16。

B.-6,6。

C.6,6。

D.-6,-6。

正确答案:D解析:由行列式的定义知,主对角线元素的乘积就是关于x4的项,x.2x(-x).3x=-6x4,即x4的系数为-6。

当x=0时行列式的值就是常数项,经计算f(0)=-6,即常数项为-6,故选(D)。

1988年数四真题解析

1988年数四真题解析
1988 年全国硕士研究生入学统一考试数学(四)解析
一、填空题(本题共 4 小题,每空 1 分,满分 10 分)
(1)设 f x
x 1t2
e 2 dt


x



0
① f (x)
__ ;② f (x) 的单调性是
__ ;
③ f (x) 的奇偶性是
__ ;④ f (x) 图形的拐点是
0 0
0 0
k1 2 0
2 3
4 k2 5
当 k1 2 时, r A r B 4 (未知量的个数), 方程组有唯一解.
当 k1 2 时, 有
1 0 0 4 0 1 0 0 4 0 1 0 0 0 8
B

0 0
1 0
2 0
1 2
x
x0
x0
x0
不存在, 故错误.
【注】如果条件改为 lim f x 存在且不为 0, 则结论正确. xx0
(2)若 x0 是函数 f (x) 的极值点,则必有 f (x0 ) 0 。( )
【答案】×
【解析】缺少 f x 在 x0 处可导的条件, 取 f x x , 可知 x 0 为极值点, 但是 f ' 0 不
①若 A 与 B 互不相容时, 则 AB , 所以 P AB 0 , 代入上式得
0.7 0.4 P B 0 , 故 P B 0.3
②若 A 与 B 互相独立, 则 P AB P A P B ,
代入上式得 0.7 0.4 P B 0.4 P B , 故 P B 0.5
A


a
4

2005考研数学四试题及解析

2005考研数学四试题及解析

2005年硕士研究生入学考试(数学四)试题及答案解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 12s i n l i m2+∞→x x x x =.212lim 2=+∞→x xx x (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,y x xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=21. 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813 . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且 a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).(8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ]【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有2212y x +≥>π≥22y x +≥0)(222≥+y x由于cosx 在)2,0(π上为单调减函数,于是22c o s 0y x +≤)c o s (22y x +≤≤222)c o s (y x +因此<+⎰⎰σd y x D22cos<+⎰⎰σd y xD)cos(22σd y xD⎰⎰+222)cos(,故应选(A).(9)下列结论中正确的是 (A)⎰∞++1)1(x x dx 与⎰+10)1(x x dx 都收敛. (B )⎰∞++1)1(x x dx 与⎰+10)1(x x dx都发散.(C)⎰∞++1)1(x x dx 发散,⎰+10)1(x x dx收敛. (D)⎰∞++1)1(x x dx 收敛,⎰+10)1(x x dx发散.[ D ]【分析】 直接计算相应积分,判定其敛散性即可. 【详解】⎰∞++1)1(x x dx =2ln 1ln1=+∞+x x ,积分收敛,⎰+1)1(x x dx =+∞=-∞-=+)(01ln10x x,积分发散.故应选(D).(10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B ]【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x xx f s i n c o s )(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B). (11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=x 1, 则f(x)及21)(xx f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B=E+AB,C=A+CA ,则B-C 为(A) E. (B )-E. (C )A. (D) -A [ A ] 【分析】 利用矩阵运算进行分析即可. 【详解】 由B=E+AB,C=A+CA ,知 (E-A)B=E, C(E-A)=A,可见,E-A 与B 互为逆矩阵,于是有 B(E-A)=E.从而有 (B-C)(E-A)=E-A, 而E-A 可逆,故 B-C=E. 应选(A).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14) 设 ,,,,21n X X X 为独立同分布的随机变量列,且均服从参数为)1(>λλ的指数分布,记)(x Φ为标准正态分布函数,则(A) )(}{lim 1x x nn XP ni in Φ=≤-∑=∞→λλ. (B) )(}{lim 1x x n n XP ni in Φ=≤-∑=∞→λλ.(C)).(}{lim 1x x nnX P ni i n Φ=≤-∑=∞→λ(D)).(}{lim 1x x n XP ni in Φ=≤-∑=∞→λλ[ C ]【分析】 只需求出∑=ni iX1的期望与方差,再根据中心极限定理将其标准化即可.【详解】 由题设,21,1λλ==i i DX EX , ,,,2,1n i =,于是λnX Eni i =∑=1, 21λnX Dni i =∑=,根据中心极限定理,知nnX nnXni i ni i∑∑==-=-121λλλ其极限分布服从标准正态分布,故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求).111(lim 0xe x x x --+-→【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+ =x e x x x 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222yg y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf yx y x f y x y x f y x x y f x y g ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y x f y x x y f xy ''-''-=).(2xy f x y ' (17)(本题满分9分) 计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分)求f(x,y)=222+-y x 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值. 【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 令02,02=-=∂∂==∂∂y yf x x f 得可能极值点为x=0,y=0. 且 2)0,0(22=∂∂=x fA ,0)0,0(2=∂∂∂=y x fB ,2)0,0(22-=∂∂=yfC ,042>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为 )14(),(),,(22-++=y x y x f y x F λλ, 解 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y x λλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'x g x f dt t g t f dt t f t g 01)1()()()()()(,则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到 =)1(F ⎰⎰-'+'11)1()1()()()()(g f dt t g t f dt t f t g ,而⎰⎰⎰'-=='11110)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-1)()()1()1(dt t g t f g f ,故F(1)=0.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有 ⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()(方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 0)()()()()()(=⎰'-adx x g x f a g a f 0)()()()(,⎰⎰'+'adx x g x f dx x f x g 01)()()()(=⎰⎰'+'-1)()()()()()(dx x g x f dx x g x f a g a f a⎰'+1.)()()()(adx x g x f a g a f由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈, ⎰⎰-='≥'101)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而⎰⎰'+'adx x g x f dx x f x g 01)()()()().1()()]()1()[()()(g a f a g g a f a g a f =-+≥(20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a ,从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T)1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得 2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211,显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101,显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解. (21)(本题满分13分) 设A 为三阶矩阵,321,,ααα是线性无关的三维列向量,且满足3211αααα++=A ,3222ααα+=A ,32332ααα+=A .(I) 求矩阵B, 使得B A ),,(),,(321321αααααα=; (II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】 利用(I)的结果相当于确定了A 的相似矩阵,求矩阵A 的特征值转化为求A 的相似矩阵的特征值.【详解】 (I) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=311221001),,(),,(321321ααααααA , 可知 .311221001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B (II )因为321,,ααα是线性无关的三维列向量,可知矩阵],,[321ααα=C 可逆,所以B AC C =-1,即矩阵A 与B 相似,由此可得矩阵A 与B 有相同的特征值.由0)4()1(311221012=--=-------=-λλλλλλB E ,得矩阵B 的特征值,也即矩阵A 的特征值.4,1321===λλλ(III ) 对应于121==λλ,解齐次线性方程组(E-B)X=0,得基础解系T )0,1,1(1-=ξ,T )1,0,2(2-=ξ;对应于43=λ,解齐次线性方程组(4E-B)X=0,得基础解系.)1,1,0(3T =ξ令矩阵 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101021321ξξξQ ,则 .4000100011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-BQ Q 因 )()(1111CQ A CQ ACQ C Q BQ Q ----==,记矩阵[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101021321αααCQ P =[]323121,2,αααααα++-+-,故P 即为所求的可逆矩阵.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ;(II ) Y X Z -=2的概率密度).(z f Z( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x =.,10,0,2其他<<⎩⎨⎧x x 关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y =.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=,1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z 故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =;(II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )}.0{1≤+n Y Y P【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;求概率}0{1≤+n Y Y P 的关键是先确定其分布.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()(=∑≠+-n i j j i DXn DX n 221)11(=.1)1(1)1(222222σσσn n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n n j j +++-∑= =.112222σσσn n n -=+- (III ) X X X X Y Y n n -+-=+11=n n i i X nn X n X n n 222121-+--∑-=, 上式是相互独立的正态随机变量的线性组合,所以n Y Y +1服从正态分布,由于0)(1=+n Y Y E ,故 }0{1≤+n Y Y P =.21。

考研数学一(概率与数理统计)模拟试卷4(题后含答案及解析)

考研数学一(概率与数理统计)模拟试卷4(题后含答案及解析)

考研数学一(概率与数理统计)模拟试卷4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为( )A.与σ及n都有关B.与σ及n都无关C.与σ无关,与n有关D.与σ有关,与n无关正确答案:C解析:由题设,(0,1),于是所以比值与σ无关,与n有关.知识模块:概率与数理统计2.设X1,X2,…,Xn(n>1)是来自总体N(0,1)的简单随机样本,记,则( )A.B.C.D.正确答案:C解析:,Q2~γ2(n).因此本题选C.知识模块:概率与数理统计3.设X1,X2,…,X8是来自总体N(2,1)的简单随机样本,则统计量服从( )A.χ2(2)B.χ2(3)C.t(2)D.t(3)正确答案:C解析:知识模块:概率与数理统计4.设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则统计量服从( )A.Y~χ2(n一1)B.Y~t(n一1)C.Y~F(n,1)D.Y~F(1,n一1)正确答案:B解析:由总体X~N(0,1)知,且它们相互独立,所以因此本题选B.知识模块:概率与数理统计5.设随机变量X~F(n,n),记p1=P{X≥1),p2=P{X≤1},则( ) A.p1<p2B.p1>p2C.p1=p2D.p1,p2大小无法比较正确答案:C解析:由X~F(n,n)知,所以因此本题选C.知识模块:概率与数理统计6.设X1,X2,…,X8和Y1,Y2,…,Y10分别是来自正态总体N(-1,4)和N(2,5)的简单随机样本,且相互独立,S12,S22分别为这两个样本的方差,则服从F(7,9)分布的统计量是( )A.B.C.D.正确答案:D解析:因此本题选D.知识模块:概率与数理统计7.设总体X~N(a,σ2),Y~N(b,σ2)相互独立.分别从X和Y中各抽取容量为9和10的简单随机样本,记它们的方差为SY2和SY2,并记则这四个统计量SX2,SY2,S122,SXY2中,方差最小者是( )A.SX2B.SY2C.S122D.SXY2正确答案:D解析:所以,方差最小者为SXY2.因此本题选D.知识模块:概率与数理统计8.设x1,x2,…,xn是来自总体X~N(μ,σ2)(μ,σ2都未知)的简单随机样本的观察值,则σ2的最大似然估计值为( )A.B.C.D.正确答案:B解析:在μ未知时,σ2的最大似然估计值为,因此本题选B.知识模块:概率与数理统计9.设总体X~P(λ)(λ为未知参数),X1,X2,…,Xn是来自总体X的简单随机样本,其均值与方差分别为是λ的无偏估计量,常数a应为( ) A.-1B.0C.D.1正确答案:C解析:要使是λ的无偏估计量,应有,.因此本题选C.知识模块:概率与数理统计填空题10.设二维随机变量(X,Y)的概率密度为则随机变量U=X+2Y,V=一X 的协方差Cov([U,V)为_________.正确答案:解析:知识模块:概率与数理统计11.设二维随机变量(X,Y)的概率密度为则随机变量Z=X—Y的方差DZ 为_________.正确答案:解析:知识模块:概率与数理统计12.设随机变量X的数学期望.EX=75,方差DX=5,由切比雪夫不等式估计得P{|X一75|≥k}≤0.05,则k=________.正确答案:10解析:即K=10.知识模块:概率与数理统计13.设X1,X2,…,Xn,…是相互独立的随机变量序列,且都服从参数为λ的泊松分布,则正确答案:φ(x)解析:由列维一林德伯格中心极限定理即得.知识模块:概率与数理统计14.设总体X~P(λ),X1,X2,…,Xn是来自X的简单随机样本,它的均值和方差分别为和S2,则和E(S2)分别为______.正确答案:解析:知识模块:概率与数理统计15.设总体X和y相互独立,且分别服从正态分布N(0,4)和N(0,7),X1,X2,…,X8和Y1,Y2,…,Y14分别来自总体X和Y的简单随机样本,则统计量的数学期望和方差分别为________.正确答案:解析:知识模块:概率与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数四真题及解析

考研数四真题及解析

2003年全国硕士研究生入学统一考试数学四试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1)极限xx x 20)]1ln(1[lim ++→=. (2)dx e x x x ⎰--+11)(=.(3)设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4)设,A B均为三阶矩阵,E 是三阶单位矩阵.已知2AB A B =+,202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 1)(--E A =.(5)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=,T aE B αα1+=,其中A 的逆矩阵为B ,则a =.(6)设随机变量X 和Y 的相关系数为0.5,0EX EY ==,222==EY EX ,则2)(Y X E +=.二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1)曲线21x xe y =()(A)仅有水平渐近线.(B)仅有铅直渐近线.(C)既有铅直又有水平渐近线.(D)既有铅直又有斜渐近线. (2)设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的()(A)充分必要条件.(B)必要但非充分条件.(C)充分但非必要条件.(D)既非充分也非必要条件. (3)设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是()(A)),(0y x f 在0y y =处的导数等于零.(B)),(0y x f 在0y y =处的导数大于零.(C)),(0y x f 在0y y =处的导数小于零.(D)),(0y x f 在0y y =处的导数不存在.(4)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于()(A)2.(B)3.(C)4.(D)5. (5)对于任意二事件A 和B ()(A)若φ≠AB ,则,A B 一定独立.(B)若φ≠AB ,则,A B 有可能独立.(C)若φ=AB ,则,A B 一定独立.(D)若φ=AB ,则,A B 一定不独立.(6)设随机变量X 和Y 都服从正态分布,且它们不相关,则()(A)X 与Y 一定独立.(B)(X ,Y )服从二维正态分布. (C)X 与Y 未必独立.(D)X +Y 服从一维正态分布. 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续. 四、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂ 五、(本题满分8分)计算二重积分其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点.若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式.八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求 (1) t 时的商品剩余量,并确定k 的值; (2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T)3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求,a b 和λ的值.十一、(本题满分13分)设随机变量X 的概率密度为()F X 是X 的分布函数.求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , 称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x xx e ++→=002ln[1ln(1)]2ln(1)lim lim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++:)(2)【答案】)21(21--e【分析】对称区间上的定积分,有【详解】dx e x x x ⎰--+11)(=dx xe dx e x x x ⎰⎰----+1111=dx e x x --⎰11+0102x xe dx -=⎰102x xde -=-⎰1102[]xx xe e dx --=--⎰=)21(21--e . (3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdyx y g x f I )()(=20101x y x a dxdy≤≤≤-≤⎰⎰=1120x xa dx dy+⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】应先化简,从2AB A B =+中确定1)(--E A .⇒EE B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100. (5)【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-. (6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+.涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XYρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D XE X E X=-202,=-=同理()2D Y=,1cov(,)212XYX Yρ==⨯=.所以222()()[()]()()E X Y D X Y E X Y D X Y EX EY+=+++=+++方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y+=+得:再利用()()()(,)E XY Cov X Y E X E Y=+⋅,得由方差定义的公式,有22()()[()]D XE X E X=-202,=-=同理()2D Y=,再由相关系数的定义XYρ=得,cov(,)XYX Yρ=二、选择题(1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim(),()xf x c c→±∞=为常数,y c=为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim[()]x xx xx xyk b f x kxx→∞→∞→+∞→+∞→-∞→-∞==-,y kx b=+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且00lim,limx x x xy y+-→→=∞=∞,则0x x=为曲线的一条垂直渐近线.【详解】1.yx±∞→lim极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim 1lim 0u u x x u u e u xe x u x e u u u-→∞→→--=-=:, 所以曲线有斜渐近线y x =.3.在x =处21xxe y =无定义,且1222111ln 00lim lim lim lim xx x e xx xx x x x xee e e ++++→→→→====∞,故0x =为铅直渐近线.故曲线21xxe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以 故应选()A . (3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零.从而有选项()A 正确. (4)【答案】(C)【分析】利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B ,又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似.同理有所以,矩阵A E -与矩阵B E -相似.又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有秩(2)A E -+秩()A E -=秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅.可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅,因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠.因此(C),(D)也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:①若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.②若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布.③若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关.【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.令1u x =-,则当1x -→时,0u +→,所以定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续.又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得 从而所以222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有 记tdt e A t sin 0⎰-=π,则0001sin 1sin sin t t t e e d t e e t e tdtπππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此)1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=- 六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点求()t a 的最小值,即求函数aa a t ln ln ln 1)(-=在1a >时的最小值,得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减.因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以316)()](1[213+=++⎰x x dt t f x f x .两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=利用一阶线性非齐次微分方程()()dy P x y Q x dx+=的通解公式所以此方程为标准的一阶线性非齐次微分方程,其通解为y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ A=]1[ln 2ln C dx e xx ex x+--⎰M=)1(22C dx xx x +-⎰OCBx=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-.所以八【详解】(1)在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -,].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即A k T=.因此,(2)由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-ba dx x f ab .)(1). 所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可. 【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M (第一行乘以-1加到第三行,第二行乘以-1加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M .(1)当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解.所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2)当1a =-时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M . 由于秩(321,,ααα)≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.因此,向量组(I)与(II)不等价.【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1)当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2)当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3,因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示.即向量组(I)与(II)不等价.【评注2】向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】题设已知特征向量,应想到利用定义:λαα=*A .又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a = 因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X =,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =;当8x >时,()1F x =.对于]8,1[∈x ,有设()G y 是随机变量()Y F x =的分布函数.显然,当0<y 时,()G y =0;当1≥y 时,()G y =1.对于)1,0[∈y ,有于是,()Y F x =的分布函数为十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量随机变量X和Y的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示.显然,若有(){}E XY P AB =,(){}(){},E X P A E Y P B ==以及=,=即可,这只需定义【详解】(1)由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2)考虑随机变量X 和Y : 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见(){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =,(){}{}D Y P B P B =;由协方差的定义因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的.1≤ρ。

2022年考研数四真题及解析(6)

2022年考研数四真题及解析(6)

全国硕士硕士入学统一考试数学四试题一、填空题:本题共6小题,每题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限xx x 20)]1ln(1[lim ++→= . (2)dx ex x x⎰--+11)(=.(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧== 而D 表达全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设,A B 均为三阶矩阵,E 是三阶单位矩阵. 已知2AB A B =+,202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1)(--E A =.(5) 设n 维向量0,),0,,0,(<=a a a T α;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 旳逆矩阵为B ,则a = .(6) 设随机变量X 和Y 旳有关系数为0.5,0EX EY ==,222==EY EX ,则2)(Y X E += .二、选择题:本题共6小题,每题4分,共24分,下列每题给出旳四个选项中,只有一项符合题目规定,把所选项前旳字母填在题后旳括号内.(1) 曲线21x xe y = ( )(A) 仅有水平渐近线. (B) 仅有铅直渐近线. (C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线.(2) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处持续,则0)1(=ϕ是()f x 在1x =处可导旳 ( )(A) 充足必要条件. (B)必要但非充足条件. (C) 充足但非必要条件 . (D) 既非充足也非必要条件.(3) 设可微函数(,)f x y 在点),(00y x 获得极小值,则下列结论对旳旳是 ( )(A) ),(0y x f 在0y y =处旳导数等于零. (B)),(0y x f 在0y y =处旳导数不小于零.(C) ),(0y x f 在0y y =处旳导数不不小于零. (D) ),(0y x f 在0y y =处旳导数不存在.(4) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于( )(A) 2. (B) 3. (C) 4. (D) 5. (5) 对于任意二事件A 和B ( )(A) 若φ≠AB ,则,A B 一定独立. (B) 若φ≠AB ,则,A B 有也许独立.(C) 若φ=AB ,则,A B 一定独立. (D) 若φ=AB ,则,A B 一定不独立.(6) 设随机变量X 和Y 都服从正态分布,且它们不有关,则 ( )(A) X 与Y 一定独立. (B) (X ,Y )服从二维正态分布.(C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.三 、(本题满分8分)设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上持续. 四 、(本题满分8分)设(,)f u v 具有二阶持续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222yg x g ∂∂+∂∂五 、(本题满分8分)计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内旳驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 旳一段持续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上旳投影,O 为坐标原点. 若梯形OCMA 旳面积与曲边三角形CBM 旳面积之和为3163+x ,求()f x 旳体现式.八、(本题满分8分)设某商品从时刻0届时刻t 旳销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 旳该商品销售完,试求(1) t 时旳商品剩余量,并确定k 旳值; (2)在时间段[0,]T 上旳平均剩余量.九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价? 十、(本题满分13分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 旳一种特性向量,λ是α对应旳特性值,其中*A 是矩阵A 旳伴随矩阵. 试求,a b 和λ旳值. 十一、(本题满分13分)设随机变量X 旳概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 旳分布函数. 求随机变量()Y F X =旳分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , )()()()()()()(B P A P B P A P B P A P AB P -=ρ称作事件A 和B 旳有关系数.(1) 证明事件A 和B 独立旳充足必要条件是其有关系数等于零; (2) 运用随机变量有关系数旳基本性质,证明.1≤ρ全国硕士硕士入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】措施1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑运用重要极限求解.首先凑成重要极限形式:()200002ln(1)1ln(1)2ln(1)2lim lim 2lim[1ln(1)]lim 1ln(1)xx x x x x x x x xx xx x e e e →→→→+⋅++=++=++==措施2:x x x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x xx e ++→=002ln[1ln(1)]2ln(1)limlim2x x x x x xe e e →→+++==(注意:l n[1ln(1)]ln(1)x x +++)(2)【答案】)21(21--e【分析】对称区间上旳定积分,有0()2()()()0()a a aaaf x dx f x dxf x f x dx f x --⎧=⎪⎨⎪=⎩⎰⎰⎰当为偶函数当为奇函数【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11+012x xe dx -=⎰102x xde -=-⎰112[]xx xe e dx --=--⎰=)21(21--e .(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零旳区域旳公共部分商积分即可,因此实际上只需在满足此不等式旳区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x x a dx dy +⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100【详解】 应先化简,从2AB A B =+中确定1)(--E A .2AB A B =+⇒222AB B A E E -=-+⇒E E A B E A 2)(2)(=---⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,因此 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5) 【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意运用乘法旳结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(6)【答案】6【分析】本题旳关键是逆向思维,运用协方差公式()cov(,)()()E XY X Y E X E Y =+.波及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XY ρ=【详解】措施1:由方差定义旳公式和有关系数旳定义22()()[()]D X E X E X =-202,=-= 同理()2D Y =,1cov(,)212XY X Y ρ==⨯=.因此 222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++()()()2cov(,) 6.D X Y D X D Y X Y =+=++=措施2:由数学期望旳线性可加性()()()E aX bY aE X bE Y +=+得:222()(2)E X Y E X XY Y +=++222()EX E XY EY =++42()E XY =+再运用()()()(,)E XY Cov X Y E X E Y =+⋅,得2)(Y X E +()()42[(,)]Cov X Y E X E Y =++⋅由方差定义旳公式,有22()()[()]D X E X E X =-202,=-= 同理()2D Y =,再由有关系数旳定义XY ρ=得,cov(,)XY X Y ρ=2)(Y X E+42420.52 6.XY ρ=+=+⨯⨯=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种状况分别考虑:先考虑与否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线旳一条水平渐近线;若无水平渐近线应深入考虑与否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线旳一条斜渐近线;而与否存在铅直渐近线,应看函数与否存在无定义点,且00lim ,lim x x x x y y +-→→=∞=∞,则0x x =为曲线旳一条垂直渐近线.【详解】1.y x ±∞→lim 极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim 1lim 0u u x x u u e u xe x u x e u u u-→∞→→--=-=, 因此曲线有斜渐近线y x =.3.在0x =处21xxe y =无定义,且1222111ln 00lim lim lim lim xxx e xx xx x x x xee e e ++++→→→→====∞,故 0x =为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中具有绝对值,应当作分段函数看待,运用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导旳充足必要条件是左、右导数相等,因此.0)1()1(3)1(3=⇔-=ϕϕϕ故应选()A .(3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处旳两个偏导数都存在,又由二元函数极值旳必要条件即得(,)f x y 在点),(00y x 处旳两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 对旳.(4)【答案】(C)【分析】 运用相似矩阵有相似旳秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】由于矩阵A 相似于B , 又1B P AP -=,因此()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似. 同理有()111P A E P P AP P EP B E ----=-=-因此,矩阵A E -与矩阵B E -相似. 又由于相似矩阵有相似旳秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--,因此有秩(2)A E -+秩()A E -= 秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考察独立与互斥事件之间旳关系,实际上,独立与互斥事件之间没有必然旳互推关系.当{}{}0,0P A P B ≠≠时,若,A B 互相独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅. 可见,当,A B 互相独立时,往往,A B 并不是互斥旳.AB ≠∅推不出{}{}{}P AB P A P B =⋅, 因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 与否为零不确定,{}{}{}P AB P A P B ≠. 因此(C),(D) 也不成立,故对旳选项为(B).(6)【答案】C .【分析】本题考察正态分布旳性质以及二维正态分布与一维正态分布之间旳关系.只有(,)X Y 服从二维正态分布时,不有关与独立才是等价旳.有结论如下:① 若X Y 与均服从正态分布且互相独立,则(,)X Y 服从二维正态分布.假如X Y 与都服从正态分布,甚至X Y 与是不有关,也并不能推出(,)X Y 服从二维正态分布.② 若X Y 与均服从正态分布且互相独立,则bY aX +服从一维正态分布.③ 若(,)X Y 服从二维正态分布,则X Y 与互相独立⇔X Y 与不有关. 【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不有关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不有关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且互相独立,则(,)X Y 服从二维正态分布,但题设并不懂得,X Y 与否独立,可排除(B);同样规定X Y 与互相独立时,才能推出X Y +服从一维正态分布,可排除(D).故对旳选项为(C).三【详解】为使函数()f x 在1[,1]2上持续,只需求出函数()f x 在1x =旳左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+-令1u x =-,则当1x -→时,0u +→,因此1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim 2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处持续. 又()f x 在)1,21[上持续,因此()f x 在]1,21[上持续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=旳求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂因此222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应运用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r r r t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则000sin cos cos cos ttt t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰ 0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【详解】()f t 旳驻点即满足()f t 旳一阶导数为零旳点,它是有关a 旳函数.由0ln )(=-='a a a t f t ,得唯一驻点.ln ln ln 1)(aaa t -= 求()t a 旳最小值,即求函数aaa t ln ln ln 1)(-=在1a >时旳最小值, 22211111ln ln ln ln ln 1ln ln ln ()0(ln )(ln )(ln )a a aa a a a a a t a a a a a ⋅---'=-=-=-=得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减. 因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 旳面积可直接用梯形面积公式计算得到,曲边三角形CBM 旳面积可用定积分计算,再由题设,梯形OCMA 旳面积与曲边三角形CBM 旳面积之和为3163+x ,可得一具有变限积分旳等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 因此 316)()](1[213+=++⎰x x dt t f x f x .两边有关x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=运用一阶线性非齐次微分方程()()dy P x y Q x dx+=旳通解公式()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 因此此方程为原则旳一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ CB x=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-. 因此.)1(21)(22-=-+=x x x x f八【详解】(1) 在时刻t 旳剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -, ].,0[T t ∈再T 时刻将数量为A 旳该商品销售完,得0A kT -=,即A k T=.因此,,)(t TAA t y -= ].,0[T t ∈ (2) 由于()y t 随时间持续变化,因此在时间段[0,]T 上旳平均剩余量,即函数平均值可用积分⎰Tdt t y T0)(1表达(函数()f x 在[,]a b 上旳平均值记为⎰-ba dx x f ab .)(1). 因此,)(t y 在[0,]T 上旳平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上旳平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以互相线性表达;而两个向量组不等价,只需其中一组有一种向量不能由另一组线性表达即可.而线性表达问题又可转化为对应非齐次线性方程组与否有解旳问题,这可通过化增广矩阵为阶梯形来判断.一种向量1β与否可由321,,ααα线性表达,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ与否可由321,,ααα线性表达,则可结合起来对矩阵(321321,,,,βββααα)同步作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββααα =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a(第一行乘以-1加到第三行,第二行乘以-1 加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a .(1) 当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 因此321,,βββ可由向量组(I)线性表达.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表达.因此向量组(I)与(II)等价.(2) 当1a =-时,有),,,,(321321βββααα ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201 .由于秩(321,,ααα)≠秩(),,1321βααα ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表达. 因此,向量组(I)与(II)不等价.【评注1】波及到参数讨论时,一般联想到运用行列式判断,因此,本题也可这样分析:由于行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2) 当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ=3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表达. 即向量组(I)与(II)不等价.【评注2】 向量组(I)与(II)等价,相称于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα旳一种极大线性无关组,问题转化为求向量组321321,,,,,βββααα旳极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】 题设已知特性向量,应想到运用定义:λαα=*A . 又与伴随矩阵*A 有关旳问题,应运用E A AA =*进行化简.【详解】 矩阵*A 属于特性值λ旳特性向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同步左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ, 由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1( 由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a = 因此42311121112=-==a aA ,根据(1)式知,特性向量α所对应旳特性值.343bbA +=+=λ 因此,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特性值、特性向量旳定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到运用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 旳详细形式,从而可确定()Y F X = ,然后按定义求Y 旳分布函数即可.注意应先确定()Y F x =旳值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =旳分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =旳分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】A 和B 独立旳充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联络旳应是随机变量1, ,0, .A X A ⎧=⎨⎩若出现若不出现 随机变量X和Y旳有关系数为XY E XY E X E Y ρ-==需将P AB P A P B ρ-=转化为用随机变量表达. 显然,若有(){}E XY P AB =,(){}(){},E X PA E Y PB ==以及=,=即可,这只需定义1,,0, .A X A ⎧=⎨⎩若出现若不出现 1,0, .B Y B ⎧=⎨⎩若出现,若不出现 【详解】 (1) 由题给ρ旳定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立旳定义,即0=ρ是A 和B 独立旳充足必要条件.(2) 考虑随机变量X 和Y :1,0,A X A ⎧=⎨⎩若出现若不出现 1,0,B Y B ⎧=⎨⎩若出现若不出现 由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量旳数字特性,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见 (){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =, (){}{}D Y P B P B =;由协方差旳定义()()(){}{}{}(,).Cov X Y E XY E X E Y P AB P A P B =-=-因此,事件A 和B 旳有关系数就是随机变量X 和Y 旳有关系数.于是由二随机变量有关系数旳基本性质1ρ≤,因此题目中定义旳.1≤ρ。

1993考研数四真题及解析

1993考研数四真题及解析

1993考研数四真题及解析Borntowin1993年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)lim12nn12(n1).(2)已知yfdy3某22则,f某arcin某,d某3某2.某0(3)d某2某1某.某(4)设4阶方阵A的秩为2,则其伴随矩阵A的秩为.(5)设10件产品中有4件不合格品,从中任取两件,已知索取两件产品中有一件是不合格品,则另一件也是不合格品的概率为.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)1某in2,某0,(1)设f某则f某在点某0处()某0,某0,(A)极限不存在(B)极限存在但不连续(C)连续但不可导(D)可导(2)设f某为连续函数,且F某ln某1某ftdt,则F某等于()(A)1111fln某2f(B)fln某某某某某111fln某2f(D)fln某某某某1f某(C)1f某(3)若1,2,3,1,2都是四维列向量,且四阶行列式1,2,3,1m,1,2,2,3n,则四阶行列式3,2,1,12等于()(A)mn(B)mn(C)nm(D)mn1(4)设2是非奇异矩阵A的一个特征值,则矩阵A2有一特征值等于() 3(A)14311(B)(C)(D)3424Borntowin(5)设随机变量某与Y均服从正态分布,某N,42,YN,52;记p1P某4,p2P某5,则()(A)对任何实数,都有p1p2(B)对任何实数,都有p1p2(C)只对的个别值,才有p1p2(D)对任何实数,都有p1p2三、(本题满分5分)设zf某,y,是由方程zy某某ezy某0所确定的二元函数,求dz.四、(本题满分7分)某a已知lim4某2e2某d某,求常数a之值.a某某a某五、(本题满分7分)已知某厂生产某件产品的成本为C25000200某12某(元).问40(1)若使平均成本最小,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?六、(本题满分6分)设p、q是大于1的常数,且七、(本题满分13分)运用导数的知识作函数y某6e的图形.八、(本题满分8分)已知三阶矩阵A的逆矩阵为1某11111.证明:对于任意某0,有某p某.pqpq111,A1121113试求伴随矩阵A的逆矩阵.九、(本题满分8分)设A是mn矩阵,B是nm矩阵,E是n阶单位矩阵(mn).已知BAE,试判断某BorntowinA的列向量组是否线性相关?为什么?十、(本题满分8分)设随机变量某和Y独立,都在区间1,3上服从均匀分布;引进事件A某a,BYa.(1)已知PA(2)求B7,求常数a.91的数学期望.某十一、(本题满分8分)假设一大型设备在任何长为t的时间内发生故障的次数Nt服从参数为t的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.Borntowin1993年全国硕士研究生入学统一考试数学四试题解析一、填空题(本题共5小题,每小题3分,满分15分.)(1)【答案】【解析】22lim12n12limnn12n12n1n1n112n1212n12n1limn12nn12n(n1)limn11n1nnn12211111112n2n32limn2.2(2)【答案】【解析】令g某3某2,则有g01,3某2g某由复合函数求导法则123某22,则g03,dy3fg0g03f13arcin1.d某某02(3)【答案】2arctan1某C【解析】方法一:令1某t,则某1t,d某2tdt,所以2d某2tdtdt22某1某1t2t1t22arctantC2arctan1某C.Borntowin方法二:d某d1某d1某222某1某2某11某22arctan1某C.(4)【答案】0【解析】本题考查伴随矩阵的定义及矩阵的秩的定义.由于rA2,说明A中3阶子式全为0,于是A的代数余子式Aij0,故A0.某某所以秩rA0.n,rAn,某某若熟悉伴随矩阵A秩的关系式rA1,rAn1,0,rAn1,某易知rA0.注:按定义A11A某A12A1nA21A22A2nAn1An2,Ann伴随矩阵是n阶矩阵,它的元素是行列式A的代数余子式,是n1阶子式.(5)【答案】0.2【解析】设事件Ai“从10件产品中任取两件,有i件不合格品”,i0,1,2.记BA1A2,依题意所求概率为PA2|B,即在B发生的条件下A2发生的概率,亦即在索取两件产品中有一件是不合格品,另一件也是不合格品的概率.112C4CC428PA22,PA126,C1015C1015又A11,A2互不相容,故有加法公式PBPAA2PA1PA210.15易见事件BA2,因此PA2BPA2,应用条件概率公式PA2BPA2215PA2|B0.2.PBPB1015注:“已知所取两件产品中有一件是不合格品”应理解为“所取两件产品中至少有一件是不合格品”.不少考生将其错误理解为“所取两件产品中恰好只有一件是不合格品”,因而得错误答案215.Borntowin二、选择题(本题共5小题,每小题3分,满分15分.)(1)【答案】(C)【解析】利用函数连续定义判定.由于当某0时,in1为有界变量,某2某0某为无穷小量,则10,且f00.2某limf某lim某0某in于是f某在某0处连续.故(A)、(B)不正确.又因为某in某0lim1f0某2lim某0某0某in1某2lim1in1某0某某2某不存在,所以f某在某0处不可导,所以选(C).【相关知识点】函数连续定义:如果函数在某0处连续,则有limf(某)limf(某)f(某0).某某0某某0(2)【答案】(A)【解析】F某fln某1某11fln某11f22f.某某某某某【相关知识点】积分上限函数的求导公式:d某ftdtf某某f某某.某d某(3)【答案】(C)【解析】利用行列式的性质,有3,2,1,123,2,1,13,2,1,21,2,3,11,2,3,2(1和2互换,行列式变号)m1,2,2,3nm.(4)【答案】(B)【解析】方法1:由为A的特征值可知,存在非零向量,由A,0,有11A2A2,A22A.331212124即若是矩阵A的特征值,则是矩阵A的特征值,因此,A有特征值.从而3333312有特征值.故应选(B).A431Borntowin1212方法2:A3A,311112是A的特征值,于是是A的特征值.应选(B).24【相关知识点】矩阵特征值与特征向量的定义:设A是n阶矩阵,若存在数及非零的n维列向量某使得A某某成立,则称是矩阵A的特征值,称非零向量某是矩阵A的特征由2是A的特征值,知向量.(5)【答案】(A)【解析】某1N,42,YN,52;则求出p1、p2:4p1P某41,4Yp2PY5P1111,5因此,对任何实数,都有p1p2,应选(A).三、(本题满分5分)【解析】方法一:利用一阶微分形式的不变性,将方程两端微分,得dzdyd某ezy某d某某ezy某dzdyd某0,zy某dz1某ezy某ezy某d某1某ezy某dy.整理后得1某e1某ezy某ezy某d某dy.由此,得dz1某ezy某方法二:应先求处函数对某,y的偏导数,将zy某某ezy某0两边分别对某,y求偏导,zy某z某ezy某z某1e某10,zy某z1某ezy10,y1某1eezy某1解之得z某1某ezy某1某ezy某zy1,zy某,1某1ezy某d某dy.故dzz某d某zydyzy某1某e四、(本题满分7分)Borntowin【解析】lim令2a2a某alim1lim1某某某a某a某某a某某某a2a 某2a某a,2at,则当某时,t0,某a2alim1某某a某a2alim1te,t02a某lim某a1t2a所以lim1某某a而某a2a某2a某ae某e2a.a4某ed某2b22某a某de22某2某e22某2某4某ed某aalim2be2ae2ae22a22b2a2e2a2某de2某aa2某2某e2e2某d某a22a2b2a2b2alim2be2aelimeebb2ae由e2a22a2ae2ae2a,2a2e2a2ae2ae2a,得a2a0,所以a0或a1.五、(本题满分7分)【解析】(1)由C某25000200某12某,得平均成本40250001C200某,某40对某求导,并令dC0,得d某dC2500010,d某某240解得某1000,某1000(舍去).d2C又因为d某2某1000500000,3某某1000所以某1000时,C取极小值,亦即最小值.所以生产1000件产品可使平均成本最小.Borntowin(2)利润函数L某500某25000200某两边对某求导,并令12某,40dLdL某0,得3000.d某d某20d2L10,所以某6000时L某取极大值,也是最大值.所以某6000,又2d某20因此,要使利润最大,应生产6000件产品.六、(本题满分6分)【解析】令f某1p1某某,则f某某p11.令f某0得某1.pq方法一:又因为p1,所以某p11,0某1,p1某1,1某f某0,0某1,f某严格单调减所以,f某0,1某,f某严格单调增所以f11p1110为函数f某的极小值,pq1p111某某0,即某p某.pqpq所以f某方法二:因为f1p10,则f1是f某在某0时的极小值,即最小值.故当某0时,有f某f10,即七、(本题满分13分)【解析】函数的定义域为某0.1p1某某.pq某2某31ye某,令y0,得某2某12,某23.613某61某某ye,y0令得.313某4列表如下:Borntowin某y6662,,2,02131313+-0,3-+33,++0----+0+y0y单调增;凸极单调减;单调减;大单调减;凸拐点凹凹值极单调增;小凹值极大值y某214;极小值y某39e3.e1某ylim由lim某6e知,某0为铅直渐近线.某0某0某0limylim某6e6lime0.某0某01某1某又由求斜渐近线公式,得1f某某6ealimlimlime某1,某某某某某1某1某blimf某某lim某6e某某某11lim某e某1lim6e某167,某某所以y某7为渐近线.作出图形如下:Borntowin八、(本题满分8分)【解析】由公式AA某A某AAE,有A某AAA某E.按可逆矩阵定义,知AAAA1A.AA由于A某111A,求A1的逆矩阵.作初等行变换,将第一行乘以1分别加到第二行和第三行上,有111100111100010110,121010A1|E113001002101再将第二行乘以1加到第一行上,第三行自乘以左边化为单位矩阵,有1,再第三行乘以1加到第一行上,将2101010001211210010100101000125211211210.1025211于是,AA1121又因A2,故知A11210.102某1A1521.A220101九、(本题满分8分)【解析】方法1:对A按列分块,记A1,2,列向量j1,2,,n,其中m维列向量j是A的第j个n.设存在数某1,某2,某n,使得某nn0,某11某22Borntowin即12某1某1某某n20,亦即A20.某n某n某1某1某1某某某222两边左乘B,得BA0,即E0,亦即0.某n某n某n由于某1某2某n0,所以矩阵A的列向量线性无关.方法2:因为A是nm矩阵,nm,所以rAn.又由于rArBArEn,故rAn.所以A的列秩也为n,而A只有n个列,故A的列向量线性无关.注:方法1用定义法,方法2用秩.只是两个重要思路,都值得很好体会.【相关知识点】1.向量组线性相关和线性无关的定义:存在一组不全为零的数k1,k2,使k11k22否则,称1,2,,km,kmm0,则称1,2,,m线性无关.,m线性相关;2.矩阵乘积秩的结论:乘积的秩小于等于单个矩阵的秩.十、(本题满分8分)【解析】(1)依题意,随机变量某和Y同分布且相互独立,所以PBPYaP某aPA,且A、B相互独立,所以PABPAPB.设PAp,由概率的广义加法公式得PABPAPBPABPAPBPAPBPAPAPAPA1p1p2解以p为未知量的方程pp7.920,得p11,p22.339再依题设条件可知aa111P(A)P{某a}f(某)d某d某(a1),11232aa121P(A)P{某a}f(某)d某d某(a1),11232Borntowin解得a的两个可能值为:a1125,a2147.3333(2)求随机变量函数的数学期望直接根据公式可求得1E某十一、(本题满分8分)13111f某d某d某ln3.1某2某2【解析】本题的关键在于理解随机变量Nt的意义,事件{Ntk}表示设备在任何长为t(t)kte(k0,1,2).的时间内发生k次故障,其概率为P{Ntk}k!由于T表示相继两次故障之间时间间隔,故当t0时,FtPTt0;当t0时,事件Tt与Tt是互逆事件,并且Tt表示在长为t的时间内没有发生故障,它等价于事件Nt0.(1)易见T是只取非负值的连续型随机变量.当t0时,FtPTt0;当t0时,事件Tt与Nt0等价.于是有FtPTt1PTt1PNt01et.1et,t0因此Ft.0,t计算得知T服从参数为的指数分布.(2)由于指数分布具有“无记忆性”,因此QPT16|T8PT81PT81F(8)1(1e8)e8.。

最新1995考研数四真题及解析

最新1995考研数四真题及解析

精品资料1995考研数四真题及解析........................................1995年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 设1lim xt x x te dt x αα-∞→∞+⎛⎫= ⎪⎝⎭⎰,则常数α= .(2) 设()y z xyf x=,()f u 可导,则xyxz yz ''+= .(3) 设(ln )1f x x '=+,则()f x = .(4) 设100220345A ⎛⎫⎪= ⎪ ⎪⎝⎭,*A 是A 的伴随矩阵,则1()A *-= .(5) 设X 是一个随机变量,其概率密度为则方差()D X = .二、选择题(本题共5小题,每小题3分,满分15分.) (1) 设()f x 为可导函数,且满足条件0(1)(1)lim 12x f f x x→--=-,则曲线()y f x =在点 (1,(1))f 处的切线斜率为( )(A) 2 (B) 1- (C) 12(D) 2- (2) 下列广义积分发散的是( )(A) 111sin dx x -⎰(B) 1dx -⎰(C) 2x edx +∞-⎰ (D) 221ln dx x x+∞⎰(3) 设n 维行向量11(,0,,0,)22α=,矩阵T A E αα=-,2T B E αα=+,其中E 为n 阶单位矩阵,则AB 等于 ( )(A) 0 (B) E - (C) E (D)T E αα+(4) 设矩阵m n A ⨯的秩为()r A m n =<,m E 为m 阶单位矩阵,下述结论中正确的是 ( )(A) A 的任意m 个列向量必线性无关 (B) A 的任意一个m 阶子式不等于零(C) A 通过初等行变换,必可以化为(,0)m E 的形式(D) 非齐次线性方程组Ax b =一定有无穷多组解(5) 设随即变量X 服从正态分布2(,)N μσ,则随σ的增大,概率{}P X μσ-< ( )(A) 单调增大 (B) 单调减少 (C) 保持不变 (D) 增减不定三、(本题满分6分)设2202(1cos ),0()1,01cos ,0xx x x f x x t dt x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰,试讨论()f x 在0x =处的连续性和可导性.四、(本题满分6分)求不定积分2(arcsin )x dx ⎰.五、(本题满分7分)设()f x 、()g x 在区间[,]a a -(0a >)上连续,()g x 为偶函数,且()f x 满足条件()()f x f x A +-=(A 为常数).(1) 证明0()()()a aaf xg x dx A g x dx -=⎰⎰;(2) 利用(1)的结论计算定积分22sin arctan x x e dx ππ-⎰.六、(本题满分6分)设某产品的需求函数为()Q Q p =,收益函数为R pQ =,其中p 为产品价格,Q 为需求量(产品的产量),()Q p 为单调减函数.如果当价格为0p ,对应产量为0Q 时,边际收益00Q Q dR a dQ ==>,收益对价格的边际效应0p p dRc dp==<,需求对价格的弹性1p E b =>.求0p 和0Q .七、(本题满分5分)设()f x 在区间[,]a b 上连续,在(,)a b 内可导.证明:在(,)a b 内至少存在一点ξ,使()()()()bf b af a f f b aξξξ-'=+-.八、(本题满分9分)求二元函数2(,)(4)z f x y x y x y ==--在由直线6x y +=、x 轴和y 轴所围成的闭区域D 上的极值、最大值与最小值.九、(本题满分8分)对于线性方程组1231231233,2,2.x x x x x x x x x λλλλ++=-⎧⎪++=-⎨⎪++=-⎩ 讨论λ取何值时,方程组无解、有惟一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.十、(本题满分8分)设三阶矩阵A 满足(1,2,3)i i A i i αα==,其中列向量1(1,2,2)T α=,2(2,2,1)T α=-, 3(2,1,2)T α=--.试求矩阵A .十一、(本题满分8分)假设一厂家生产的每台仪器,以概率0.70可以直接出厂;以概率0.30需进一步调试,经调试后以概率0.80可以出厂;以概率0.20定为不合格品不能出厂.现该厂新生产了(2)n n ≥台仪器(假设各台仪器的生产过程相互独立).求:(1) 全部能出厂的概率α;(2) 其中恰好有两台不能出厂的概率β; (3) 其中至少有两台不能出厂的概率θ.十二、(本题满分7分)假设随机变量X 服从参数为2的指数分布.证明:21X Y e -=-在区间(0,1)上服从均匀分布.1995年全国硕士研究生入学统一考试数学四试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】2【解析】等式左端是1∞型未定式求极限,11lim lim 1xx x x x e x x ααα⋅→∞→∞+⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,等式右端是求一个定积分,可以用分部积分法求得. (1)t t t ttte dt tde e dt te e e ααααααα-∞-∞-∞-∞-∞=-=-=-⎰⎰⎰.由题设有(1)e e ααα=-,解得2α=.【相关知识点】分部积分公式:假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰ 或者 .udv uv vdu =-⎰⎰(2)【答案】2y xyf x ⎛⎫⎪⎝⎭【解析】根据复合函数求导法则,可得22x y y y y y y z yf xyf yf f x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'''=+⋅-=-⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 1y y y y y z xf xyf xf yf x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫'''=+⋅=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以 222x y y y y y y yf y f xyf y f yf x x x x x xz yz x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭'⎝⎭⎝'+⎭=.【相关知识点】复合函数求导法则:(())y f x ϕ=的导数为(())()y f x f x ϕ'''=. (3)【答案】x x e C ++【解析】在(ln )1f x x '=+中令ln x t =,则()1t f t e '=+,从而()()1()t t x f t e dt t e C f x x e C =+=++⇒=++⎰.(4)【答案】100122010345⎛⎫ ⎪⎪ ⎪⎝⎭【解析】由AA A E *=,有A A E A *=,故()1AA A-*=. 而 10022010345A ==,所以 ()1100122010345A A A -*⎛⎫⎪== ⎪ ⎪⎝⎭. (5)【答案】16【解析】 011()(1)(1)0EX xf x dx x x dx x x dx +∞-∞-==++-=⎰⎰⎰,01222211()(1)(1)6EX x f x dx x x dx x x dx +∞-∞-==++-=⎰⎰⎰, ()2216DX EX EX =-=. 【相关知识点】连续型随机变量的数学期望和方差的定义:(),EX x f x dx +∞-∞=⋅⎰22()()()D X E X E X =-.二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(D)【解析】因 0(1)(1)(1)(1)(1)limlimx x f x f f x f f x x xx→→+---'==--00(1)(1)lim(1)(1)2lim 2,2x x f f x xf f x x →→--=--==-所以应选(D).(2)【答案】(A)【解析】由计算知111arcsin x π--==⎰,222111ln ln ln 2dx x x x +∞+∞=-=⎰,且泊松积分20x e dx +∞-=⎰故应选(A).注:对于本题选项(A),由于当0x =时sin 0x =,故在积分区间[1,1]-中0x =是瑕点,反常积分111sin dx x-⎰应分解为两个反常积分之和: 101110111sin sin sin dx dx dx x x x --=+⎰⎰⎰,而且111sin dx x -⎰收敛的充要条件是两个反常积分011sin dx x -⎰与101sin dx x⎰都收敛. 由于广义积分 11001ln tan sin 2x dx x ⎛⎫==+∞ ⎪⎝⎭⎰, 即101sin dx x ⎰发散,故111sin dx x-⎰发散. 在此不可误以为1sin x是奇函数,于是1110sin dx x -=⎰,从而得出它是收敛的错误结论. (3)【答案】(C)【解析】利用矩阵乘法的分配律、结合律,有()()222T T T T T T AB E E E αααααααααααα=-+=+--()2T T T E αααααα=+-.由于 120111(,0,,0,)222012ααT ⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭,所以T T AB E E αααα=+-=.故应选(C). (4)【答案】(D)【解析】()r A m =表示A 中有m 个列向量线性无关.有m 阶子式不等于零,并不是任意的,因此(A)、(B)均不正确.经初等变换可把A 化成标准形,一般应当既有初等行变换也有初等列变换,只有一种不一定能化为标准形.例如010001⎛⎫⎪⎝⎭,只用初等行变换就不能化成2(0)E 的形式,故(C)不正确.关于(D),因为A 为m n ⨯矩阵,且()r A m =,故增广矩阵的秩必为m ,那么()()r A r A m n ==<,所以方程组Ax b =必有无穷多组解,故选 (D). (5)【答案】(C) 【解析】由于2(,),XN μσ将此正态分布标准化,故()0,1X N μσ-,{}()1211X P X P .μμσσ⎧-⎫-<=<=Φ-⎨⎬⎩⎭计算看出概率{}P X μσ-<的值与σ大小无关.所以本题应选(C).三、(本题满分6分)【解析】这是一道讨论分段函数在分界点处的连续性和可导性的问题.一般要用连续性与可导性的定义并借助函数在分界点处的左极限与右极限以及左导数和右导数.222000122(1cos )2lim ()lim lim 1x x x x x f x x x ---→→→⋅-===, 220cos cos lim ()limlim 11xx x x t dt x f x x+++→→→===⎰, 故(00)(00)(0)f f f +=-=,即()f x 在0x =处连续.2004222001cos 1()(0)(0)lim lim 01cos cos 12lim lim lim 0,22x x x xx x x t dt f x f xf x xx t dt x x x x x++++++→→→→→--'==----====⎰⎰2002320002(1cos )1()(0)(0)lim lim02(1cos )2sin 22(cos 1)lim lim lim 0.36x x x x x x f x f x f x xx x x x x x x x------→→→→→---'==-----==== 即(0)(0)0f f +-''==,故()f x 在0x =处可导,且(0)0f '=.四、(本题满分6分)【解析】当被积函数仅仅为反三角函数时,这种积分肯定要用分部积分法. 方法一:22(arcsin )(arcsin )x dx x x =-⎰2(arcsin )2arcsin x x =+⎰2(arcsin )2x x x dx =+-⎰2(arcsin )2.x x x x C =+-+方法二:令arcsin x u =,则2222222(arcsin )cos sin sin 2sin sin 2cos sin 2cos 2cos sin 2cos 2sin .x dx uudu u d uu u u udu u u ud uu u u u udu u u u u u C ===-=+=+-=+-+⎰⎰⎰⎰⎰⎰五、(本题满分7分)【解析】(1)由要证的结论可知,应将左端积分化成[]0,a 上的积分,即00()()()()()()aaaaf xg x dx f x g x dx f x g x dx --=+⎰⎰⎰,再将0()()af xg x dx -⎰作适当的变量代换化为在[]0,a 上的定积分.方法一:由于 00()()()()()()a aaaf xg x dx f x g x dx f x g x dx --=+⎰⎰⎰,在0()()af xg x dx -⎰中令x t =-,则由:0x a -→,得:0t a →,且00()()()()()()()()()a aa af xg x dx f t g t d t f t g t dt f x g x dx -=---=-=-⎰⎰⎰⎰,所以 []00()()()()()()aa aaf xg x dx f x f x g x dx A g x dx -=+-=⎰⎰⎰. 方法二:在()()aaf xg x dx -⎰中令x t =-,则由:x a a -→,得:t a a →-,且()()()()()()()()()aaaaaaaf xg x dx f t g t d t f t g t dt f x g x dx ---=----=-=-⎰⎰⎰⎰.所以 1()()()()()()2aaa aa a f x g x dx f x g x dx f x g x dx ---⎡⎤=+-⎢⎥⎣⎦⎰⎰⎰[]01()()()()().22a aa a aA f x f x g x dx g x dx A g x dx --=+-==⎰⎰⎰(2)令()arctan x f x e =,()sin g x x =,可以验证()f x 和()g x 符合(1)中条件,从而可以用(1)中结果计算题目中的定积分. 方法一:取()arctan x f x e =,()sin g x x =,2a π=.由于()()arctan arctan x x f x f x e e -+-=+满足()22arctan arctan 011x xxxx xe e eee e----'+=+≡++, 故 arctan arctan x x e e A -+=. 令0x =,得2arctan12A A π=⇒=,即()()2f x f x π+-=.于是有2222sin arctan sin sin 222xx e dx x dx xdx πππππππ-===⎰⎰⎰.方法二:取()arctan x f x e =,()sin g x x =,2a π=,于是1()()arctan arctan2x x f x f x e e π+-=+=. (这里利用了对任何0x >,有1arctan arctan 2x x π+=) 以下同方法一.六、(本题满分6分)【解析】本题的关键在于p 和Q 之间存在函数关系,因此R pQ =既可看作p 的函数,也可看作Q 的函数,由此分别求出dR dp 及dR dQ,并将它们与弹性p p dQE Q dp =联系起来,进而求得问题的解.由()Q Q p =是单调减函数知0dQ dp <,从而需求对价格的弹性0p p dQE Q dp=<,这表明题设1p E b =>应理解为1p p E E b =-=>.又由()Q Q p =是单调减函数知存在反函数()p p Q =且1dp dQdQ dp=.由收益R pQ =对Q 求导,有 1(1)p dR dp p p Q p p p dQ dQ dQ E Q dp=+=+=+,从而001(1)Q Q dR p a dQ b ==-=,得01abp b =-.由收益R pQ =对p 求导,有(1)(1)p dR dQ p dQ Q p Q Q E dp dp Q dp=+=+=+, 从而 00(1)p p dR Q b c dp==-=,于是01c Q b=-.七、(本题满分5分)【解析】由于本题中要证的结论中出现了()()f f ξξξ'+,所以应考虑辅助函数()()F x xf x =.因为()()()F x f x xf x ''=+.令()()F x xf x =,则()F x 在[,]a b 上连续,在(,)a b 内可导,满足拉格朗日中值定理条件,从而在(,)a b 内至少存在一点ξ,使()()()F b F a F b aξ-'=-,即 ()()()()bf b af a f f b aξξξ-'=+-.八、(本题满分9分)【解析】首先在区域D 内求驻点.令2(832)0,(42)0,x y f xy x y f x x y '=--=⎧⎪⎨'=--=⎪⎩ 在D 内仅有唯一驻点(2,1).在点(2,1)处,有2(2,1)2(2,1)2(2,1)(2,1)(862)60,(2,1)(834)4,(2,1)28.xxxyyyA f y xy yB f x x xyC f x ''==--=-<''==--=-''==-=-于是2320B AC -=-<,因此点(2,1)是极大值点,且极大值(2,1)4f =.在D 的边界0(06)x y =≤≤和0(06)y x =≤≤上,(,)0f x y =. 在D 的边界6(06)x y x +=<<上,把6y x =-代入(,)f x y 可得22(6)(06)z x x x =-<<.由于004,6(4)04,046,x z x x x x <<<⎧⎪'=-==⎨⎪><<⎩所以点(4,2)是这段边界上z 的最小值点,最小值(4,2)64f =-.综合以上讨论知(,)f x y 在D 的边界上的最大值是0,最小值是(4,2)64f =-. 比较D 内驻点的函数值(2,1)4f =和(,)f x y 在D 的边界上的最大值和最小值可得(,)f x y 在D 上的最大值和最小值分别是max (,)(2,1)4Df x y f ==,min (,)(4,2)64Df x y f ==-.【相关知识点】1.驻点:凡是能使(,)0x f x y =,(,)0y f x y =同时成立的点00(,)x y 称为函数(,)z f x y =的驻点.具有偏导数的函数的极值点必定是驻点.但函数的驻点不一定是极值点.例如,点(0,0)是函数z xy =的驻点,但函数在该点并无极值. 2.判定一个驻点是否是极值点的定理:定理:设函数(,)z f x y =在点00(,)x y 的某邻域内连续且有一阶及二阶连续偏导数,又(,)0x f x y =,(,)0y f x y =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C ===,则(,)f x y 在00(,)x y 处是否取得极值的条件如下:(1) 20AC B ->时具有极值,且当0A <时有极大值,当0A >时有极小值; (2) 20AC B -<时没有极值;(3) 20AC B -=时可能有极值,也可能没有极值,还需另作讨论. 3.具有二阶连续偏导数的函数(,)z f x y =的极值的求法如下:第一步:解方程组(,)0x f x y =,(,)0y f x y =,求得一切实数解,即可求得一切驻点.第二步:对于每一个驻点00(,)x y ,求出二阶偏导数的值A 、B 和C . 第三步:定出2AC B -的符号,按上述定理的结论判定00(,)f x y 是不是极值、是最大值还是最小值.九、(本题满分8分)【解析】对增广矩阵作初等行变换,有113112112112112113λλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥-→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦()()21121120110011001133002133λλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥→--→--⎢⎥⎢⎥⎢⎥⎢⎥----+--⎣⎦⎣⎦当1λ≠且2λ≠-时,()()3r A r A ,==方程组有唯一解. 当2λ=-时,()()23r A ,r A ,==方程组无解. 当1λ=时,()()1r A r A ,==方程组有无穷多组解. 其同解方程组为:1232x x x ++=-. 令230x x ==,得到特解(2,0,0)T α=-.令1231,1,0x x x =-==及1231,0,1x x x =-==得到导出组的基础解系()()12110101T T,,,,,.ηη=-=-因此,方程组的通解是1122,k k αηη++其中12k ,k 是任意常数.十、(本题满分8分)【解析】由(1,2,3)i i A i i αα= =知123,,ααα是矩阵A 的不同特征值的特征向量,它们线性无关.利用分块矩阵,有()()12312323A ,,,,.αααααα= 由123,,ααα线性无关,知矩阵()123,,ααα可逆,故()()112312323A ,,,,αααααα-=而 ()1112312212212212219212212,,ααα---⎡⎤⎡⎤⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦故 72033146122152243221093322621222233A .⎡⎤-⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⋅-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦十一、(本题满分8分)【解析】对于新生产的每台仪器,设事件A 表示“仪器需要进一步调试”,B 表示“仪器能出厂”,则A =“仪器能直接出厂”,AB =“仪器经调试后能出厂”.且B A AB =,A 与AB 互不相容,应用加法公式与乘法公式,且由条件概率公式()(|)()(|)()()P AB P B A P AB P B A P A P A =⇒=⋅, 有 ()()()()070308094P B P A P A P B |A ....=+=+⨯=.设X 为所生产的n 台仪器中能出厂的台数,则X 服从二项分布()094B n,..由二项分布的概率计算公式,可得所求概率为(1) {}0.94n P X n α===;(2) {}22220.940.06;n n P X n C β-==-=⋅⋅(3){}{}{}121110.060.940.94n n P X n P X n P X n n θ-=≤-=-=--==-⨯-⋅【相关知识点】二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)k k n k n P Y k C p p -==-, 0,1,,k n =.十二、(本题满分7分)【解析】要证明21X Y e -=-在区间(0,1)上服从均匀分布,只需证明随机变量Y 的概率密度()1010Y ,y ,f y ,<<⎧=⎨⎩其他,或证明Y 的分布函数为()110001Y ,y ,F y ,y ,y y .≥⎧⎪=<⎨⎪≤<⎩, 方法1:21x y e -=-是()0,+∞上的单调函数,且其反函数为()()1ln 1.2x h y y -==- 在区间(0,1)上()()1021h y .y '=≠-应用单调函数公式法,Y 的概率密度为()()()()010X Y h y f h y ,y ,f y ,⎧'⋅<<⎪=⎨⎪⎩其他,()()212011012100h y e,y ,,y ,y ,,-⎧<<<<⎧⎪-==⎨⎨⎩⎪⎩其他.其他,由计算可知()Y f y 恰是(0,1)上均匀分布的密度函数. 方法2:用分布函数法求Y 的分布函数.当0y ≤时,()0Y F y =;当1y ≥时,()1Y F y =;当01y <<时,()1ln 102y -->,(){}{}()211ln 12X Y F y P Y y P e y P X y -⎧⎫=≤=-≤=≤--⎨⎬⎩⎭()()12ln 121ln 112y X F y e y ⎡⎤---⎢⎥⎣⎦⎡⎤=--=-=⎢⎥⎣⎦.计算可知Y 的分布函数为()110001Y ,y ,F y ,y ,y y .≥⎧⎪=<⎨⎪≤<⎩,上式恰好是区间(0,1)上均匀分布随机变量的分布函数.【相关知识点】一维均匀分布的定义:若连续型X 的概率密度为1, ,()0, a x b f x b a⎧≤≤⎪=-⎨⎪⎩其他,则称X 服从区间[,]a b 上的均匀分布.其分布函数为0, ,(), ,1, x a x a F x a x b b a <⎧⎪-⎪=≤≤⎨-⎪⎪⎩其他.。

2024年研究生考试试卷数学

2024年研究生考试试卷数学

2024年研究生考试试卷数学一、选择题(每题1分,共5分)1.设矩阵A为3阶可逆矩阵,矩阵B为A的伴随矩阵,则矩阵B 的行列式值为()。

A.|A|^3B.|A|^2C.|A|D.1A.存在ξ∈(0,1),使得f(ξ)=0B.存在ξ∈(0,1),使得f'(ξ)=0C.存在ξ∈(0,1),使得f''(ξ)=0D.存在ξ∈(0,1),使得f'''(ξ)=03.设函数f(x)=e^xsin(x),则f(x)在x=0处的泰勒展开式为()。

A.x+x^3/6+o(x^3)B.x+x^3/3!+o(x^3)C.x+x^3/2+o(x^3)D.x+x^3+o(x^3)4.设矩阵A为对称矩阵,则矩阵A的特征值()。

A.必为实数B.必为正数C.必为负数D.可以为复数5.设函数f(x)=x^33x,则f(x)在x=0处的拉格朗日中值定理的结论为()。

A.存在ξ∈(0,1),使得f'(ξ)=0B.存在ξ∈(0,1),使得f''(ξ)=0C.存在ξ∈(0,1),使得f'''(ξ)=0D.存在ξ∈(0,1),使得f(ξ)=0二、判断题(每题1分,共5分)1.若矩阵A为对称矩阵,则矩阵A的逆矩阵也为对称矩阵。

()2.若函数f(x)在区间[0,1]上单调递增,则f'(x)在区间[0,1]上恒大于0。

()3.若矩阵A的行列式值为0,则矩阵A不可逆。

()4.若函数f(x)在区间[0,1]上连续,则f(x)在区间[0,1]上可积。

()5.若矩阵A的特征值为λ,则矩阵A+kI的特征值为λ+k。

()三、填空题(每题1分,共5分)1.设矩阵A为3阶矩阵,矩阵B为A的伴随矩阵,则矩阵B的行列式值为______。

2.设函数f(x)=x^33x,则f(x)在x=0处的泰勒展开式为______。

3.若矩阵A为对称矩阵,则矩阵A的特征值______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档