灌注桩正循环钻孔与反循环钻孔区别及适用范围
钻孔灌注桩反循环
钻孔灌注桩反循环一、概述钻孔灌注桩是一种在建筑工程中广泛应用的桩基类型。
其中,反循环钻孔灌注桩是一种利用反循环技术进行成孔的特殊钻孔灌注桩。
反循环钻孔灌注桩具有成孔速度快、孔壁质量好、承载力高等优点,因此在建筑工程中得到了广泛应用。
本文将介绍反循环钻孔灌注桩的施工工艺、原理、优点及注意事项。
二、反循环钻孔灌注桩施工工艺反循环钻孔灌注桩的施工工艺主要包括以下几个步骤:1、准备工作在施工前,需要进行场地平整、清理、桩位放样等准备工作。
同时,需要检查钻机、泥浆循环系统等设备是否正常运行。
2、埋设护筒护筒是保护孔口和维护孔壁的重要结构。
在埋设护筒时,应保证护筒的垂直度和稳定性,并确保护筒中心与桩位中心重合。
3、钻孔钻孔是反循环钻孔灌注桩施工的核心环节。
在钻孔过程中,应采用合适的钻头和钻压,控制好泥浆循环量,保证成孔质量。
4、清孔清孔是保证桩基质量的重要环节。
在清孔过程中,应将泥浆比重控制在规定范围内,同时清除孔底的沉渣和岩屑。
5、钢筋笼制作与安装钢筋笼是桩基的重要组成部分。
在制作钢筋笼时,应保证主筋顺直、箍筋牢固、定位准确等要求。
在安装钢筋笼时,应保证钢筋笼的中心与桩位中心重合,并确保钢筋笼的标高符合设计要求。
6、混凝土灌注混凝土灌注是反循环钻孔灌注桩施工的最后一步。
在灌注混凝土时,应保证混凝土的配合比和坍落度符合要求,同时控制好灌注速度和导管埋深,确保混凝土的密实性和均匀性。
三、反循环钻孔灌注桩的原理及优点1、反循环钻孔灌注桩的原理反循环钻孔灌注桩是通过在钻杆和钻头之间形成负压状态,利用泵吸原理进行泥浆循环的一种成孔方法。
具体来说,当泥浆从泥浆池中进入钻杆内腔时,会经过钻头的切割作用形成泥浆泡沫,通过泵吸原理将泥浆泡沫吸入护筒中,同时将空气排出。
这种循环方式可以有效地提高成孔速度和孔壁质量。
2、反循环钻孔灌注桩的优点(1)成孔速度快:反循环钻孔灌注桩的成孔速度比正循环成孔速度快很多,因为它的泥浆循环速度更快,并且能够更好地携带岩屑。
浅谈钻孔灌注桩正反循环钻机成孔异同及适用范围
浅谈钻孔灌注桩正反循环钻机成孔异同及适用范围作者:段盼平来源:《中小企业管理与科技·中旬刊》2014年第07期摘要:近年来,正反循环回旋钻在钻孔灌注桩成孔中被广泛应用,本文结合中铁十二局连盐铁路工程指挥部通榆河特大桥现场正反循环钻机施工,详细介绍正反循环回旋钻机成孔的原理及各自的优缺点、适用范围、成孔钻进、清孔等方面的差别。
关键词:正循环回旋钻反循环回旋钻钻孔灌注桩成孔适用范围异同0 引言钻孔灌注桩基础日益成为软弱地基上工业建筑、高层楼宇、桥梁码头及重型仓储等工程经常采用的一种深基础形式,其成孔的方法很多,正、反循环回旋钻成孔法由于施工噪音小,对土层扰动小,振动力小,成孔速度快,因此在钻孔灌注桩施工中得到了广泛的应用,同时受到施工单位的高度重视。
1 钻孔灌注桩采用正反循环钻机成孔的发展历史与背景我国应用钻孔灌注桩始于20世纪60年代,首先在桥梁和港口建设中采用,钻孔灌注桩的成孔技术也在工程实践中不断地得到发展,1968年,江苏、湖南进行了旋转钻φ60-150钻孔灌注桩的试验,辽宁、黑龙江也先后研制了泵吸式逆循环钻机进行φ60-150钻孔灌注桩的试验,这些探索是钻孔灌注桩的初期发展阶段,1983年原铁道部大桥局武汉桥机厂研制的BDM-4型气举反循环钻机投入使用,首先在郑州黄河公路大桥完成直径220cm,孔深70m的摩擦桩施工,使钻孔灌注桩的可施工桩径突破200cm大关,是国产回旋钻机向大口径发展的重要里程碑,1986年广东省九江大桥2*160独塔斜拉桥工程中又使用BDM-4型反循环钻机完成φ200-300嵌岩桩的施工,标志着我国应用循环钻机施工钻孔灌注桩的工艺日趋成熟。
2 正反循环钻机成孔的原理回转钻机是由动力装置带动钻机回转装置转动,再由其带动带有钻头的钻杆移动,由钻头切削土壤。
根据泥浆循环方式的不同,分为正循环回转钻机和反循环回转钻机。
正循环:用高压将泥浆通过钻机的空心钻杆从钻杆底部射出,底部的钻头在回旋时,将土层搅松成钻渣,被泥浆浮悬,随着泥浆上升而溢出流到孔外的泥浆溜槽,经沉淀池净化,泥浆再循环使用,孔壁靠水头和泥浆保护,采用本法由于钻渣得靠泥浆浮悬才能上升携带排出孔外,故对泥浆的质量要求较高。
泥浆护壁冲(钻)孔灌注桩施工及质量控制
泥浆护壁冲(钻)孔灌注桩施工及质量控制泥浆护壁成孔:点我:送工程实用干货。
是用成孔机械成孔,在成孔过程中通过泥浆保护孔壁并排出土渣。
主要有正循环钻孔法、反循环钻孔法、冲击成孔法及旋挖成孔法等几种。
泥浆作用:具有保护孔壁、防止塌孔、排出土渣以及冷却与润滑钻头的作用。
泥浆一般需专门配制,当在粘土中成孔时,也可用孔内钻渣原土自造泥浆。
工艺流程:所有泥浆护壁成孔灌注桩施工工艺流程大致都一样,如下图所示。
要点:钻头选型、泥浆指标参数控制和清孔是泥浆护壁灌注桩施工控制的关键环节。
泥浆护壁成孔灌注桩施工工艺流程图(一)正、反循环钻成孔法正、反循环钻成孔法区别在于正循环钻成孔时,泥浆循环方向为泥浆池、泥浆泵、钻杆而由钻头进入孔内,在完成护壁功能的同时将渣土悬浮带出地面,再靠重力作用流回泥浆池,在渣土泥浆池中沉淀后,经重新稀释后再注人孔内。
反循环钻成孔时,泥浆的循环方向正好与上述相反,泥浆从孔壁与钻杆间的空隙注人孔内,携带渣土的泥浆由泵或空气(气举法)经钻杆排出孔外至沉淀池,经处理符合要求后,再流回孔内。
反循环钻进按孔内和钻杆内冲洗液动力来源与工作原理不同分为:泵吸反循环钻进、气举(压气)反循环钻进和喷射(射流)反循环钻进等三种方式。
适用范围:正循环钻孔法受其排渣方式的限制,其成孔深度和适用地层都受一定限制,一般仅适用于粉砂、黏土等细粒土,成孔深度一般在30~40m。
相对于反循环钻孔,该方法设备简单、钻机小、适用较狭窄的场地,但对桩径较大、桩孔较深及容易塌孔的地层,这种方法钻进效率较低,排渣能力差,孔底沉渣多。
反循环钻成孔法适用范围较广,从软土、粉细砂到软砾石层、风化岩层,成孔深度可达100m,最大孔径达5m,是其他机械成孔工艺难以达到的。
(二)冲击成孔法冲击成孔灌注桩施工法是采用冲击式钻机或卷扬机带动一定重量的钻头,在一定的高度内使钻头提升,然后突放使钻头自由降落,利用冲击动能冲挤土层或破碎岩层形成桩孔,再用掏渣筒或反循环抽渣方式将钻渣岩屑排除。
正循环钻进与反循环钻进的区别
正循环钻进与反循环钻进的区别钻孔灌注桩成孔作业根据出渣方式的不同,可分为正循环钻进成孔和反循环钻进成孔。
正循环钻进即在钻机驱动钻具回转钻进的同时,利用泥浆泵通过钻杆内腔向孔底注入一定压力的泥浆水(孔壁稳定液),泥浆水冲洗孔底并与钻孔产生的泥渣混合后,携带泥渣沿钻杆与孔壁之间的外环空腔上升,从孔口流向泥浆池,形成正循环排渣系统(图75)。
正循环钻进具有以下特点∶(1)多采用泥浆循环,孔壁比较稳定。
(2)循环系统有少量泄漏,循环也不会中断。
(3)当孔深不太深、孔径小于800mm时钻进效果较好;当孔径较大时,泥浆循环上返流速低,排渣能力弱。
(4)操作简单,工艺成熟,技术易掌握。
反循环钻进即将钻孔时孔底混有大量泥渣的泥浆通过钻杆的内腔抽吸到地面排入泥浆沉淀池,新鲜泥浆则由地面直接注入桩孔。
按钻杆内泥浆上升流动的动力来源、工作方式和工作原理的不同,分为泵吸反循环钻进、气举反循环钻进和射流反循环钻进三种。
泵吸反循环是直接利用砂石泵的抽吸作用使钻杆内泥浆上升而形成反循环,如图 76所示。
泵的吸水口通过吸水软管与水龙头、钻杆相连接,当泵工作时,泵在其进水口处形成负压,井口的液体在大气压的作用下,经钻头处吸口携带钻削下来的泥渣由中空的钻杆内腔而上升,通过水龙头、胶管从泵中排至沉淀池中,经沉淀处理后的流体,以自流的方式自井口流至井底,形成泥浆循环。
泵吸反循环具有以下特点;(1)反循环的泥浆循环上升速度快<2~4m/s),排渣能力强,钻进速度快、效率高。
(2)由于排渣能力强,当钻头切入地层在回转扭矩作用下一经松动,就很快被泥浆携带出来,不必重复破碎,所以钻头寿命明显延长。
(3)由于泥浆下流速度低(一般小于0.3m/s),对孔壁的冲刷作用小3同时也由于有新泥浆不断地向孔内补充,使孔内水头与孔外地下水始终保持差2m 以上的压差,所以孔壁—般不易坍塌。
对多数地层,只要能保持2m以上的水压力,可用清水钻进,而清水钻进时,不用专门制备泥浆,孔壁泥皮薄,孔底沉渣少,成孔质量好。
反循环钻孔灌注桩施工
反循环钻孔灌注桩施工钻机机具及工艺选择, 应依据桩型、钻孔深度。
土层情况、泥浆排放及处理等条件综合确定。
对孔深大于30m端型桩, 宜采取反循环工艺成孔或清孔。
一、施工机械设备1.反循环钻机反循环钻机由钻头、加压装置、回转装置、扬水装置和升降装置等组成。
常见方循环钻机型号。
规格及技术性能见表, 5-3-7。
反循环钻机多种钻头特点和适用范围, 见表5-3-8。
二、反循环钻孔灌注桩施工1.反循环施工法反循环施工法, 是泥浆自孔口流入孔内, 利用砂石泵, 经过钻头、钻杆将孔底携带钻渣泥浆抽吸到孔外循环。
2.施工程序(1)埋设护筒。
泥浆护壁, 宜采取孔内护筒, 其作用是确保钻机沿着桩位垂直方向顺利工作, 它还起着存放泥浆, 使其高出地下水位和保护桩孔顶部土层不致因钻杆反复上下升降、机身振动而造成坍孔。
护筒应按下列要求设置:①护筒埋设应正确、稳定, 护筒中心与桩位中心偏差不得大于50mm;②护筒通常见4~8mm钢板制作, 其内径小于钻头直径100mm, 其上部宜开设1~2个溢浆孔;③护筒埋设深度: 在粘土中大于 1.0m; 砂土不宜小于 1.5m; 其高度尚应满足孔内泥浆面高度要求, 通常高出地面或水面400~600mm;④受水位涨落影响或水下施工钻孔灌注桩, 护筒应加高加深, 必需时应打入不透水层。
(2)安装钻机。
安装正循环钻进时, 转盘中心应与钻架上吊滑轮在同一垂直线上, 钻杆位置偏差不应大于20mm。
使用带有变速器钻机, 应把变速器板上电动机和变速器被动轴轴心设置在同一水平标高上。
(3)钻进①在软松土层中钻进, 应依据泥浆补给情况控制钻进速度; 在硬层或岩层钻进速度以钻机不发生跳动为准。
②为了确保钻孔垂直度, 钻机设置导向设置应符合下列要求:a.潜水钻钻头应有大于3倍直径长度导向装置;b.利用钻杆加压正循环回转钻机, 在钻具中应加设扶正器。
③加接钻杆时, 应先停止钻进, 将钻具提离孔底80~100mm, 维持冲洗液循环1~2min, 以清洗孔底, 并将管道内钻渣携出排尽, 然后停泵加接钻杆、钻杆连接应拧紧上牢, 预防螺栓、螺母、拧卸工具等掉入坑内。
反循环钻孔灌注桩技术
反循环钻孔灌注桩技术所谓反循环,是指钻机工作时,旋转盘带动钻杆端部的钻头切削破碎孔内岩土,冲洗液从钻杆与孔壁间的环状间隙中流入孔底,冷却钻头并携带被切削下来的岩土钻渣,由钻杆内腔返回地面,与此同时,冲洗液又返回孔内形成循环。
由于钻杆内腔较井孔直径小得多,所以,钻杆内泥水上升速度较正循环快得多。
既是清水,也可将钻渣带至钻杆顶端,流向泥浆沉淀池,泥浆净化后再循环使用。
反循环与正循环相比,反循环的钻进速度快得多,所需泥浆量少,转盘所消耗的功率少,清孔时间较快,采用特殊钻头可钻挖岩石等优点。
反循环钻成孔原理反循环钻成孔施工按冲洗液循环输送方式、动力来源和工作原理可分为气举反循环、泵吸反循环和喷射反循环等,气举反循环钻进又称压气反循环钻进,其工作原理如下图所示。
将钻杆置入注满冲洗液的钻孔内,靠旋转盘⑦的转动,带动气密式方形传动杆②和钻头⑤转动切削岩土,由钻杆下端喷射嘴④喷出压缩空气,与被切削下来的土、砂等在钻杆内形成比水还轻的泥砂水气混合物。
由于钻杆内外压力差和压气动量的联合作用,将泥砂水气混合物与冲洗液一起上升,通过压送软管⑥排出至地面泥浆池或储水槽中,土、砂、砾和岩屑等在泥浆池内沉淀,冲洗液再流人孔内。
反循环成孔施工准备1)平整场地:在钻孔桩施工前,应进行场地平整,钻机座不宜直接置于不坚实的填土上,以免产生不均匀沉陷。
修通旱地位置便道,为施工机具、材料运送提供便利。
2)确定钻孔桩位:按照基线控制网,用全站仪精确放出桩位,并且在现场做好明显标记。
放好桩位后进行现场交底,做十字护桩。
3)现场作业前,查明施工场地明、暗设置物(电线、地下电缆、管道、坑道等)的地点及走向,并采用明显记号标识,采用人工开挖探坑,找到管线的具体位置,并做好明显的标记。
严禁在离电缆1m距离以内作业。
4)机具准备:吊车、电焊机、泥浆泵、反循环钻机、挖掘机等。
反循环钻孔灌注桩工艺流程注意:本施工流程依据中铁四局某围护工程案例为蓝本叙述,仅供参考学习。
正循环钻孔与反循环钻孔区别及适用范围
正循环钻孔与反循环钻孔区别及适用范围正循环钻孔是把造浆池制作好的泥浆通过泵压注入孔内,进行置换,排除孔内的浮渣,并且根据地质情况(如软土层)和钻孔深度不断调整泥浆比重,以确保孔压,防止坍孔,“二清”时同时满足规范要求的1:1.15的泥浆比重和孔底沉渣厚度。
所区别的是反循环钻孔一般采用“气举法”清孔,达到同时满足规范要求的1:1.15的泥浆比重和孔底沉渣厚度。
反循环清孔操作不当容易造成坍孔,在软土地区慎使用。
正循环是用水泵压送冲洗液由钻杆柱中心进入孔底并经钻头水口返出,经钻杆与孔壁环状间隙上返至孔口,通过地面循环槽流入泥浆池,不需要孔口密封器等附加装置,适用于各种钻进方法。
喷射式反循环,冲洗液由钻杆柱中心下去,从喷反接头处流出,在管内形成负压抽吸力,从而形成孔底局部反循环。
泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环。
反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度。
根据钻探水力学原理,冲洗液在钻孔内的上返速度Va的1.2-1.3倍,即Va=(1.2-1.3)Vs。
反循环钻进钻渣在钻杆内运动,是形态各异的钻渣群在有限的空间作悬浮运动,钻渣颗粒要占据一定液体断面,在这种特定条件下可以采用长春地质学院在利延哥尔公式基础上进行实验给出的公式计算颗粒悬浮速度Vs计算公式为: Vs=3.1×k1×(ds×(rs-ra)/(k2×r2))的1/2次方Vs-钻渣颗粒群悬浮速度(m/s)ds-颗粒群最大颗粒粒径(m)rs-钻渣颗粒的密度(kg/dm3)ra-冲洗液的密度(kg/dm3)k1-岩屑浓度系数;k1=0.9-1.1,浓度越大,k1越小;k2-岩屑颗粒系数,k2=1-1.1,球形颗粒为1,越不规则,k2的值越大。
浅谈钻孔灌注桩正反循环钻机成孔异同及适用范围
摘要:近年来,正反循环回旋钻在钻孔灌注桩成孔中被广泛应用,本文结合中铁十二局连盐铁路工程指挥部通榆河特大桥现场正反循环钻机施工,详细介绍正反循环回旋钻机成孔的原理及各自的优缺点、适用范围、成孔钻进、清孔等方面的差别。
关键词:正循环回旋钻反循环回旋钻钻孔灌注桩成孔适用范围异同0引言钻孔灌注桩基础日益成为软弱地基上工业建筑、高层楼宇、桥梁码头及重型仓储等工程经常采用的一种深基础形式,其成孔的方法很多,正、反循环回旋钻成孔法由于施工噪音小,对土层扰动小,振动力小,成孔速度快,因此在钻孔灌注桩施工中得到了广泛的应用,同时受到施工单位的高度重视。
1钻孔灌注桩采用正反循环钻机成孔的发展历史与背景我国应用钻孔灌注桩始于20世纪60年代,首先在桥梁和港口建设中采用,钻孔灌注桩的成孔技术也在工程实践中不断地得到发展,1968年,江苏、湖南进行了旋转钻φ60-150钻孔灌注桩的试验,辽宁、黑龙江也先后研制了泵吸式逆循环钻机进行φ60-150钻孔灌注桩的试验,这些探索是钻孔灌注桩的初期发展阶段,1983年原铁道部大桥局武汉桥机厂研制的BDM-4型气举反循环钻机投入使用,首先在郑州黄河公路大桥完成直径220cm,孔深70m的摩擦桩施工,使钻孔灌注桩的可施工桩径突破200cm大关,是国产回旋钻机向大口径发展的重要里程碑,1986年广东省九江大桥2*160独塔斜拉桥工程中又使用BDM-4型反循环钻机完成φ200-300嵌岩桩的施工,标志着我国应用循环钻机施工钻孔灌注桩的工艺日趋成熟。
2正反循环钻机成孔的原理回转钻机是由动力装置带动钻机回转装置转动,再由其带动带有钻头的钻杆移动,由钻头切削土壤。
根据泥浆循环方式的不同,分为正循环回转钻机和反循环回转钻机。
正循环:用高压将泥浆通过钻机的空心钻杆从钻杆底部射出,底部的钻头在回旋时,将土层搅松成钻渣,被泥浆浮悬,随着泥浆上升而溢出流到孔外的泥浆溜槽,经沉淀池净化,泥浆再循环使用,孔壁靠水头和泥浆保护,采用本法由于钻渣得靠泥浆浮悬才能上升携带排出孔外,故对泥浆的质量要求较高。
桩基工程 泥浆护壁成孔灌注桩施工
桩基工程泥浆护壁成孔灌注桩施工、1.护壁泥浆(1)泥浆的功能1)泥浆有防止孔壁坍塌的功能在天然状态下,若竖直向下挖掘处于稳定状态的地基土,就会破坏土体的平衡状态,孔壁往往有发生坍塌的危险,泥浆则有防止发生这种坍塌的作用。
主要表现在:①泥浆的静侧压力可抵抗作用在壁上的土压力和水压力,并防止地下水的渗入。
②泥浆在孔壁上形成不透水的泥皮,从而使泥浆的静压力有效地作用在孔壁上,同时防止孔壁的剥落。
③泥浆从孔壁表面向地层内渗透到一定的范围就粘附在土颗粒上,通过这种粘附作用可降低孔壁坍塌性和透水性。
2)泥浆有悬浮排出土渣的功能在成孔过程中,土渣混在泥浆中,合理的泥浆密度能够将悬浮于泥浆当中的土渣,通过泥浆循环排出至泥浆池沉淀。
3)泥浆有冷却施工机械的功能钻进成孔时,钻具会同地基土作用产生很大热量,泥浆循环能够携带排出热量,延长施工机具的寿命。
(2)泥浆的制备和处理除能自行造浆的黏性土层外,均应制备泥浆。
泥浆制备应选用高塑性黏土或膨润土。
泥浆应根据施工机械、工艺及穿越土层情况进行配合比设计。
施工期间护筒内的泥浆面应高出地下水位1Om以上,在受水位涨落影响时,泥浆面应高出最高水位1.5m以上;在清孔过程中,应不断置换泥浆,直至灌注水下混凝土。
(3)泥浆试验在灌注桩工程中所使用的泥浆,必须经常保持地层和施工条件等所要求的性质。
为此施工中不仅在制备泥浆时,而且在施工的各个阶段都必须测定泥浆的性质并进行质量管理。
灌注混凝土前,应对泥浆相对密度、含砂率、黏度等进行测定。
孔底500mm以内的泥浆比重应小于1.25,含砂率不得大于8%,黏度不得大于28s;这里也仅对一些常用的测定试验作一介绍。
D密度测定密度测定可用下面两种方法的任一种方法进行密度测定,取值为小数点后2位数。
①泥浆比重计;②把泥浆放入已知容积的容器内测定泥浆的质量。
泥浆相对密度计由台座上的泥浆杯和样杆组成泥浆杯内装满要测定的泥浆,盖上杯盖,刮去由盖上的小孔溢出的泥浆,把刀口支撑放在台座上。
灌注桩正循环钻孔与反循环钻孔区别及适用范围
正循环钻孔与反循环钻孔区别及适用范围正循环钻孔是把造浆池制作好的泥浆通过泵压注入孔内,进行置换,排除孔内的浮渣,并且根据地质情况(如软土层)和钻孔深度不断调整泥浆比重,以确保孔压,防止坍孔,“二清”时同时满足规范要求的1:1.15的泥浆比重和孔底沉渣厚度。
所区别的是反循环钻孔一般采用“气举法”清孔,达到同时满足规范要求的1:1.15的泥浆比重和孔底沉渣厚度。
反循环清孔操作不当容易造成坍孔,在软土地区谨慎使用。
正循环是用水泵压送冲洗液由钻杆柱中心进入孔底并经钻头水口返出,经钻杆与孔壁环状间隙上返至孔口,通过地面循环槽流入泥浆池,不需要孔口密封器等附加装置,适用于各种钻进方法。
喷射式反循环,冲洗液由钻杆柱中心下去,从喷反接头处流出,在管内形成负压抽吸力,从而形成孔底局部反循环。
泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环。
反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度。
根据钻探水力学原理,冲洗液在钻孔内的上返速度Va的1.2-1.3倍,即V a=(1.2-1.3)Vs。
反循环钻进钻渣在钻杆内运动,是形态各异的钻渣群在有限的空间作悬浮运动,钻渣颗粒要占据一定液体断面,在这种特定条件下可以采用长春地质学院在利延哥尔公式基础上进行实验给出的公式计算颗粒悬浮速度Vs计算公式为:Vs=3.1×k1×(ds×(rs-ra)/(k2×r2))的1/2次方Vs-钻渣颗粒群悬浮速度(m/s)ds-颗粒群最大颗粒粒径(m)rs-钻渣颗粒的密度(kg/dm3)ra-冲洗液的密度(kg/dm3)k1-岩屑浓度系数;k1=0.9-1.1,浓度越大,k1越小;k2-岩屑颗粒系数,k2=1-1.1,球形颗粒为1,越不规则,k2的值越大。
钻孔灌注桩常见的三种钻孔方法
钻孔灌注桩常见的三种钻孔方法桩基础施工概念:钻孔灌注桩是指采用不同的钻孔方法,在土中形成一定直径的井孔,达到设计标高后,将钢筋骨架(笼)吊入井孔中,灌注混凝土形成的桩基础。
钻孔一、冲击钻机钻孔十字钻头冲击钻孔的施工要点二、回旋钻成孔回转钻成孔,又称正反循环成孔,是用一般地质钻机在泥浆护壁条件下,慢速钻进,通过泥浆排渣成孔,灌注混凝土成桩,为国内最为常用和应用范围较广的成桩方法。
特点:可用于各种地质条件,各种大小孔径和深度,护壁效果好,成孔质量可靠;施工无噪音,无震动,无挤压;机具设备简单,操作方便,费用较低,但成孔速度慢,效率低,用水量大,泥浆排放量大,污染环境,扩孔率较难控制。
适用范围:粘性土、含少量砾石、卵石的土层、软岩。
(1)正循环钻孔Ø正循环是用泥浆泵将泥浆以一定压力通过空心钻杆顶部,从钻杆底部喷出,底部的钻锥在旋转时将土壤搅松成为钻渣,被泥浆悬浮,随泥浆上升而溢出流至孔外的泥浆槽,经过沉淀池中沉淀净化,再循环使用。
Ø特点:排渣能力比较弱, 钻进速度较慢,钻具的磨损也比较大,但工艺比较简单,容易操作,正循环钻机的价格也比较便宜。
Ø适用:粘土、亚粘土、淤泥质土层、粉砂、卵砾石层、基岩正循环钻结构示意图(2)反循环钻孔反循环钻机的泥浆的循环方式则正好相反,泥浆由孔外流入孔内,由真空泵或其他方法(如空气吸泥机等)将钻渣通过钻杆中心从钻杆顶部吸出,或将吸浆泵随同钻锥一同钻进,从孔底将钻渣吸出孔外。
特点:反循环钻机排渣能力比较强,但工艺比较复杂,操作不当容易引起塌孔埋钻,而且反循环钻机价格比较高。
适用:同正循环。
反循环钻结构示意图三、旋挖钻机钻孔旋挖钻孔灌注桩是近年来发展最快的一种新型桩孔施工方法。
工作原理:旋挖钻通过钻斗的旋转、削土、提升、卸土,反复循环而成孔,最大成孔直径可达1.5-4m,最大成孔深度为60-90m,可以满足各类大型基础施工的要求。
特点:具有功率大、钻孔速度快、移位方便、定位准确、工作效率高、施工质量好、尘土泥浆污染少。
钻孔灌注桩正循环和反循环施工工艺
钻孔灌注桩正循环和反循环施工工艺正循环是冲洗液由泥浆泵通过钻杆送入孔底, 环的冲洗液刚好与正循环的路由相反。
般施工中都是用反循环的 [正循环旋转钻孔]:泥浆由泥浆泵以高压从泥浆池输进钻杆内腔,经钻头的出浆 口射出。
底部的钻头在旋转时将土层搅松成为钻渣, 被泥浆悬浮,随泥浆上升而 溢出,经过沉浆池沉淀净化,泥浆再循环使用。
井孔壁靠水头和泥浆保护。
[反循环旋转钻孔]:泥浆由泥浆池流入钻孔内,同钻渣混合。
在真空泵抽吸力作 用下,混合物进入钻头的进渣口,经过钻杆内腔,泥石泵和出浆控制筏排泄到沉 淀池中净化,再供使用。
由于钻杆内径较井孔直径小得多, 故钻杆内泥水上升比 正循环快4~5倍,在桥梁钻孔桩成孔中处于主导地位。
反循环钻在软塑土、松散的沙、砾、卵及含有长木棒、树根等一杂物的垫土层中钻进,当泥浆性能较差、 循环流量(流速)不当时很易发生坍塌。
主要是泥浆循环方式不同,将旋转钻孔机分为正循环钻进和反循环钻进。
正循环钻进是泥浆自供应池由泥浆泵泵出, 输入软管送往水龙头上部进口,再注 入旋转空心钻杆头部,通过空心钻机一直流到钻头底部排出, 旋转中的钻头将泥 浆润滑,并将泥浆扩散到整个孔底,携同钻碴浮向钻孔顶部,从孔顶溢排地面上 泥浆槽。
反循环钻进与正循环钻进的差异在钻进时泥浆不经水龙头直接注入钻孔四周,泥浆下达孔底,经钻头拌和使孔内部浆液均匀达到扩壁,润滑钻头,浮起钻碴,此 时压缩空气不断送入水龙头,通过固定管道直到钻头顶部,按空气吸泥原理,将 钻渣从空心钻杆排入水龙头软管溢出。
怎么样判断桩基已入岩?首先你得根据岩土工程勘察报告来进行初步判断, 在报 告中所描述的深度附近如果进尺发生明显变化,此时你应该将这个深度做一下记 录,并仔再从孔底从孔内上返到地面;反循细观测泥浆中岩屑成份,如果发现基岩碎屑,则可以证明桩基已经入岩。
如何判断桩基已打至中风化层?首先要详细了解勘察报告的地质分部情况,再根据试桩时米集确定的入岩样品来确定。
灌注桩正循环钻孔与反循环钻孔区别及适用范围
正循环钻孔与反循环钻孔区别及适用范围正循环钻孔是把造浆池制作好的泥浆通过泵压注入孔内,进行置换,排除孔内的浮渣,并且根据地质情况如软土层和钻孔深度不断调整泥浆比重,以确保孔压,防止坍孔,“二清”时同时满足规范要求的1:的泥浆比重和孔底沉渣厚度;所区别的是反循环钻孔一般采用“气举法”清孔,达到同时满足规范要求的1:的泥浆比重和孔底沉渣厚度;反循环清孔操作不当容易造成坍孔,在软土地区谨慎使用;正循环是用水泵压送冲洗液由钻杆柱中心进入孔底并经钻头水口返出,经钻杆与孔壁环状间隙上返至孔口,通过地面循环槽流入泥浆池,不需要孔口密封器等附加装置,适用于各种钻进方法;喷射式反循环,冲洗液由钻杆柱中心下去,从喷反接头处流出,在管内形成负压抽吸力,从而形成孔底局部反循环;泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环;反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度;根据钻探水力学原理,冲洗液在钻孔内的上返速度Va的倍,即Va=Vs;反循环钻进钻渣在钻杆内运动,是形态各异的钻渣群在有限的空间作悬浮运动,钻渣颗粒要占据一定液体断面,在这种特定条件下可以采用长春地质学院在利延哥尔公式基础上进行实验给出的公式计算颗粒悬浮速度Vs计算公式为:Vs=×k1×ds×rs-ra/k2×r2的1/2次方Vs-钻渣颗粒群悬浮速度m/sds-颗粒群最大颗粒粒径mrs-钻渣颗粒的密度kg/dm3ra-冲洗液的密度kg/dm3k1-岩屑浓度系数;k1=,浓度越大,k1越小;k2-岩屑颗粒系数,k2=,球形颗粒为1,越不规则,k2的值越大;目前,泵吸反循环钻杆内径大多数为150mm,用上述公式计算可知,块状为120mm,rs为2.1kg/dm3,ra为1.05kg/dm3,悬浮速度为1.02m/s,按照Va=计算,Va达到1.33m/s就可以把几何尺寸小于钻杆内径的钻渣排除;目前常用8BS砂石泵额定排量为180m3/h,满负荷时冲洗液上返流速可以达到 2.83m/s,可以看出该速度远大于钻渣上返所需流速1.33m/s的要求,因此进入钻杆内的钻渣能够被有效的抽吸上来;而正循环钻进冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的;试计算φ89mm钻杆与φ0.8m钻孔的环闭空间,断面积为0.495m2,当采用两台600型水泵并联送水,满排量时冲洗液的上返速度仅达到0.04m/s,根据上述公式可见正循环钻进只有依靠高浓度高密度泥浆来悬浮钻渣;综上所述,反循环本身所具有的特点,给提高成孔效率、成桩质量和综合经济效益等方面带来一系列的好处;1、钻进速度与成桩效率有大幅度提高钻头在工作时的最有利条件是被切割下来的岩土屑,立即能够从孔底带出并送到地面,这样可以减少二次破碎,不会降低效率以及钻头的磨损;冲洗液携带钻渣的能力正比例于介质的密度和其运动速度的平方,所以影响有效排渣的因素是冲洗液的上返速度;由于钻孔桩施工的土层多为松散、颗粒差异又较大的土层,因此钻进速度的高低主要取决于排渣的速度;正、反循环两种钻进速度的差异,随着钻孔直径以及土层颗粒的增大而增大,一般来说对于地层和技术要求相同的情况,反循环施工速度为正循环的2倍左右;反循环钻进过程就是清孔过程,不但节省了时间同时又可靠地保证孔底沉渣符合要求;机械钻进速度的提高和清孔时间的缩短促进施工效率的提高、成桩周期缩短,有效地提高了劳动生产率;2、孔壁稳定、成孔质量好反循环钻孔桩孔壁的稳定,主要是利用静水压力来平衡地层压力维持孔壁的稳定;。
正、反循环钻机施工作业指导书
正、反循环钻机施工作业指导书1.概念介绍(1).正循环回转钻孔:泥浆高压通过钻机的空心钻杆,从钻杆底部射出,底部的钻头(钻锥)在回转时将土层搅松成为钻渣,被泥浆浮悬。
随着泥浆上升而溢出流到井外的泥浆溜槽,经过沉淀池沉淀净化,泥浆在循环使用。
井孔壁依靠水头和泥浆保护,对泥浆的质量要求较高。
(2).反循环回转钻孔:与正循环相反,泥浆由钻杆外注入井孔,用真空泵或者其他方法(如空气吸泥机)将钻渣从钻杆中吸出。
泥浆起辅助护壁作用,相对正循环泥浆质量要求较低,但遇到钻深孔或者易坍塌土层时,需要高质量泥浆。
(3).正、反循环钻孔的合用范围:钻孔方法合用范围泥浆作用土层孔径(cm)孔深(m)正循环回转钻粘性土、粉沙、细砂、中粗砂、含少量砾石、卵石土(含量少于20%)、软岩;80~250 30~100浮悬钻渣并护壁反循环回转钻粘性土、砂类土、含少量砾石、卵石土(含量少于20%,粒径小于钻杆内径2/3);80~300用真空泵小于35,用空气吸泥机可达65,用气举式可达120;护壁2.作业准备(1).技术准备在开工之前组织技术人员认真学习实施性施工组织设计,审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。
制定施工安全保证措施,提出应急预案。
对施工人员进行技术交底,对参加施工人员进行上岗前技术培训,考核合格后持证上岗。
钻孔灌注桩开工前应根据规范要求编报施工方案及开工报告。
待开工报告得到监理工程师允许开工后才允许开工。
(2).外业准备施工作业层中所涉及的各种外部技术数据采集。
修筑生活房屋,配齐生活、办公设施、满足管理、技术人员进场生活、办公需要。
根据施工使用要求修筑施工道路、泥浆坑、和水电供应系统等,并及时组织好设备、人员及材料进场。
根据施工需要,对设计提供的测量控制网按照设计文件要求进行复测,编制测量施工方案,进行必要的加密或者重新布设控制网点,补充施工需要的水准点、桥梁轴线及墩台控制桩。
3.技术要求(1).混凝土采用商品混凝土,混凝土的拌和全部在拌和站集中厂拌。
反循环钻孔灌注桩
反循环钻孔灌注桩一、引言反循环钻孔灌注桩是一种广泛应用于各类建筑工程的桩基施工技术。
其独特的施工方式和原理,使得它在各种地质条件下都能发挥出良好的承载性能和稳定性。
本文将就反循环钻孔灌注桩的施工技术进行深入探讨,以期为相关工程提供参考。
二、反循环钻孔灌注桩概述反循环钻孔灌注桩是一种在桩基施工中利用反循环方式排渣的钻孔灌注桩。
其施工过程主要分为两个阶段:一是成孔阶段,利用钻机在土层中钻出桩孔;二是成桩阶段,将钢筋笼放置在桩孔中,然后灌入混凝土,形成混凝土桩。
三、反循环钻孔灌注桩的优点1、施工效率高:反循环钻孔灌注桩的施工效率高于其他钻孔灌注桩,能够大幅缩短施工周期。
2、承载能力强:由于反循环钻孔灌注桩的施工过程对土层的扰动较小,所以能够更好地发挥出桩基的承载能力。
3、施工成本低:反循环钻孔灌注桩的施工成本相对较低,适合大规模应用。
四、反循环钻孔灌注桩的施工技术1、施工准备:在施工前,需要对场地进行平整和清理,确保施工机械能够顺利进场。
同时,还需要对钻机、钢筋笼等施工设备进行检查和调试,确保其正常运行。
2、成孔施工:在成孔阶段,需要根据设计要求确定桩位和钻孔深度。
然后,利用反循环钻机进行钻孔作业。
在钻孔过程中,需要控制好钻机的转速和压力,确保钻孔的质量。
同时,还需要对钻出的土壤进行及时清理,防止堵塞排渣口。
3、钢筋笼制作与安装:在成孔施工完成后,需要制作钢筋笼并放置在桩孔中。
钢筋笼的制作要严格按照设计要求进行,确保其直径、长度和钢筋规格符合标准。
在放置钢筋笼时,需要缓慢下放,避免对孔壁造成破坏。
4、混凝土灌注:在钢筋笼放置完成后,需要进行混凝土灌注。
混凝土的灌注要连续进行,避免出现断层现象。
在灌注过程中,需要控制好混凝土的配合比和灌注速度,确保混凝土的质量和强度符合设计要求。
5、质量检测:在灌注完成后,需要对桩基进行质量检测。
常用的检测方法包括超声波检测、静载试验等。
如果发现质量问题,需要进行及时处理,确保桩基的稳定性和承载能力。
钻孔灌注桩施工工艺标准
钻孔灌注桩施工工艺标准1.适用范围1.1 泥浆护壁成孔灌注桩按成孔工艺和成孔机械不同分为:正循环钻孔灌注桩、反循环钻孔灌注桩、钻孔扩底灌注桩和冲击成孔灌注桩。
其适用范围如下:1)正循环钻孔灌注桩适用于粘性土、砂土、强风化、中等到微风化岩石。
可用于桩径小于1.5m、孔深一般≤50m场地。
2)反循环钻孔灌注桩适用于粘性土、砂土、细粒碎石土及强风化、中等-微风化岩石,可用于桩径小于2.0m,孔深孔深一般≤60m的场地。
3)钻孔扩底灌注桩适用于粘性土、砂土、细粒碎石土、全风化、强风化、中等风化岩石时,孔深一般≤40m。
4)冲击成孔灌注桩适应于粘性土、砂土、碎石土和各种岩层。
对厚砂层软塑~流塑状态的淤泥及淤泥质土应慎重使用。
2、施工准备2.1技术准备1)组织有关人员认真学习熟悉场地岩土工程勘察资料和工程设计文件,收集地下障碍物等资料。
2)会同建设单位、监理单位、设计单位进行设计图纸会审。
3)编制和报审施工组织设计或施工方案。
4)向项目管理人员和施工人员进行工程施工质量技术交底和安全技术、环境保护、文明施工交底。
5)进行建筑控制点、轴线测量和桩位施放。
2.2现场准备1)平整施工场地,修筑临时施工道路,接通水源、接通电源及架设电线电缆。
2)修筑施工及生活临时设施,修筑泥浆池、循环槽,钢筋加工场区。
合理进行施工平面布置。
2.3机械设备准备根据场地岩土层情况和设计要求,合理选择施工机械设备。
泥浆护壁成孔灌注桩施工的机械设备可参考表1准备。
泥浆护壁成孔灌注桩施工的机械设备表12.4 材料准备1)作好钢筋、水泥、砂、石备料计划,并按计划进场。
当使用商品混凝土时,应向供应商提出所需混凝土的强度、坍落度、供货到现场的时间和数量等要求。
2)所需原材料应送检,并经质量检验合格。
3)在有较厚的砂、碎石土等原土不能造浆的场地施工时,应备足粘土或膨润土。
3.施工工艺3.1泥浆护壁成孔灌注桩施工流程泥浆护壁成孔灌注桩的施工流程见图1。
钻孔灌注桩反循环施工原理介绍
1钻孔灌注桩反循环施工原理及特点泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环。
反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度。
根据钻探水力学原理,冲洗液在钻孔内的上返速度Va的1.2-1. 3倍,即Va=(1.2-1.3)Vs.反循环钻进钻渣在钻杆内运动,是形态各异的钻渣群在有限的空间作悬浮运动,钻渣颗粒要占据一定液体断面,在这种特定条件下可以采用长春地质学院在利延哥尔公式基础上进行实验给出的公式计算颗粒悬浮速度Vs计算公式为:Vs=3.1×k1×(ds×(rs-ra)/(k2×r2))的1/2次方Vs-钻渣颗粒群悬浮速度(m/s)ds-颗粒群最大颗粒粒径(m)rs-钻渣颗粒的密度(kg/dm3)ra-冲洗液的密度(kg/dm3)k1-岩屑浓度系数;k1=0.9-1.1,浓度越大,k1越小;k2-岩屑颗粒系数,k2=1-1.1,球形颗粒为1,越不规则,k2的值越大。
目前,泵吸反循环钻杆内径大多数为150mm,用上述公式计算可知,块状为120mm,rs为2.1kg/dm3,ra为1.05kg/dm 3,悬浮速度为1.02m/s,按照Va=(1.2-1.3)Vs计算,Va达到1.33m/s就可以把几何尺寸小于钻杆内径的钻渣排除。
目前常用8BS砂石泵额定排量为180m3/h,满负荷时冲洗液上返流速可以达到2.83m/s,可以看出该速度远大于钻渣上返所需流速1.33 m/s的要求,因此进入钻杆内的钻渣能够被有效的抽吸上来。
而正循环钻进冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的。
钻孔灌注桩的四种施工方法
钻孔灌注桩的四种施工方法
钻孔灌注桩的施工方法包括回旋钻(正循环法、反循环法)、冲击钻、冲抓钻、潜水电钻,还有旋挖钻、长螺旋钻等。
1、回旋钻。
利用泥浆携带打碎的钻渣.其中正循环法是泥浆通过钻杆中心从钻头喷入钻孔,泥浆夹带钻渣上升,排入沉淀池。
反循环法则相反。
对卵石层和硬质岩层不适合。
2、冲击钻。
利用卷扬机提升钻头,冲击成孔利用掏渣桶捞取钻渣和清孔。
工艺简单.效率低.特别适合卵石层和硬质岩层。
成孔质量差(扩孔、钻机移位、卡钻头、掉钻头)。
3、旋挖钻。
新型桩孔施工方法。
其原理:利用钻杆和钻斗的旋转,使土屑装满钻斗后提升钻斗出土。
通过钻斗的旋转、挖土提升、卸土和泥浆置换护壁.反复循环而成孔。
特点:自带动力,造价高,效率可提高20倍,施工质量好、尘土泥浆污染少适合各种地质条件,可以实现桅杆垂直度的自动调节和钻孔深度的计量。
4、长螺旋钻水下灌注成桩技术。
施工原理:采用长螺旋钻钻孔至设计标高,用混凝土泵将混凝土从钻头底部压出,边压灌混凝土边提升钻头直至成桩,然后利用专门震动装置将钢筋笼一次插入桩体,形成钢筋混凝土桩。
特点:与普通水下灌注桩施工工艺比较,长螺旋钻水下灌注成桩施工,由于不需要泥浆护壁,故无泥皮,无沉渣,无泥浆污染,施工速度快。
造价低。
工艺要点:成孔一配置混凝土一泵送混凝土一植入钢筋笼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灌注桩正循环钻孔与反循环钻孔区别及适用范
围
标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
正循环钻孔与反循环钻孔区别及适用范围
正循环钻孔是把造浆池制作好的泥浆通过泵压注入孔内,进行置换,排除孔内的浮渣,并且根据地质情况(如软土层)和钻孔深度不断调整泥浆比重,以确保孔压,防止坍孔,“二清”时同时满足规范要求的1:的泥浆比重和孔底沉渣厚度。
所区别的是反循环钻孔一般采用“气举法”清孔,达到同时满足规范要求的1:的泥浆比重和孔底沉渣厚度。
反循环清孔操作不当容易造成坍孔,在软土地区谨慎使用。
正循环是用水泵压送冲洗液由钻杆柱中心进入孔底并经钻头水口返出,经钻杆与孔壁环状间隙上返至孔口,通过地面循环槽流入泥浆池,不需要孔口密封器等附加装置,适用于各种钻进方法。
喷射式反循环,冲洗液由钻杆柱中心下去,从喷反接头处流出,在管内形成负压抽吸力,从而形成孔底局部反循环。
泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环。
反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液携带钻渣后迅速进入过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度。
?
根据钻探水力学原理,冲洗液在钻孔内的上返速度Va的倍,即Va=()Vs。
反循环钻进钻渣在钻杆内运动,是形态各异的钻渣群在有限的空间作悬浮运动,钻渣颗粒要占据一定液体断面,在这种特定条件下可以采用长春地质学院在利延哥尔公式基础上进行实验给出的公式计算颗粒悬浮速度Vs计算公式为:?
Vs=×k1×(ds×(rs-ra)/(k2×r2))的1/2次方?
Vs-钻渣颗粒群悬浮速度(m/s)?
ds-颗粒群最大颗粒粒径(m)?
rs-钻渣颗粒的密度(kg/dm3)?
ra-冲洗液的密度(kg/dm3)?
k1-岩屑浓度系数;k1=,浓度越大,k1越小;?
k2-岩屑颗粒系数,k2=,球形颗粒为1,越不规则,k2的值越大。
?
目前,泵吸反循环钻杆内径大多数为150mm,用上述公式计算可知,块状为120mm,rs为2.1kg/dm3,ra为1.05kg/dm3,悬浮速度为1.02m/s,按照Va=计算,Va达到
1.33m/s?
就可以把几何尺寸小于钻杆内径的钻渣排除。
目前常用8BS砂石泵额定排量为
180m3/h,满负荷时冲洗液上返流速可以达到2.83m/s,可以看出该速度远大于钻渣上返所需流速1.33m/s的要求,因此进入钻杆内的钻渣能够被有效的抽吸上来。
?
而正循环钻进冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的。
试计算φ89mm钻杆与φ0.8m钻孔的环闭空间,断面积为0.495m2,当采用两台600型水泵并联送水,满排量时冲洗液的上返速度仅达到0.04m/s,根据上述公式可见正循环钻进只有依靠高浓度高密度泥浆来悬浮钻渣。
?
综上所述,反循环本身所具有的特点,给提高成孔效率、成桩质量和综合经济效益等方面带来一系列的好处。
?
1、钻进速度与成桩效率有大幅度提高?
钻头在工作时的最有利条件是被切割下来的岩土屑,立即能够从孔底带出并送到地面,这样可以减少二次破碎,不会降低效率以及钻头的磨损。
冲洗液携带钻渣的能力正比例于介质的密度和其运动速度的平方,所以影响有效排渣的因素是冲洗液的上返速度。
由于钻孔桩施工的土层多为松散、颗粒差异又较大的土层,因此钻进速度的高低主要取决于排渣的速度。
?
正、反循环两种钻进速度的差异,随着钻孔直径以及土层颗粒的增大而增大,一般来说对于地层和技术要求相同的情况,反循环施工速度为正循环的2倍左右。
?
反循环钻进过程就是清孔过程,不但节省了时间同时又可靠地保证孔底沉渣符合要求。
机械钻进速度的提高和清孔时间的缩短促进施工效率的提高、成桩周期缩短,有效地提高了劳动生产率。
?
2、孔壁稳定、成孔质量好?
反循环钻孔桩孔壁的稳定,主要是利用静水压力来平衡地层压力维持孔壁的稳定。