实验一半导体激光器及光无源器件测试
半导体激光器实验报告
半导体激光器实验报告摘要:本文旨在通过对半导体激光器的实验研究,探索其基本原理、结构和性能,并分析实验结果。
通过实验,我们了解了激光器的工作原理、调制和控制技术以及其应用领域。
在实验过程中,我们测量了激光器的输出功率、光谱特性和波长调制特性等参数,并对实验结果进行了分析和讨论。
1.引言半导体激光器是一种利用半导体材料作为活性介质来产生激光的器件。
由于其小尺寸、高效率和低成本等优点,半导体激光器被广泛应用于通信、光存储、医学和科学研究等领域。
本实验旨在研究不同结构和参数的半导体激光器的性能差异,并通过实验数据验证理论模型。
2.实验原理2.1 半导体激光器的基本结构半导体激光器由活性层、波导结构和光学耦合结构组成。
活性层是激光器的关键部分,其中通过注入电流来激发电子和空穴复合形成激光。
波导结构用于限制光的传播方向,并提供反射面以形成光腔。
光学耦合结构用于引导激光光束从激光器中输出。
2.2 半导体激光器的工作原理半导体激光器利用注入电流激发活性层中的电子和空穴,使其发生复合并产生激光。
通过适当选择材料和结构参数,使波导结构中的光在垂直方向形成反射,从而形成光腔。
当光经过活性层时,激发的电子和空穴产生辐射跃迁,并在激光器中形成激光。
随着光的多次反射和放大,激光逐渐增强,最终从光学耦合结构中输出。
3.实验步骤3.1 实验器材本实验使用的主要器材有半导体激光器装置、电源、光功率计、多道光谱仪等。
3.2 实验过程首先,将半导体激光器装置与电源连接,并通过电源控制激光器的注入电流。
然后,使用光功率计测量激光器的输出功率,并记录相关数据。
接下来,使用多道光谱仪测量激光器的光谱特性,并记录各个波长的输出光功率。
最后,调节激光器的注入电流,并测量波长调制特性。
完成实验后,对实验数据进行分析和讨论。
4.实验结果与分析通过实验测量,我们得到了半导体激光器的输出功率、光谱特性和波长调制特性等数据,并对其进行了分析。
实验结果显示,随着注入电流的增加,激光器的输出功率呈现出递增趋势,但当电流达到一定值后,增长速度逐渐减慢。
实验一 半导体激光器P-I特性曲线测量
实验一半导体激光器P-I特性曲线测量一、实验目的:1.了解半导体光源和光电探测器的物理基础;2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性;3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性;4.掌握有源光电子器件特性参数的测量方法;二、实验原理:光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。
1.发光二极管(LED)和半导体激光二极管(LD):LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。
LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。
LD通过受激辐射发光,是一种阈值器件。
LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。
使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。
在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。
当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。
如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。
(1) LED和LD的P-I特性与发光效率:图1是LED和LD的P-I特性曲线。
LED是自发辐射光,所以P-I曲线的线性范围较大。
半导体激光器实验报告
半导体激光器实验报告半导体激光器实验报告引言:半导体激光器是一种重要的光电子器件,具有广泛的应用领域,如通信、医疗、工业等。
本实验旨在通过搭建实验装置,研究半导体激光器的工作原理和性能特点,并探索其在光通信领域的应用。
实验一:激光器的工作原理激光器的工作原理是基于光放大和光反馈的原理。
在实验中,我们使用一台半导体激光器,通过电流注入激发半导体材料,产生光子。
这些光子在激光腔中来回反射,不断受到增益介质的放大,最终形成激光束。
实验装置中的关键组件包括半导体激光器、激光腔、准直器和光探测器。
半导体激光器通过电流注入,激发载流子跃迁,产生光子。
光子在激光腔中来回反射,经过准直器调整光束的方向,最后被光探测器接收。
实验二:激光器的性能特点在实验中,我们测试了激光器的输出功率、波长和光谱宽度等性能指标。
通过改变注入电流和温度等参数,我们研究了激光器的输出特性。
首先,我们测试了激光器的输出功率。
通过改变注入电流,我们观察到激光器输出功率随电流增加而增加的趋势。
然而,当电流达到一定值后,激光器的输出功率不再增加,甚至出现下降。
这是由于激光器的光子数饱和效应和损耗机制导致的。
其次,我们测量了激光器的波长。
通过调节激光腔的长度,我们观察到激光器的波长随腔长的变化而变化。
这是由于激光腔的谐振条件决定了激光器的输出波长。
最后,我们研究了激光器的光谱宽度。
通过光谱仪测量激光器的光谱分布,我们发现激光器的光谱宽度与注入电流和温度有关。
随着注入电流的增加和温度的降低,激光器的光谱宽度变窄,光纤通信系统中要求的窄光谱宽度可以通过适当的调节实现。
实验三:半导体激光器在光通信中的应用半导体激光器在光通信领域有着重要的应用。
我们通过实验研究了激光器在光纤通信中的应用。
首先,我们将激光器的输出光束通过光纤传输。
通过调节激光器的输出功率和波长,我们实现了光纤通信中的光信号传输。
通过光探测器接收光信号,并通过示波器观察到了传输过程中的光信号波形。
光无源器件参数测试实验
光无源器件参数测试实验光无源器件参数测试实验是光电类实验中的一种重要实验,用于测试和研究光无源器件的性能和特性。
光无源器件主要包括光电二极管、光敏电阻、光敏晶体管等。
实验目的:1.理解光无源器件的工作原理和性能特点;2.学会使用光无源器件测试仪器进行参数测试;3.掌握测试光无源器件的光电特性,如响应特性、光电流特性、电光转换效率等。
实验仪器和材料:1.光无源器件测试仪器:光源、光功率计、电源、模拟电压源、示波器等;2.光无源器件样品:光电二极管、光敏电阻、光敏晶体管等;3.光源:激光器、LED灯等。
实验步骤:1.准备工作:a.将光无源器件样品插入到测试仪器中的测试接口;b.打开测试仪器,进行仪器的预热和校准。
2.测试光线响应特性:a.将光源对准光无源器件,并调节光源的强度。
b.测量光无源器件的输出电流或电压随光源强度变化的关系曲线。
c.记录数据并分析光无源器件的响应特性。
3.测试光电流特性:a.将光源对准光无源器件,并固定光源的强度。
b.根据不同的实验要求,设置不同的电压源输出电压,测量光无源器件的输出电流。
c.记录数据并分析光无源器件的光电流特性。
4.测试电光转换效率:a.选取适当的光源和光无源器件样品。
b.测试光无源器件的光电转换效率,即测量光无源器件输出功率与输入光功率之比。
c.记录数据并分析光无源器件的电光转换效率。
5.分析实验结果:根据实验数据,进行曲线拟合、数据处理和结果分析,探讨光无源器件的性能和特点。
实验注意事项:1.实验时应注意光无源器件的灵敏度,避免直接光照到器件。
2.使用仪器和光源时要遵守相关的安全操作规程,避免产生辐射伤害。
3.实验过程中的参数设置和测试条件应根据实际需要进行调整。
通过光无源器件参数测试实验,可以深入了解光无源器件的性能和特性,为光电器件的设计、研究和应用提供了有力的支持。
同时,此实验也可以帮助学生掌握光电技术的基本原理和实验技能,培养实验观察、数据处理和问题分析解决能力。
半导体激光器_实验报告
半导体激光器_实验报告【标题】半导体激光器实验报告【摘要】本实验主要通过实际操作和测量,研究半导体激光器的工作原理和性能特点。
通过改变电流和温度等参数,观察激光器的输出功率和波长、发散角度等特性的变化,并分析其与激光器内部结构和材料特性之间的关系。
【引言】半导体激光器具有体积小、功耗低、效率高等优点,在光通信、激光加工、医疗等领域有广泛应用。
了解半导体激光器的工作原理和特性对于深入理解其应用具有重要意义。
【实验内容】1. 实验器材与仪器准备:准备半导体激光器、电源、温度控制器、功率测量仪等实验设备。
2. 实验步骤:a. 连接电源和温度控制器,调节温度至设定值。
b. 调节电流,记录相应的激光器输出功率。
c. 测量激光器的输出波长和发散角度。
d. 分析激光器输出功率、波长和发散角度等特性随电流和温度变化的规律。
【实验结果】1. 实验数据记录:记录不同电流和温度下的激光器输出功率、波长和发散角度数据。
2. 实验结果分析:a. 输出功率与电流和温度的关系。
b. 输出波长与电流和温度的关系。
c. 发散角度与电流和温度的关系。
【讨论】根据实验结果,结合半导体激光器的内部结构和材料特性,讨论激光器输出功率、波长和发散角度等特性与电流和温度的关系。
分析激光器的工作原理和性能特点,并讨论其在实际应用中的优缺点。
【结论】通过实验,我们深入了解了半导体激光器的工作原理和性能特点。
通过调节电流和温度等参数,可以控制激光器的输出功率、波长和发散角度等特性。
半导体激光器具有体积小、功耗低、效率高等优点,但也存在一些限制,如温度敏感性较强。
最后,我们对半导体激光器的应用前景进行了展望。
半导体激光器测试方法
半导体激光器测试方法
半导体激光器是一种常见的光电器件,通过将电能转化为光能产生激光。
为了确保半导体激光器的性能和质量,需要进行各种测试。
以下是常见的半导体激光器测试方法:
1.激光器波长测试:使用光谱仪进行激光器波长的检测,以确保激光器的波长符合要求。
2.光功率测试:测量激光器的输出功率,以确保激光器的输出功率符合要求。
这可以使用功率计或功率传感器进行测量。
3.光电特性测试:通过测量激光器的光电流和光谱特性等参数,来确定激光器的光电特性。
4.稳定性测试:对激光器进行长时间的稳定性测试,以确保激光器的性能和可靠性。
5.阈值电流测试:测试激光器的阈值电流,以确定激光器的启动电流和电压。
6.温度测试:测试激光器在不同温度下的性能,以确定激光器在各种环境下的工作条件。
半导体激光器测试是半导体激光器制造过程中非常重要的一环,只有通过严格的测试可以确保激光器的性能和质量。
- 1 -。
实验五光无源器件特性测试实验
实验五-光无源器件特性测试实验实验五:光无源器件特性测试实验一、实验目的1.掌握光无源器件的基本特性测试方法;2.熟悉光无源器件的性能指标;3.学习并掌握光损耗测试、光回波损耗测试、光方向性测试等基本光无源器件测试方法。
二、实验原理光无源器件是构成光通信网络不可或缺的部分,其特性测试对于确保系统的稳定性和性能至关重要。
实验中,我们将对光损耗、光回波损耗和光方向性等关键指标进行测试。
1.光损耗:光损耗是指光在传输过程中,由于各种原因导致的光功率减弱。
实验中,我们通过测量输入光功率和输出光功率之差,得到器件的光损耗。
2.光回波损耗:光回波损耗是指反射回来的光功率与入射光功率之比。
高回波损耗意味着低反射,有助于减少光信号的散射和增强系统的稳定性。
3.光方向性:光方向性描述了光在特定方向上的传播能力。
实验中,我们通过测量器件在不同角度上的透射和反射光功率,评估其方向性。
三、实验步骤1.搭建测试平台:准备好测试所需的设备和器材,包括光源、光功率计、稳定光源、光无源器件待测件、光纤跳线等。
2.初始化:对测试平台进行初始化,包括连接光纤、设置光源波长等。
3.测试光损耗:首先,调整好光源的输出功率,将稳定光源的光纤连接到光无源器件的输入端,同时将光功率计连接到输出端,测量原始的光功率P1;然后,将待测件插入到稳定光源与光功率计之间,再次测量输出光功率P2;最后,通过计算P1和P2的差值,得到光损耗=10*log10(P1/P2)。
4.测试光回波损耗:将稳定光源的光纤连接到光无源器件的输入端,同时将回波损耗仪连接到输出端,测量回波损耗值。
5.测试光方向性:通过旋转待测件,在不同角度上测量透射和反射光功率,并记录数据。
通常以角度为横坐标,以功率为纵坐标绘制曲线图,即可得到光方向性的结果。
6.数据处理与分析:对测试得到的数据进行分析,评估待测件的性能。
对比同类型器件的测试结果,可以对器件进行优化或改进设计。
7.清理现场:实验结束后,关闭设备并整理现场。
实验报告半导体激光实验
一、实验目的1. 了解半导体激光器的基本原理和光学特性;2. 掌握半导体激光器耦合、准直等光路的调节;3. 根据半导体激光器的光学特性考察其在光电子技术方面的应用;4. 熟悉WGD6光学多道分析器的使用。
二、实验原理1. 半导体激光器的基本结构半导体激光器,全称为半导体结型二极管激光器,是一种利用半导体材料作为工作物质的激光器。
其基本结构包括工作物质、谐振腔和激励能源。
工作物质通常采用V族化合物半导体,如GaAs、MoSb等;谐振腔由两个平行端面构成,起到反射镜的作用;激励能源有电注入、光激励、高能电子束激励和碰撞电离激励等。
2. 半导体激光器的阈值条件半导体激光器的阈值电流是各种材料和结构参数的函数。
在满足阈值条件时,半导体激光器才能产生激光。
阈值电流表达式为:\[ I_{th} = \frac{L}{\eta} \frac{P}{h\nu} \]其中,\( I_{th} \) 为阈值电流,\( L \) 为有源层长度,\( \eta \) 为内量子效率,\( P \) 为注入功率,\( h \) 为普朗克常数,\( \nu \) 为发射光的真空波长。
3. 半导体激光器的光学特性半导体激光器的光学特性主要包括单色性好、高亮度、体积小、重量轻、结构简单、效率高、寿命长等。
三、实验仪器与设备1. 半导体激光器及可调电源;2. WGD6型光学多道分析器;3. 可旋转偏振片;4. 旋转台;5. 多功能光学升降台;6. 光功率指示仪。
四、实验步骤1. 搭建实验系统,连接各仪器设备;2. 调节可旋转偏振片,观察偏振光的变化;3. 调节旋转台,观察光斑在屏幕上的变化;4. 调节多功能光学升降台,观察光功率指示仪的读数;5. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量;6. 记录实验数据,分析实验结果。
五、实验结果与分析1. 通过调节可旋转偏振片,观察到偏振光的变化,验证了半导体激光器的偏振特性;2. 通过调节旋转台,观察到光斑在屏幕上的变化,验证了半导体激光器的准直特性;3. 通过调节多功能光学升降台,观察到光功率指示仪的读数变化,验证了半导体激光器的功率特性;4. 使用WGD6型光学多道分析器,对半导体激光器的光谱进行测量,得到激光波长、线宽等参数,进一步验证了半导体激光器的光学特性。
实验一半导体激光器pi特性曲线测量
实验四半导体激光器光谱测量与模式分析一、实验目的:1.了解半导体激光器的工作原理和相关特性;2.掌握半导体激光器模式参数的测量方法;二、实验原理:半导体激光器的模式分为空间模和纵模(轴模)。
空间模描述围绕输出光束轴线某处的光强分布,或者是空间几何位置上的光强(或光功率)的分布,也称远场分布;纵模则表示一种频谱,它反映所发射的光束其功率在不同频率(或波长)分量上的分布。
二者都可能是单模或者出现多个模式(多模)。
边发射半导体激光器具有非圆对称的波导结构,而且在垂直于异质结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制情况。
横向上都是异质结构成的折射率波导,而在侧向目前多是折射率波导,但也可采取增益波导,因此半导体激光器的空间模式又有横模与侧模之分。
图1表示这两种空间模式。
图1 半导体激光器横模与侧模由于有源层厚度很薄(约为0.15μm),都能保证在单横模工作;而在侧向,则其宽度相对较宽,因而视其宽度可能出现多侧模。
如果在这两个方向都能以单模(或称基模)工作,则为理想的TEM00模,此时出现光强峰值在光束中心且呈“单瓣”。
这种光束的光束发散角最小、亮度最高,能与光纤有效地耦合,也能通过简单的光学系统聚焦到较小的斑点,这对激光器的应用是非常有利的。
相反,若有源区宽度较宽,则发光面上的光场(称近场)在侧向表现出多光丝,好似一些并行的发光丝,在远场的侧向则有对应的光强分布,如图2所示。
这种多侧模的出现以及它的不稳定性,易使激光器的P-I特性曲线发生“扭折”(kink),使P-I线性变坏,这对信号的模拟调制不利;同时多侧模也影响与光纤高效率的耦合,侧模的不稳定性也影响出纤功率的稳定性;不能将这种多侧模的激光束聚焦成小的光斑。
图2 有多侧模的半导体激光器的近场和远场由于半导体激光器发光区几何尺寸的不对称,其远场呈椭圆状,其长、短轴分别对应于横向与侧向。
在许多应用中需用光学系统对这种非圆对称的远场光斑进行圆化处理。
实验5-1 半导体激光器的特性测试实验
光信息专业实验指导材料(试用)实验5-1 半导体激光器的特性测试[实验目的]1、通过测量半导体激光器工作时的功率、电压、电流,画出P-V、P-I、I-V曲线,让学生了解半导体的工作特性曲线;2、学会通过曲线计算半导体激光器的阈值,以及功率效率,外量子效率和外微分效率,并对三者进行比较;3、内置四套方波信号或者外加信号直接调制激光器,通过调整不同的静态工作点,和输入信号强度大小不同,观察到截至区,线性区,限流区的信号不同响应(信号畸变,线性无畸变),了解调制工作原理。
[实验仪器]实验室提供:半导体激光器实验箱(内置三个半导体激光器),示波器,两根电缆线。
[实验原理]半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。
激励方式有电注入、电子束激励和光泵浦三种形式。
半导体激光器件,可分为同质结、单异质结、双异质结等几种。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器具有体积小、效率高等优点,广泛应用于激光通信、印刷制版、光信息处理等方面。
一、半导体激光器的结构与工作原理1.半导体激光器的工作原理。
半导体材料多是晶体结构。
当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。
价电子所处的能带称价带(对应较低能量)。
与价带对应的高能带称导带,价带与导带之间的空域称为禁带。
当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。
同时,价带中失掉一个电子,相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。
因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。
没有杂质的纯净半导体,称为本征半导体。
如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。
激光技术系列实验-实验报告
(1)按装置图连接好实验线路并检查,待检查无误后接通电源。 (2)打开激光器,调整光路是激光准直。 ①首先使激光束从光阑小孔通过,调整扫描干涉仪上下.左右位置,使光束正入射孔中 ②细调干涉仪板架上的两个方位螺丝, 以便使从干涉仪腔镜反射的最高的光点回到光阑 小孔的中心附近,此时表明入射光束和扫描干涉仪的光轴基本重合。 (3)将放大器的接收部位对准扫描干涉仪的输出端。 (4)连接好放大器、锯齿波发生器、示波器的的相应端口,并打开电源开关。 (5)观察使波器上频谱图,进一步细调干涉仪的两个方位螺丝,使谱线尽量强。 (6)分辨共焦腔球面扫描干涉仪的自由光谱区,确定示波器横轴上每 cm 所对应的频率数。 (7)观察多模激光器的模谱,记下波形及光斑图形(可在远场直接观察),同时 ①测出纵模间隔 ②由干涉仪的自由光谱区计算激光器相邻纵模间隔 ,并与理论值相比较 ③测出纵模个数,由纵模个数及相邻纵模间隔计算出激光器工作物质的增益线宽 四、实验结果与分析 1、氦氖激光器功率稳定性的测量 时间 规律 P(mw) 2:26 0.319 2:28 0.341 2:30 0.345 2:32 0.346 2:34 0.348 2:36 0.350
W =1.4826(2ep) D1/2 = 1.7456(2ep)
(2)实验步骤
(5)
如下图所示, 将刀口位于激光光斑边缘位置, 并将功率计置于刀口后面来测量未被刀口挡住 的激光光功率。
实验装置 1 为激光器,2 为装有螺旋测微器的刀口,3 为功率计。 测量此时激光的输出功率 (此时激光全部未进入功率计) 。 缓慢旋转螺旋测微器, 拉出刀口, 每 0.1mm(也可取最小精度 0.02mm)测一对应的激光功率 P,记录在设计的表格中。重复以 上动作,直到光斑全部进入光功率计,即功率计显示最大值,由此建立 P-x 曲线。数据拟 合及处理得出光斑尺寸及基横模的判断结果。 4、激光器的模式分析 He-Ne 激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波 器等。实验装置如下图
光无源器件参数测试实验
光无源器件参数测试实验光无源器件参数测试实验是对光通信系统中使用的无源器件进行性能测试的一种方法。
无源器件包括光纤、光分路器、光耦合器等,它们在光通信系统中起到传输和分配光信号的作用。
在光通信系统中,无源器件的性能直接影响到系统的传输效率和稳定性,因此准确测试无源器件的参数是非常重要的。
1.实验目的测试光无源器件的参数,包括插入损耗、反射损耗、带宽、槽隔离度等,以评估器件的性能,为光通信系统的设计和优化提供依据。
2.实验仪器与设备(1)光源:常用的光源有激光二极管光源、电子脉冲激光器、气体激光器等。
光源的选择应根据实际应用需求确定。
(2)光功率计:用于测量光源的输出光功率,常用的光功率计包括光纤功率计和探头功率计。
(3)光分路器:用于将光信号分成两个或多个信号,常用的光分路器有耦合式光纤分路器和干涉式光纤分路器。
(4)光耦合器:用于将光信号从一个光纤耦合到另一个光纤中,常用的光耦合器有耦合式光纤耦合器和波导式光纤耦合器。
(5)光衰减器:用于调节光信号的光功率,常用的光衰减器有可调半波电压衰减器、可调半波电压Tipo式衰减器。
(6)光检测器:用于检测光信号的强度和特性,常用的光检测器有光电二极管、光电探测器等。
(7)光谱仪:用于测量光信号的频谱,获取光信号的频率信息,常用的光谱仪有光栅光谱仪、波长计等。
3.实验步骤(1)校准仪器:调节光源的输出光功率,使用光功率计校准光源的输出功率,并记录下来。
(2)测量插入损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光经过器件后的功率,计算插入损耗。
(3)测量反射损耗:将光无源器件与光源和光功率计连接起来,记录下光源的输出功率和光反射回来的功率,计算反射损耗。
(4)测量带宽:使用光谱仪测量无源器件的光信号频谱,记录下信号的中心频率和带宽。
(5)测量槽隔离度:使用光分路器或光耦合器将光信号分成两个或多个信号,分别测量各个信号的光功率,并计算槽隔离度。
半导体激光器实验报告
一、实验目的1. 熟悉半导体激光器的基本结构和工作原理。
2. 掌握半导体激光器的电学特性、光学特性及其调节方法。
3. 通过实验了解半导体激光器在光电子技术方面的应用。
4. 学习使用WGD6光学多道分析器等实验仪器。
二、实验原理半导体激光器是一种基于半导体的电致发光效应的激光器。
当电流通过p型和n型半导体材料形成的pn结时,电子和空穴在pn结的活性区内复合,释放出能量,产生光子。
这些光子在谐振腔中多次反射和放大,最终形成具有特定波长、相位和方向性的激光输出。
半导体激光器的主要结构包括:半导体材料、pn结、谐振腔、光学元件等。
其中,半导体材料是激光器的核心部分,决定了激光器的波长、功率和效率。
pn结是半导体激光器的能量源,谐振腔是激光器的放大器,光学元件则用于调节激光器的光路。
三、实验仪器与材料1. 半导体激光器及可调电源2. WGD6型光学多道分析器3. 可旋转偏振片4. 旋转台5. 多功能光学升降台6. 光功率指示仪四、实验步骤1. 连接仪器:将半导体激光器、可调电源、WGD6型光学多道分析器、可旋转偏振片、旋转台、多功能光学升降台和光功率指示仪连接好。
2. 调节激光器:调整可调电源,使激光器工作在阈值电流附近。
观察激光器输出光斑,调整激光器的光路,使光斑最小化。
3. 测量电学特性:记录激光器在不同电流下的输出功率,分析激光器的电学特性。
4. 测量光学特性:使用WGD6型光学多道分析器测量激光器的光谱特性,分析激光器的光学特性。
5. 调节光路:通过旋转偏振片和旋转台,观察激光器的输出光斑,调整光路,使光斑最小化。
6. 观察应用:观察激光器在光电子技术方面的应用,如光纤通信、激光雷达等。
五、实验结果与分析1. 电学特性:实验结果显示,随着电流的增加,激光器的输出功率逐渐增加,但在阈值电流附近,输出功率增加速率最快。
这表明半导体激光器具有饱和特性。
2. 光学特性:实验结果显示,激光器的光谱线为单色线,且光斑最小化。
实验一半导体激光器pi特性测试实验
常用光纤器件特性测试实验 实验一半导体激光器P-I 特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I 关系曲线。
2、根据P -I 特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率。
三、预备知识1、光源的种类2、半导体激光器的特性、内部结构、发光原理四、实验仪器1、ZY12OFCom13BG3型光纤通信原理实验箱 1台2、FC 接口光功率计 1台3、FC/PC-FC/PC 单模光跳线 1根4、万用表1台5、连接导线20根五、实验原理半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。
阈值电流是非常重要的特性参数。
图1-1上A 段与B 段的交点表示开始发射激光,它对应的电流就是阈值电流th I 。
半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器电学特性的测量实验
半导体激光器电学特性的测量实验一、测试实验原理半导体激光器的核心是PN 结,当用光照和电子束激励或电注入等方式使半导体中的载流子从平衡状态时的基态跃迁到非平衡状态时的激发态,此过程称为激发或激励,它的逆过程就是处于非平衡态激发态上的非平衡载流子回复到较低的能态而放出光子的过程,这就是复合辐射。
半导体发光器件的本质就是注入到半导体PN 结中的非平衡载流子——电子空穴对复合发光。
这是一种非平衡载流子复合的自发辐射,激光器则是上述的非平衡载流子的复合发光在激光器的具有增益的光介质谐振腔作用下形成相干振荡而输出激光,所以发光管的发光效率决定于半导体材料的自发辐射系数的大小。
激光器辐射发光除与材料的增益系数有关外还与谐振腔的特性和结构尺寸有关。
半导体材料的增益系数为:jm g β=β为增益因子,m 为与结构有关的指数,j 为电流密度。
激光器的阈值条件为:)/1()2/1(21R R L L a g n +=a 为腔内的其它损耗,L为腔长,1R 2R 为腔端面的反射系数,所以激光器的阈值电流密度为:()()[]21/12/1/1R R L L j n mth +=αβ由上可知一个制作好的激光器件或发光管,它既是一个PN 结二极管,又是一个电光转换器,它们的工作过程是,当给它正向注入载流子时则在二极管中产生电 子空穴对的复合跃迁而发射光子,光子的能量由二极管的材料的禁带宽度gE 决定,hvE g =,h 为普朗克常数,v 为光频率,发射的同时还存在光的吸收,称为吸收跃迁。
注入小时,吸收大于发射,没有光输出,当注入载流子增大时随发射的增加将逐渐大于吸收而得到荧光输出,发光管就是这样工作的。
但对于激光器由于有介质谐振腔存在,则输入载流子达到激光器的阈值电流时则产生激光输出,再继续增加注入电流,输出光功率也增大,同理,管的功率发热也增加,注入过大时则管子因发热而损坏,从这里我们可以看出,半导体激光器件的特性包括PN 结二极管的I —V 特性和载流子注入而产生的电光转换特性,测量其特性参数可采用两种电注入方法:第一种为脉冲法、第二种为直流法。
实验7.1半导体激光器的电学和光学性能测试半导体激光器是指以半导
实验7.1 半导体激光器的电学和光学性能测试半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(L D),是20世纪60年代发展起来的一种激光器。
半导体激光器的工作物质有几十种,例如砷化镓(GaAs)、硫化镉(CdS)等,激励方式主要有电注入式、光泵式和高能电子束激励式三种。
半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式。
半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展。
半导体激光器的体积小、重量轻、成本低、波长可选择,其应用遍布临床、加工制造、军事,其中尤以大功率半导体激光器方面取得的进展最为突出。
一、实验目的1、学习半导体激光器发光原理;2、了解半导体激光器平均输出光功率与注入驱动电流的关系;3、掌握半导体激光器P-I-V曲线的测试方法;4、掌握半导体发光器件光谱的测量方法;5、理解90%功率光谱宽度和光谱宽度(FWHM)的意义。
二、实验仪器半导体测试仪、半导体耦合光纤激光器、光谱仪、积分球、温控电源等。
三、实验原理3.1 半导体激光器发光原理半导体发光器件是以一定的半导体材料作为工作物质而产生受激发射作用的器件;其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。
图1 激光器工作原理(a)双异质结构(b)能带(c)折射率分布(d)光功率分布图1为激光器工作原理。
由于限制层的带隙比有源层宽,施加正向偏压后, P 层的空穴和N 层的电子注入有源层。
P 层带隙宽,导带的能态比有源层高,对注入电子形成了势垒,注入到有源层的电子不可能扩散到P 层。
同理,注入到有源层的空穴也不可能扩散到N 层。
半导体激光器特性测量实验报告
半导体激光器特性测量一、实验目的:1.通过本实验学习半导体激光器原理。
2.测量半导体激光器的几个主要特性。
3.掌握半导体激光器性能的测试方法。
二、实验仪器:半导体激光器装置、WGD-6型光学多道分析器、电脑等。
三、实验原理:WGD-6 型光学多道分析器,由光栅单色仪,CCD 接收单元,扫描系统,电子放大器,A/D 采集单元,计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T 型,如图M1 反射镜、M2 准光镜、M3 物镜、M4 转镜、G 平面衍射光栅、S1 入射狭缝、S2 光电倍增管接收、S3 CCD 接收。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm 连续可调,光源发出的光束进入入射狭缝S1、S1 位于反射式准光镜M2 的焦面上,通过S1 射入的光束经M2 反射成平行光束投向平面光栅G 上,衍射后的平行光束经物镜 M3 成像在S2 上。
四、实验内容及数据分析1.半导体激光器输出特性的测量:a)将各仪器按照要求连接好;b)打开直流稳压电源,打开光多用仪;c) 将激光器的偏置电流输入插头接于稳压电源的电流输出端;d) 将激光器与光多用仪的输入端相连并使探头正好对激光器输出端,打开光多用仪; e) 缓慢增加激光器输入电流(0mA~36mA ),注意电流不要超过LD的最大限定电流(实验中不超过38mA )。
从功率计观察输出大小随电流变化的情况; f) 记录数据; g) 绘图绘成曲线。
实验数据及结果分析: I (mA ) 1.02.03.04.05.06.07.0 8.09.010.011.0 12.0 P (uW) 0.40 0.80 1.25 1.75 2.25 2.85 3.54.255.05 5.956.98.0I (mA ) 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 P (uW) 9.310.7512.4514.5517.8522.941.0311.5753.51179.51594.51845.0根据以上实验数据绘制I —P 曲线:半导体激光器输出特性2004006008001000120014001600180020000510152025I(mA)P(uW)实验结果分析:通过半导体激光器的控制电源改变它的工作电流I ,测量对应的发光功率P ,以P 为纵轴,I 为横轴作图,描成曲线。
光无源器件参数测试实验共19页文档
光无源器件参数测试实验系统GCPT-B实验指导书(V1.0)武汉光驰科技有限公司WUHAN GUANGCHI TECHNOLOGY CO.,LTD目录一.部分无源器件测试基础知识............................ - 3 -二.光纤耦合器的测试.................................... - 6 -三.光纤隔离器(ISOLATOR)的特性和参数测试............. - 11 -四.波分复用/解复用器(WDM)的测试.................... - 14 -五.光纤衰减器(VOA)特性实验.......................... - 17 -一.部分无源器件测试基础知识近年来,光纤通信发展非常迅速,应用日渐广泛。
作为光纤通信设备的重要组成部分的光无源器件,也取得了长足的进步,并逐步形成了规模产业。
光无源器件是一种光学元器件。
其工艺原理遵守光学的基本理论,即光纤理论和电磁波理论,各项技术指标、各种计算公式和各种测量方法和纤维光学、集成光学息息相关。
光无源器件是一门新兴的、不断发展的学科。
光纤通信的发展呼唤着功能更全、指标更先进的光无源器件不断涌现;一种新型器件的出现往往会有力的促进光纤通信的进步,有时甚至使其跃上一个新的台阶。
光纤通信系统对光无源器件的期望越来越大,器件的发展对系统的影响越来越深。
除此而外,光无源器件在光纤传感和其他光纤应用领域也大有用武之地。
光纤通信元件包括光缆、光有源器件、光无源器件等。
光纤无源器件主要包括耦合器/分路器(Coupler/Splitter)、隔离器(Isolator)、衰减器、波分复用/解复用器(WDM)、光分/插复用器(OADM)、光交叉互联器(OXC)、滤波器(Filter)和光开关(Optical Swich)等,它们都是将来光网络系统中必不可少的器件。
下面我们介绍一些基本的测试环境和条件,国标GB/T 13713-92中阐明测量条件如下:1.测试环境无源器件的测量应该在GB 2421-1989中所规定的正常大气条件下进行,即温度:15~35摄氏度;湿度:45%~75%;气压:85Kpa~106Kpa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一半导体激光器及光无源器件测试
文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)
3.掌握电话呼叫时的各种可闻信号音的特征; 4.了解记发器的工作过程; 5.掌握PCM 编译码原理;
6.了解双光纤全双工通信的组成结构。
二、实验仪器 1.光纤通信实验箱 2.20M 双踪示波器
3.FC-FC 单模光跳线 2根 4.小型电话单机 2部 5.铆孔连接线 若干 三、基本原理
本实验系统主要由两大部分组成:电端机部分、光信道部分。
电端机由电话用户接口电路A 、PCM 编译码A 、记发器电路、PCM 编译码B 、电话用户接口电路B 等组成,光信道为双光纤通信结构。
电话语音信号的光纤传输,可以有多种方式,一种是原始语音信号,经过光纤直接进行传输;另一种方式是先把话音信号数字化,然后再经过光纤传输,目前使用最多的是PCM 编译码方式。
下面先介绍本实验平台上两路电话电路接口示意图。
PCM
PCM
P601 P602
P603
P604
TP601
用户A :
图7.1.1 电话用户A 、B 结构示意图
图7.1.2 电话用户A 、B 模拟光传输结构示意图(A 到B 单工)
图7.1.3数字电话光纤通信基本组成结构示意图
(一)电话接口电路原理介绍
光纤 1310nmLD+单模
PCM
编
光 电
光发
光接
P201
P202
光纤 1550nmLD+单模
电 光
光接
光发
PCM 编 P204
P203
电话
电话
P601 用户
用户
P804
激光/探
P201
P205
PCM
PCM
TP801
P801
P802
P804
用户B :49
P803
为CODEC 。
相应的防混叠与平滑低通滤波器占有话路(300Hz-3400Hz )带宽,编码速率为64kb/s 。
(6)混合(H —Hyhird )完成二线与四线的转换功能,即实现模拟二线双向信号与PCM 发送,接收数字四线单向信号之间的连接。
过去这种功能由混合线圈实现,现在改为集成电路,因此称为“混合电路”。
(7)测试(T —Test )对用户电路进行测试。
图7.1.4 模拟用户线接口功能框图
用户线接口电路:
在本实验系统中,用户线接口电路选用的是PBL 387 10。
PBL 387 10是2/4线厚膜混合用户线接口电路。
它包含向用户话机恒流馈电、向被叫用户话机馈送铃流、用户摘机后自行截除铃流,摘挂机的检测及音频或脉冲信号的识别,用户线是否有话机的识别,语音信号的2/4线混合转换,外接振铃继电器驱动输出。
PBL 387 10用户电路的双向传输衰耗均为﹣1dB ,供电电源为+ 5 V 和﹣5 V ,PBL 387 10还将输入的铃流信号放大以达到电话振铃工作的要求,即达到+75V 的有效值。
其各项性能指标符合邮电部制定的有关标准。
(1)该电路的基本特性
PBL 387 10 TP3067
铃流发馈电模拟
过压保测试开
振铃继
馈电电
混合电
编码器
低平
低
发送
接收(编码
a b
测试总
振铃
用户
线
在本实验系统中,电话呼叫接续时的各种可闻信号音由CPLD 可编程逻辑器件EPM240产生,在记发器的控制下,将相应的信号音送给电话用户。
A .各种可闻信号:一般采用频率为500Hz 的交流信号,例如:
拨号音:(Dial tone )连续发送的500Hz 信号。
回铃音:(Echo tone )1秒送,4秒断的5秒断续的500Hz 信号。
忙音: (busy tone )秒送,秒断的秒断续的500Hz 信号。
B .振铃信号(铃流):一般采用频率为25Hz ,幅度为75V ±15V 的交流电压,
以1秒送,4秒断的5秒断续方式发送。
图7.1.8 工作原理框图
记发器电路是记发器模块(CPU 主处理器)及外围电路,主要由CPU 芯片U501 (AT89C51)、CPLD 可编程器件EPM240、锁存器74HC573等组成,它们在系统软件的作用下,完成对话机状态的监视、信号音及铃流输出的控制、电话号码的识别、交换命令发送等功能。
见图7.1.9,具体叙述如下:
1.用户状态检测电路:接收各个用户线接口电路输出的用户状态检测信号DETX (X 是话路的序号),可以是A 、B ,例如DETA 是电话A话路的用户状态检测信号(下面文字说明中标号的X 含义与此处相同),信号直接送入CPU 的P1口,以识别主、被叫用户摘挂机状态。
2.信号音控制电路:主要由单片机U501及4066的电子开关组成,由CPU 经EPM240口输出的拨号音控制信号(SELA1)、忙音控制信号(SELA2)、回铃音控制信号(SELA3)的作用下,分别分时地将上述三种信号通过电子开关送入主叫用户的电话收端(听筒)。
3.铃流控制电路:由上述的单片机U501、EPM240和用户线接口芯片PBL 38710的有关电路等组成。
自动交换时,在单片机U501控制作用下,EPM240口输出的振
程控
交换机
用户状态信息
各种可闻信号
铃音信号(RING ),铃流音控制信号(CA)送给PBL38710,RING 信号由PBL38710提升功率后,使其有效值达到75V 左右,在CA 的控制下送往电话机,驱动振铃。
接收控制电路:主要由EPM240可编程器件和CPU 的中断端口组成,当MT8870收到电话号码后,便发出使能信号(12EN 或34EN )向CPU(U501芯片)申请中断,接收电话号码数据(D1~D4)送给CPU (U501)和EPM240进行处理。
然后,CPU (U501)译成交换命令(COMM 字节表示)送往交换单元。
图7.1.9 记发器工作过程示意框图 (四)双音多频(DTMF )检测 DTMF 接收器包括DTMF 分组滤波器和DTMF 译码器,其基本原理如图7-1所示。
DTMF 接收器先经高、低群带通滤器进行f L / f H 区分,然后过零检测、比较,得到相应于DTMF 的两路f L 、f H 信号输出。
该两路信号经译码、锁存、缓冲,恢复成对应于16种DTMF 信号音对的4比特二进制码(D1~D4)。
图7.1.10 典型DTMF 接收器原理框图
本实验系统采用MT8870进行号码检测的,MT8870的译码表见7.1.1所示,图为双音多频实验系统的电原理框图。
其中,数据输出允许端EN 和D1~D4见平台上记发器模块的左边测试过孔。
表7.1.1 MT8870译码表
用户接CPLD 信号产生单元 话音、信号音切换电交换控制单拨号回铃
SELA 控振铃音振铃控语音D4 DTMF 语音信各种可
主处理器 89C51忙音 D2 D3 D1 交换控控制摘机信12EN
DTMF 输高频带通过零 码
变 换 锁存
与缓
过零
低频带通信
号。