第六章统计学

合集下载

统计学第六章抽样调查

统计学第六章抽样调查

Part
05
系统抽样技术
系统抽样原理及步骤
• 系统抽样原理:系统抽样是一种等距抽样方法,它首先确定一个抽样间隔,然后在总体中按照这个间隔进行抽 样。这种方法适用于总体单位排列有序且周期性变化的情况。
系统抽样原理及步骤
01
系统抽样步骤
02
确定总体范围和抽样框;
03
计算抽样间隔,确定样本量;
系统抽样原理及步骤
01
03 02
分层标准选择与确定方法
• 以调查对象的某些自然特征或社会特征作 为分层标准。
分层标准选择与确定方法
专家判断法
依靠专家经验判断选择合 适的分层标准。
数据分析法
通过对历史数据或相关数据的 分析,找出影响调查指标的主 要因素,作为分层标准。
试验法
通过试验确定不同分层标准 对调查结果的影响程度,选 择最优的分层标准。
缺点
由于样本可能被重复抽取,导致样本的代表性降 低。
缺点
操作相对复杂,需要记录已经抽取过的样本。
简单随机抽样优缺点分析
操作简单
简单随机抽样的操作过程相对简单,易于理解和实施。
等概率原则
保证了每个单位被抽中的机会相等,避免 具有代表性:当样本量足够大时,简单随机抽样可以获得具有代表性的样本。
整群抽样优缺点比较
• 适用于某些特定情况:对于某些总体分布不均匀或难以划分的情况,整群抽样 可能更为适用。
整群抽样优缺点比较
抽样误差较大
01
由于是以群为单位进行抽样,可能导致抽样误差较大。
样本代表性不足
02
如果群的划分不合理或随机性不足,可能导致样本代表性不足。
对群内个体差异考虑不足
03

统计学第六章

统计学第六章

N
i
X
N
第 i 个单位 的变量值
总体单 位总数
总体算术 平均数
【例A】某售货小组5个人,某天的销售额分别为440元、480元、 520元、600元、750元,求该售货小组销售额的平均差。
解:
X
N
440 480 520 600 750 2790 558 元 5 5
i
A D
X X

(二)变量与算术平均数计算的方差小于变量与任何其他常 数的方差 (三)两个独立随机变量和的方差,等于这两个随机变量方 差的和 2 2 2
( x y ) x y
(四)变量线性变换的方差等于变量的方差乘以变量系数的 平方 2 2 2
y a bx, y b x
第二节 全距、分位差和平均差 一、全距 指所研究的数据中,最大值与最小值之差, 又称极差。
R X max X min
最大变量值或最 高组上限或开口 组假定上限 最小变量值或最 低组下限或开口 组假定下限
【例A】某售货小组5人某天的销售额分别为 440元、480元、520元、600元、750元,则
4. 反映了中间50%数据的离散程度;
5. 不受极端值的影响;
甲城市家庭对住房状况评价的频数分布 甲城市 回答类别 户数 (户) 非常不满意 不满意 一般 满意 非常满意 24 108 93 45 30 累计频数 24 132 225 270 300 —
解:设非常不满意为 1,不满意为2, 一般为 3, 满意为 4, 非常满 意为5 。 已知
一、离中趋势的涵义 指总体中各单位标志值背离 离中趋势 分布中心的规模或程度,用 标志变异指标来反映。
反映统计数据差异程度的综 合指标,也称为标志变动度

统计学第六章抽样推断

统计学第六章抽样推断

尖山一委…
尖山二委
居民一组
居民二


第六章 抽样推断
某外国公司在##进行 微波炉市场调查:
STAT
在商场的大门口
在微波炉柜台前
在市区街道旁边
在某个住宅小区
时间表抽样框
第六章 抽样推断
连续出产的产品总体 可以编制抽样框:均STAT 匀的出产时间、可以 预见到的产品总量.
连续到加油站加油的 汽车总体无法编制抽 样框:时间不定、总 量也无法确定.
抽样估计的特点
第六章 抽样推断
按随机原则抽取样本单位
目的是推断总体的数量特征
抽样推断的结果具有一定的可靠程度, 抽样误差可以事先计算并控制
抽样估计的应用
第六章 抽样推断
不可能进行全面调查时 不必要进行全面调查时 来不及进行全面调查时 对全面调查资料进行补充修正时
抽样调查研究
Sampling Study
P N nN N NN n
共n个
⒉ 不重复抽样的可能样本数目:
C N n N N 1 N n 1
第六章 抽样推断
第六章 抽样推断
STAT
★§1.1 抽样方案的设计 ★§1.2 简单随机抽样的抽样误差的测定
§1.3 简单随机抽样的抽样估计
第六章 抽样推断
§1.2 简单随机抽样的抽样误差的测定 STAT
n1 1{i n1E(xiX)2nn(E xX)2} 由E(于 xX)2D (x)D (i1 nxi)n 1 2i n1D (xi)n2
E(sn21)n11{n2nn2}
2
⒋ 样本成数:
pn1,qn0 1p nn
⒌ 样本单位是非标志的标准差:
第六章 抽样推断

统计学第六章课后题及答案解析

统计学第六章课后题及答案解析

第六章一、单项选择题1.下面的函数关系是( )A现代化水平与劳动生产率 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D亩产量与施肥量2.相关系数r的取值范围( )A -∞< r <+∞B -1≤r≤+1C -1< r < +1D 0≤r≤+13.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( )A +1B -1C 0.5D 15.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程ŷ=a+bx。

经计算,方程为ŷ=200—0.8x,该方程参数的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的D a值和b值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的 B都不是随机的C一个是随机的,一个不是随机的 D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系 B变量之间的变动关系C变量之间的相互关系的密切程度 D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数 ( )A r=0B r=lC 0< r<1D -1<r <012.当相关系数r=0时,表明( )A现象之间完全无关 B相关程度较小C现象之间完全相关 D无直线相关关系13.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关系数为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8114.估计标准误差是反映( )A平均数代表性的指标 B相关关系的指标C回归直线方程的代表性指标 D序时平均数代表性指标二、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系 B圆的面积与它的半径关系C广告支出与商品销售额关系D商品价格一定,商品销售与额商品销售量关系2.相关系数表明两个变量之间的( )A因果关系 C变异程度 D相关方向 E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号4.可用来判断现象线性相关方向的指标有( )A相关系数 B回归系数 C回归方程参数a D估计标准误5.单位成本(元)依产量(千件)变化的回归方程为y c=78- 2x,这表示( ) A产量为1000件时,单位成本76元B产量为1000件时,单位成本78元C产量每增加1000件时,单位成本下降2元D产量每增加1000件时,单位成本下降78元6.估计标准误的作用是表明( )A样本的变异程度 B回归方程的代表性C估计值与实际值的平均误差 D样本指标的代表性7.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( ) A完全相关 B单相关 C负相关 D复相关8.在直线相关和回归分析中( )A据同一资料,相关系数只能计算一个B据同一资料,相关系数可以计算两个C据同一资料,回归方程只能配合一个D据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个9.相关系数r的数值( )A可为正值 B可为负值 C可大于1 D可等于-110.从变量之间相互关系的表现形式看,相关关系可分为( )A正相关 B负相关 C直线相关 D曲线相关11.确定直线回归方程必须满足的条件是( )A现象间确实存在数量上的相互依存关系B相关系数r必须等于1C y与x必须同方向变化D现象间存在着较密切的直线相关关系12.当两个现象完全相关时,下列统计指标值可能为( )A r=1B r=0C r=-1D S y=013.在直线回归分析中,确定直线回归方程的两个变量必须是( )A一个自变量,一个因变量 B均为随机变量C对等关系 D一个是随机变量,一个是可控制变量14.配合直线回归方程是为了( )A确定两个变量之间的变动关系 B用因变量推算自变量C用自变量推算因变量 D两个变量都是随机的15.在直线回归方程中( )A在两个变量中须确定自变量和因变量 B一个回归方程只能作一种推算C要求自变量是给定的,而因变量是随机的。

统计学第六章 抽样法

统计学第六章  抽样法
31
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80

x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数

概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计

总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

统计学 第六章 统计指数

统计学 第六章 统计指数
•不变价格事实上只是一段时间不变,随着经济增长和价格水平的变化,不 变价格也要不定期地变化。 •我国曾经使用过1952年、1957年、1965年、1970年、1980年、1990年和 2000年不变价格 •当不变价格发生变化时,采用两个不同时期的不变价格计算的工业总产出 进行对比,就要消除不变价格变动的影响。
K p
p1
q0
2
q1
p0
q0
q1 2
p1 q0 q1 p0 q0 q1
Kq
q1
p0
2
p1
q0
p0 p1 2
q1 p0 p1 q0 p0 p1
将例1资料带入公式,可得:
k p
p1q0 p0q0
p1q1 26120 38600 64720 108.59% p0q1 23800 35800 59600
在选择指数形式时,主要考虑指数的经济意义,还要考虑 实际编制工作的可能性及对指数分析性质的特殊要求。
(一)工业生产指数 编制过程:
首先,对各种工业产品分别制定相应的不变价格标准,记为P0 然后,逐项计算各种产品的不变价格产值,加总起来就得到全部工 业产品的不变价格总产值 最后将不同时期的不变价格总产值加以对比,就得到相应时期的工 业生产指数
与马埃公式一样,虽然从数量上不偏不倚,但缺乏经济意义,所 用资料较多,计算困难。
是对拉氏指数和帕氏指数直接进行平均(型交叉)的结果,公式 为:
kp
p1q0
p1q1
p0 q0
p0 q1
kq
q1 p0
q1 p1
q0 p0
q0 p1
将例1资料带入公式,可得:
k p
p1q0 p0q0k p

统计学第6章统计量及其抽样分布

统计学第6章统计量及其抽样分布

均值的标准差
3
0.43(年 )
X n 49
X ~N(10, 0.432)
_
P (X _9)1P (X _9)1P (X 109 10)
0.43 0.43
=1-Φ(-2.33)= Φ(2.33)=0.9901
整理ppt
12
练习题
某类产品的抗拉强度服从正态分布,平均 值为99.8公斤/平方厘米,标准差为5.48公斤/平 方厘米,从这个总体抽出一个容量为12的样本, 问这一样本的平均值介于98.8公斤/平方厘米和 100.9公斤/平方厘米之间的概率有多大。
1.从一个总体中随机抽出容量相同的各种样本, 从这些样本计算出的某统计量所有可能值的概 率分布,称为这个统计量的抽样分布。
2. 设X1,X2,…,Xn是取自总体X的样本,样本
均值
_
X
1 n
n i 1
Xi
,所有可能样本的均值
_
X
构成
的概率分布即为样本均值的抽样分布。
整理ppt
3
【例】设一个总体,含有4个元素(个体),即
第六章 统计量及其抽样分布
整理ppt
1
6.1 统计量
1. 统计量的形成
抽样
样本 构造函数
2. 统计量是样本X1,X2……Xn的一个函数 3. 统计量不依赖任何未知参数
4. 将一组样本的具体观测值代入统计量函 数,可以计算出一个具体的统计量值。
整理ppt
2
6.2 样本均值的抽样分布 和中心极限定理
第二个观察值
1
2
3
4
.3 P ( x )
1
1.0 1.5 2.0 2.5 .2
2
1.5 2.0 2.5 3.0

统计学第六章抽样调查

统计学第六章抽样调查

n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%

统计学6

统计学6

6 - 33
经济、管理类 基础课程
统计学
三、样本方差的分布
6 - 34
经济、管理类 基础课程
统计学
(一)样本方差的分布
设总体服从正态分布N 设总体服从正态分布N ~ (µ,σ2 ), X1,X2,… ,Xn为来自该正态总体的样本,则样本方差 为来自该正态总体的样本, s2 的分布为
(n −1)s
2
2. 3.
,则
Z=
X −µ
令 Y = Z 2 ,则 Y 服从自由度为1的χ2分布,即 服从自由度为1 分布,
σ
~ N(0,1)
Y ~ χ (1)
2
4.
当总体 X ~ N(µ,σ 2 ) ,从中抽取容量为n的样本,则 从中抽取容量为n的样本,
样 本 6 - 10
经济、管理类 基础课程
(三)抽样分布
(sampling distribution) distribution)
统计学
1. 样本统计量的概率分布 2. 是一种理论概率分布 3. 随机变量是 样本统计量
样本均值, 样本均值, 样本比例,样本方差等
4. 结果来自容量相同的所有可能样本 结果来自容量相同的所有可能样本 5. 提供了样本统计量长远我们稳定的信息,是进 行推断的理论基础,也是抽样推断科学性的重 要依据
总体分布、样本分布、抽样分布
三、渐进分布和近似分布
6-3
经济、管理类 基础课程
统计学
一、统计量
(一)统计量的概念 • 是样本的特征值 • 设X1 , X2 ,…, Xn是从总体中抽取的容量 为n的一个样本,如果由此样本构造一 个函数T 个函数T( X1 , X2 ,…, Xn ),不依赖于 任何未知参数,则称函数T 任何未知参数,则称函数T( X1 , X2 ,…, Xn )是一个统计量。

大学统计学 第6章 假设检验与方差分析

大学统计学 第6章 假设检验与方差分析
18
35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,

统计学课件第六章抽样调查PPT课件

统计学课件第六章抽样调查PPT课件

特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件

统计学课后习题答案第六章

统计学课后习题答案第六章

统计学课后习题答案第六章第六章统计学课后习题答案统计学是一门研究数据收集、分析和解释的学科。

无论是在科学研究、商业决策还是社会调查中,统计学都起着重要的作用。

在学习统计学的过程中,课后习题是巩固知识和提高技能的重要方式。

本文将为大家提供第六章统计学课后习题的答案,希望能够帮助大家更好地理解和应用统计学知识。

第一题:根据给定的数据集,计算平均数、中位数和众数。

解答:平均数是将所有数据相加,然后除以数据的个数。

中位数是将数据按照大小顺序排列,找到中间的数值。

众数是数据集中出现次数最多的数值。

第二题:给定一个样本数据集,计算方差和标准差。

解答:方差是每个数据点与平均数的差的平方的平均数。

标准差是方差的平方根。

第三题:根据给定的数据集,计算相关系数。

解答:相关系数是用来衡量两个变量之间的线性关系的强度和方向。

相关系数的取值范围是-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。

第四题:利用给定的数据集,进行假设检验。

解答:假设检验是用来判断一个假设是否成立的统计方法。

首先,我们提出一个原假设和备择假设。

然后,根据样本数据进行计算,得到一个统计量。

最后,根据统计量的取值和临界值进行判断,接受或拒绝原假设。

第五题:根据给定的数据集,进行回归分析。

解答:回归分析是用来研究两个或多个变量之间关系的统计方法。

通过建立一个数学模型,我们可以预测一个变量对另一个变量的影响。

回归分析可以帮助我们理解和解释变量之间的关系。

第六题:根据给定的数据集,进行抽样调查。

解答:抽样调查是从总体中选择一部分样本进行调查和研究的方法。

通过合理地选择样本,我们可以从样本中得出总体的特征和规律。

抽样调查可以帮助我们节省时间和成本,同时保证研究的可靠性和有效性。

通过以上的答案,我们可以看到统计学在数据分析和解释中的重要性。

掌握统计学知识和技能,可以帮助我们更好地理解和应用数据,从而做出准确的决策和预测。

希望以上答案能够对大家的学习和实践有所帮助。

统计学第六章抽样法

统计学第六章抽样法
分层多阶段抽样
在总体分层的基础上,再在各层内进行多阶段抽 样。
3
集群抽样
先将总体划分为若干个集群,再随机抽取部分集 群进行调查,适用于地理区域等自然形成的集群。
多阶段抽样优缺点
适用范围广
适用于总体单位分布广泛、数量众多 的情况。
抽样误差小
通过多阶段抽样可以减小抽样误差, 提高估计精度。
多阶段抽样优缺点
06
多阶段抽样
多阶段抽样原理
抽样单位划分
多阶段抽样中,首先将总体划分为若干个初级抽样单位,再从初级抽样单位中抽 取若干个二级抽样单位,以此类推,直至抽取最终样本。
逐级抽取
在每一阶段,都按照随机原则从上一级抽样单位中抽取下一级抽样单位,直至获 得最终样本。
多阶段抽样方法
1 2
PPS抽样
即“概率与规模成比例”的抽样方法,每个初级 抽样单位被抽中的概率与其规模大小成比例。
分层抽样优缺点
分层标志选择困难
选择合适的分层标志是分层抽样 的关键,选择不当可能导致分层
效果不佳。
层间差异影响
如果各层间差异较大,可能导致 样本对总体的代表性降低。
需要较多样本量
相对于简单随机抽样,分层抽样 通常需要较多的样本量才能达到
相同的精度要求。
05
整群抽样
整群抽样原理
以群为抽样单位
整群抽样是将总体划分为若干个互不重叠的群,然后以群为 抽样单位进行随机抽样。
等距抽样
系统抽样中最常用的一种方法,它是按照某 种顺序给总体中的各个体编号,然后随机地 抽取一个编号作为第一调查个体,其他的调 查个体则按照某种确定的规则“系统地”抽 取出来。
周期性
系统抽样中,样本的抽取具有周期性,即每 隔一定的间隔就抽取一个样本。

统计学 第6章 统计推断(1、2节)

统计学 第6章 统计推断(1、2节)

即,我们有95%的把握认为,该外资 企业员工平均每周加班时间为52.3小时 至57.7小时之间。
第六章 统计推断

总体成数(比例)
1、假定条件
的区间估计
对于试验结果只有两种情况的总体(二项 总体),且为大样本,即满足
np 5和n(1 - p) 5
2、使用正态分布 z 统计量
第六章 统计推断
第六章 统计推断
设 是总体 的一个参数, 是参数 2的 1 和 X 两个统计量,且 ,对给定的常 1 2 数 ,及任意的 1) , 有 , (0 则称随机区间 ) 1 P( 1 2 是臵信度(臵信水平)为 的臵信区间 1 1 , 2 (区间估计)。其中 分别为臵信下限和 1 和 2 臵信上限。
(比例)为: 225 因为是大样本,故得: p 500 45% p (1 p ) p (1 p ) p z 2 , p z 2 n n
即,我们有95%的把握认为,19岁以下的青少年上网比例 在40.64%至49.36%之间。
第六章 统计推断
在简单随机抽样条件下,样本均值和样本 比例的抽样误差: 样本均值的抽样误差
重复抽样:
x

n
2
不重复抽样:
x

当总体方差 未知时,可用样本方差 代替。
第六章 统计推断
N n ( ) n N 1
2
s
2

样本比例的抽样误差
重复抽样: 不重复抽样:
p
1
n
p


2
第六章 统计推断
、1

2
方式一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。





三、大样本二总体均值差的区间估计 第一总体的参数为μ1 ,σ12 第二总体的参数为μ2 ,σ22 现从两总体中独立的各抽取一个随机样本: 来自第一总体的样本:X1,S12 来自第二总体的样本:X2,S22 于是样本均值差X1-X2可作为总体均值差μ1 -μ2的点估计 值 若n1 ≥50,n2 ≥50,x1,x2趋向正态分布, X1-X2也趋向正 态分布 E( X1-X2)= μ1 -μ2 σ( X1-X2)= √σ12+ σ22 n1 n2




E( ^ P1-^ P2 )= P1- P2 σ( ^ P1-^ P2 )= √ P1(1-P1 ) +P2(1-P12) n1 n2 大样本总体成数差 P1- P2 的区间估计公式: P〔 (^ P1-^ P2 ) - zα/2σ(^ P1-^ P2 ) ﹤ μ1 -μ2 ﹤ (^ P1-^ P2 ) +zα/2σ(^ P1-^ P2 ) 〕= 1-α 当P1,P2未知时,可用样本成数^ P1,^ P2代 替



随机抽样

抽样方法
简单随机抽样 系统抽样 分层抽样 整群抽样 多段抽样



偶遇抽样 非随机抽样 定额抽样 判断抽样 雪球抽样 只有随机抽样可做统计推论。
第三节 参数的点估计




参数估计分两类:一是点估计,就是用样本计算出来 的一个数来估计未知参数。二是区间估计,是通过样 本计算出一个范围来对未知参数进行估计。 一、总体参数(均值与方差)的点估计公式 用样本均值作为总体均值的点估计值 X= 1∑Xi n 用样本方差作为总体方差的点估计值 S2= 1 ∑(Xi-X) 2= 1 [ ∑Xi2-(∑Xi) 2 ] n-1 n-1 n 其中X1 X2……X n是样本ξ1ξ2……ξn的观测值。 二、评价估计值的标准(无偏性、有效性、一致性)





一、大样本总体均值的区间估计 P(x-zα/2σ<μ <x+zα/2σ)=1-α √n √n σ是总体标准差,当σ未知时,用样本标准差s 代替。zα/2是正态分布双侧区间的分位点。 二、总体成数(二项总体参数p)的估计 二项分布中随机事件A发生的概率就是总体成 数。 ㈠总体成数p的点估计 用样本成数作为总体成数的点估计值: ^ p=m (n次独立实验中,A出现m次) n



因此大样本二总体均值差μ1 -μ2的区间估计公 式: p〔 (X1-X2) - zα/2σ(X1-X2) ﹤ μ1 -μ2 ﹤ (X1-X2) +zα/2σ(X1-X2) 〕= 1-α 当σ12和σ22未知时,可用样本方差S12和S22代 替






四、大样本二总体成数差的区间估计 如两个总体都属于定类变量, 设第一个总体的成数为P1,第二个总体的成数 为P2,现从两总体中独立各抽取一个随机样本: ∧ 第一总体的样本容量为n1,样本成数P1 ∧ 第二总体的样本容量为n2,样本成数 P2 ∧ ∧ 于是样本成数差P1- P2可作为总体间成数差P1P2的点估计值 当n1 P1 ≥5,n1 (1-P1 )≥ 5, n 2P2≥5,n ∧ ∧ P ∧)≥5, P1, P2趋向正态分布 , 2(1- ∧ 2 P1-P2也趋向正N(μ,σ2),但方差 σ2为未知: 这时我们用样本方差S2作为总体方差σ2的估计 值。根据数学推算,统计量 X-μ ~t(n-1) S/√n t分布图形是对称的,与正态分布图形相同, 但离散程度比标准正态分布要大, σt2=K/K-2。当K很大时(>30),就可用标准 正态分布来近似t分布。




㈢任意总体,大样本情况 根据中心极限定理,只要样本容量足够大,即 在大样本情况下,X的分布将接近正态分布。 若总体均值为μ,方差为σ2,当n ∞时, X-μ ~N(0,1) X-μ ~ N(0,1) S/√n σ/√n

这样,我们在社会现象的研究中,可以不考虑 总体的原分布如何,只要n足够大(n>50)时, X的分布将确定为一个近似的正态分布。 二、样本方差的分布


在一项社会学研究中,研究者运用随机抽样方 法抽取了1000个样本进行问卷调查,其中回 答“有乱扔垃圾习惯”的人数为560人,请在 95%的置信度下对研究总体中“有乱扔垃圾习 惯”的人数比例进行区间估计。( z0.05/2=1.96) (武大考研2005,17分) 从一所大学随机调查400名学生,得出他们的 平均年龄为20岁,标准差是2岁,求在95%的 置信度下全校学生平均年龄的置信区间。 ( z0.05/2=1.96) (南京大学2003年考研,10 分)
第五节 正态总体的区间估计


一、有关区间估计的几个概念 ㈠名词解释 对于参数的区间估计,在给出区间估计的同时,还必 须指出所给区间包含未知参数的概率是多少。 如:我们用^ Q作为未知参数Q的估计值,那么区间 (^Q-ε,^Q+ε)包含参数Q的概率为1-α,其中 (^Q-ε,^Q+ε)称为置信区间。区间的大小,反映 估计的准确性或精确性。1-α称为置信概率、置信度 或置信系数。它表示用置信区间估计的可靠性。α称 为显著性水平,表示用置信区间估计不可靠的概率。 显然,置信度与显著性水平之和为1。



㈡σ2为未知 X-μ ~t(0,1) s/√n P(-Tα/2 <T<Tα/2)=1- α P(-Tα/2 < X-μ <Tα/2 )=1- α S/√n 整理:(X-Tα/2 S,X+Tα/2 S) √n √n
第六节 大样本区间估计



中心极限定理:对于随机变量分布的任何形式, 只要n足够大, n个独立同分布的随机变量之 和或均值的分布都将近似服从正态分布。 由于中心极限定理,使我们在不知道总体分布 的情况下,可通过增加样本容量的办法,对总 体均值进行区间估计。 大样本一般取n≥50




三、统计量 从总体中抽取容量为n的样本,可看作n个独立同总体 分布的随机变量ξ1ξ2……ξn,那么随机变量的任何函 数f(ξ1ξ2……ξn)也是随机变量,我们把f(ξ1ξ2……ξn) 叫统计量。根据随机变量ξ1ξ2……ξn的观测值X1 X2……Xn计算得到的统计数字就是相应统计量的观测 值。统计量的分布又叫抽样分布。 参数值:总体值,是关于总体中某一变量的综合描述。 参数值是确定不变、唯一的,但通常是未知。 统计值:样本值,是关于样本中某一变量的综合描述。 统计值是变化的。 按习惯参数值常以希腊字母表示,统计值常以罗马字 母表示。
第六章 参数估计 第一节 统计推论


所谓统计推论就是根据局部资料(样本资料) 对总体的特征进行推断。 统计推论有两个方面的特点,一是由于局部来 源于总体,因此局部资料的特性在某种程度上 能反映总体的特性。另一方面由于社会资料的 随机性,即抽样的结果不是唯一的,使得一次 抽样结果不能恰好等于总体的结果,更何况总 体参数不知道。 统计推论的内容大致分两个部分:一是通过样 本对总体的未知参数进行估计,简称参数估计; 二是通过样本对总体的某种假设进行检验,简 称假设检验。


1、从任意分布的总体中反复不断抽取规模相 同且足够大量的样本,样本分布的 平均值会 ( )(中大,2008) A大于总体均值 B小于总体均值 C等于总体 均值 D因总体分布形态未知,故无法判断 2、参数值用于( ) A描述样本特征 B总体特征 C用于点估计或 区间估计 D描述样本和总体的关系 3、关于抽样分布的说法,哪个是错误的( ) A抽样分布的标准差等于总体标准差 B若样本 相当大,则抽样分布接近正态分布 C抽样分 布的均值等于总体均值 D 抽样分布是建立在 概率基础上的一种理论分布
第四节 抽样分布


样本均值和样本方差都是统计量,是随机变量, 对随机变量要研究它的数字特征(均值和方差) 和分布(抽样分布) F

-3se -2se
-se
m
se
2se 3se xi


一、样本均值的分布 ㈠总体分布为正态分布N(μ,σ2),且方差σ2为已知: X= 1∑ξi ~ N(μ,σ2) n n 两者分布形式和μ都是一样,只是方差不同。随着样本 容量n的增加,可以有效减少抽样分布的分散程度。正 如σ反映了总体随机变量ξ围绕μ的平均分散程度一样。 σx反映了统计量X围绕μ的分散程度,或说反映了抽样 均值与μ的平均误差水平。σx称做抽样均值的平均误差 或标准误差,σx与σ不同之处在于σ是总体的参数,是 唯一不变的数,而σx除了与总体σ有关外,还随着样本 容量而变化。 如果将X标准化 X-μ ~N(0,1) σ/√n


㈡置信区间与置信度之间的关系 P(^Q1<Q<^Q2)=1-α ^Q1,^Q2是统计量,是随着样本而变的随机变量。 对于不同的样本,区间是会变化的。对于一次抽样所 形成的样本,它的区间估计可能包含待估参数,也可 能不包含。1-α正是指出包含待估参数这个随机事件 的概率是多少。对于置信度,一般是根据实际情况预 先给定的。如置信度1-α取0.90,它表示如果独立重 复抽取很多样本,每次样本容量n保持不变,那么平 均而言,每100个样本,其中有90个样本算出的区间 估计是包含待估参数的。 在样本容量一定的情况下,置信区间和置信度是相互 制约的。置信度越大,则相应的置信区间也越宽。





二、正态总体均值的区间估计 ㈠ σ2为已知 X-μ ~N(0,1) σ/√n 对于μ的双侧置信区间 P(-Zα/2 <Z <zα/2)=1- α P(-Zα/2 < X-μ <zα/2 )=1- α σ/√n 整理:(X-Zα/2 σ,X+Zα/2 σ) √n √n
相关文档
最新文档