统计学原理第六章

合集下载

ZYQ的统计学原理-第六章统计指数

ZYQ的统计学原理-第六章统计指数

第六章统计指数在对社会经济现象进行对比分析时,通常有两种情况:一种是对单一事物的变动进行分析,例如:研究某种商品价格或销售量的变动,可以将不同时期的价格或者销售量的数值直接进行对比;另外一种则是对由许多计量单位、使用价值不同的事物所构成的复杂现象总体的某种特征进行综合对比,例如:研究多种商品的价格或者销售量的综合变动,此时,若采用简单的数量对比,将无法保证对比的结果具有实际经济意义!为了如实地反映他们的变动,人们转而求助于指数理论!第一节统计指数概述一、统计指数的概念统计指数(Index)的概念起源于18世纪中期的欧洲,距今只有200多年的历史。

最初的指数是指一种商品的现有价格与原来价格的对比,以此反映其价格变动的程度。

现在的指数,已经运用到我们经济生活的各个方面。

有些指数,如商品零售价格指数(Retail Price Index)、居民消费价格指数(Consumer Price Index)等,同人们的日常生活休憩相关;有些指数,如工业生产指数、股票价格指数(Stock Price Index)等,则直接影响人们的投资活动,成为社会经济的晴雨表。

1、广义的概念:——指一切说明社会经济现象数量变动或差异程度的相对数;例如:计划完成相对数、比较相对数、动态相对数等;2、狭义的概念:——指反映不能直接相加、对比的复杂社会经济现象综合变动程度的相对数;例如:某商场同时销售棉布、鞋帽和成衣等商品,由于这几种商品的性质不同、使用价值不同,故不能直接相加,对比其报告期与基期的销售量;又如:商品零售价格指数、居民消费价格指数、工业生产指数、股指等;3、狭义指数的特点:——相对性:复杂现象总体的某个变量在不同场合下综合对比所得的相对数;例如:不同时间上对比即得时间性指数、不同空间上对比即得空间性指数;——综合性:不是单一事物的变动,而是由多种事物构成的总体的综合变动;例如:股票价格指数是综合反映所有上市公司股票交易的价格变动;——平均性:狭义的指数所反映的总体变动只能是一种平均意义上的变动;例如:上海证券交易所综合指数当天与昨天相比,股票指数上涨了1.2%,表示平均来说上海证券交易所挂牌交易的上市公司平均股票价格今天比昨天上涨了1.2%,但有的上市公司上涨10%,也有的上市公司下跌了10%;二、统计指数的作用1、综合反映现象总体数量的变动方向和变动程度;1)百分比大于100%,则表示数量上升,具体大多少则表示上升的程度;2)百分比小于100%,则表示数量下降,具体小多少则表示下降的程度;例如:商品零售价格物价指数为100%,则说明多种商品零售物价总体变动呈上升状态,且上升了10%;2、对现象总体进行因素分析;1)复杂现象的总体,一般由多种因素构成,总体的变动是各构成因素变动综合影响的结果;例如:商品销售额=商品销售量单位商品价格;产品总成本=产品产量单位产品成本;原材料总费用=产品产量单位产品原材料消耗量单位原材料价格;2)可从相对数和绝对数两方面分析各因素对总体的影响方向和影响程度;3、研究现象的长期变动趋势;1)由连续编制的动态数列形成的指数数列,能反映现象的发展变化趋势;2)适合于对比分析有联系、性质不同的动态数列之间的变动关系;4、对经济现象进行综合评价和测定;例如:运用综合指数法评价和测定一个地区和单位经济效益的高低;利用平均指数法测定技术进步的程度及其在经济增长中的作用;利用指数法原理建立对国民经济发展变动的评价和预警系统等;三、统计指数的种类1、按照指数所研究对象的范围划分:1)个体指数——反映单一事物数量变动的相对数,属于广义指数,将某一指标的报告期数值与基期数值直接对比而得;例如:反映某一商品价格变动的个体价格指数反映某一产品产量变动的个体产量指数式中,k代表个体指数,p代表商品价格,q代表产品产量,下标1代表报告期,下标0代表基期;2)总指数——反映多种事物构成的复杂现象总体综合数量变动的相对数;例如:综合反映多种商品价格平均变动程度的价格总指数;综合反映多种产品产量平均变动程度的产量总指数;3)类指数——反映总体中某一类或某一组现象数量变动的相对数;本质上也是总指数,只不过它比总指数所包含事物的范围小而已;例如:零售商品物价总指数可分为粮食类价格指数、服装类价格指数等;工业总产量总指数可分为重工业类产量指数和轻工业类产量指数等;2、按照指数化指标的性质划分:所谓指数化指标,是指数所要测定其变动的统计指标;1)数量指标指数(Quantity Index Number)——指数化指标为数量指标;用来说明总体规模变动情况的指数,例如,工业产品物量指数、商品销售量指数、职工人数指数等;2)质量指标指数(Quality Index Number)——指数化指标为质量指标;用来说明总体内涵数量变动情况的指数,例如,价格指数、单位产品成本指数、劳动生产率指数、工资水平指数等;3、按照指数所反映现象的对比性质不同划分:1)时间性指数——动态指数,反映现象在时间上动态变化的指数;按照计算过程中采用的基期不同,可分为以下两类:定基指数——连续编制的指数数列中各个指数以固定时期为基期;环比指数——连续编制的指数数列中各个指数以上一期为基期;2)空间性指数——静态指数,包括以下两类:反映同一时期不同空间指标值变动而形成的指数;反映同一时期的实际与计划指标值变动的指数,即计划完成指数;4、按照总指数的计算与编制方法划分:1)综合指数——两个有联系的总量指标对比所得的相对数;例如:销售额指数、产品产量指数、GDP总指数等;2)平均指数——用加权平均的方法计算出来的指数;所掌握的资料不全时,借助个体指数进行加权平均计算;3)平均指标对比指数——两个加权算术平均指标对比所得的指数;例如:总平均工资的可变构成指数、固定构成指数、结构影响指数等;本书将以各种数量指标和质量指标为例,着重介绍综合指数、平均指数、平均指标对比指数的编制方法以及其在统计分析中的作用!第二节综合指数一、综合指数编制的基本原理总指数的基本计算方法有综合指数法和平均指数法两种,习惯上把这两种方法编制的总指数称为综合指数和平均指数;综合指数(Aggregative Index Number)是通过对两个时期不同、范围相同的多要素现象同度量综合之后,进行总体数量对比得出的总指数;综合指数的计算特点就是:先综合,后对比!然而现象总体各个个体由于使用价值不同、计量单位不同,所以其数量表现不能直接加总而对比,这种现象叫做不同度量。

统计学原理-第六章 抽样调查(复旦大学第六版)

统计学原理-第六章  抽样调查(复旦大学第六版)
全体。其单位数用N来表示。
2.样本总体:简称样本,是从全及总体中随机
抽取出来,代表全及总体部分单 位的集合体。单位数用n表示。
5
二.全及指标和抽样指标
(一)全及指标
X 总体平均数: X N 总体成数:P
2
XF 或X F Q=
2 2
N1 N N
(X-X) 总体方差: = 总体标准差:= (X-X)
(一)考虑顺序的不重复抽样数目
N! A N ( N 1)(N 2) ( N n 1) ( N n)! 4 3 2 1 2 例如A4 12 2 1
n N
(二)考虑顺序的重复抽样数目
B N
n N 2 4
n 2
例如 B 4 16
10
(三)不考虑顺序的不重复抽样数目
Ex X
28

2、一致性 当抽样单位数充分大时,抽样指标和未知 的总体指标之间的绝对离差为任意小的可能性 也趋于必然性。
x X 任意小
3、有效性
即用抽样指标估计总体指标,要求作为优良估 计量方差应该比其他估计量的方差小。

2
x X f
2
f

2
x X f
x
x E ( x)
2
18
说明:根据数理统计理论,在重复抽样条件下, 抽样平均误差与全及总体的标准差成正比例关系。 与抽样总体单位平方根成反比关系。
19
在不重复抽样情况下,抽样平均误差计算公式如下:
x x

N n 250 4-2 ( )= ( ) =9.13(件) n N 1 2 4-1
2
N
X X F 或 F X X F 或 F

统计学原理——统计指数

统计学原理——统计指数
举例: •多种商品的价格综合指数。 •多种产品的产量综合指数。
指数化因素 指在指数分析中被研究的指标
同度量因素
指把不同度量的现象过渡成可以同度量的媒
介因素,同时起到同度量 和权数 的作用
指数化因素
Iq
q1 p0 q0 p0
I p
p1 q1 p0 q1
同度量因素
I p
p1q p0q
拉氏公式(Laspeyres) 帕氏公式(Paasche)
2.从价格综合指数(相对数)看,三种产品的价格报告期 比基期综合上涨了3.82%;或者说由于价格上涨使总产 值增加了3.82%。
3.从绝对差额(绝对数)看,由于价格的上涨使总产值增 加了6万元。
**价格综合指数的优点
不仅说明多种产品价格综合变动的相对程度, 而且还从绝对量上说明了由于价格的变动对总 产值产生的影响。
20
60
61.2
61.2
丙 件 8 000 6 000 110 100
88
60
66
合计 — —



173
163.2 157.2
解题步骤
(一)三种产品的个体价格指数
甲产品的个体价格指数:
KP
P1 P0
70 50
140.00%
乙产品的个体价格指数:
KP
P1 P0
20 20
100.00%
丙产品的个体价格指数:
104.8
41.92
90.0
54.00
110.5
5.53
116.9
56.11
111.2
30.1
100.1
4.00
95.0
9.5
8

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)

统计学原理第六章 统计指数_OK

统计学原理第六章 统计指数_OK

2021/7/22
28
其他权数形式的综合指数的编制
在指数编制理论的发展和实践过程中,除了拉斯贝尔和派许 提出了以基期和报告期为权数以外,还有不少统计学家曾提出 或采用过其他形式的权数计算总指数的综合形式。
2021/7/22
29
(1) 采用平均权数。即在研究数量指标指数时,其同度量 因素质量指标以拉式和派式指数分析法中的基期和报告期 的质量指标的简单算数平均数为权数;而在研究质量指标指 数时,其同度量因素数量指标也以拉式和派式指数分析法中 的基期和报告期的数量指标的简单算术平均数为权数。
2021/7/22
20
(1) 采用基期权数。即把同度量因素固定在基期,以基期的 数量指标作为权数。则销售单价的综合指数公式为:
这个指数公式是由德国经济学家拉斯贝尔(Laspeyres)在 1864年提出的,简称拉氏指数公式。从以上公式可以看出:p1q0 为基期的销售量(数量指标)按报告期销售单价(质量指标)计算 所得的销售额,分母∑p0q0是基期的销售额。
2021/7/22
5
指数分析法在实际工作中有着极其重要的作用
1) 综合反映复杂的社会经济现象总体的变动方向和程度 2) 分析和测定现象的各个构成因素对现象发展变动的影响程度和
绝对效果 3) 研究事物在长时间内的变动趋势
2021/7/22
6
6.1.3 统计指数的种类
由于划分的标准不同,统计指数有很多种类: 按照研究对象的范围不同,可分为个体指数和总指数
2021/7/22
16
从上表可知,可以编制三个总指数,即销售量总指数、价格 总指数和销售额总指数。
在分析该商店三种商品的销售额变动时,只要把报告期的 销售额与基期销售额直接进行对比。

统计学第六章抽样调查

统计学第六章抽样调查

n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%

大学统计学 第6章 假设检验与方差分析

大学统计学 第6章 假设检验与方差分析
18
35%
16
30%
14
12
25%
10
20%
8
`
15%
6
10%
4
2
5%
0
0%
50-60
70-80
90-100
统计学导论
第六章 假设检验与方差分析
第一节 假设检验的基本原理 第二节 总体均值的假设检验 第三节 总体比例的假设检验 第四节 单因子方差分析 第五节 双因子方差分析 第六节 Excel在假设检验与方差分析
记为 H1:。150
整理课件
6-7
三、检验统计量
所谓检验统计量,就是根据所抽取的样本计 算的用于检验原假设是否成立的随机变量。
检验统计量中应当含有所要检验的总体参数, 以便在“总体参数等于某数值”的假定下研 究样本统计量的观测结果。
检验统计量还应该在“H0成立”的前提下有 已知的分布,从而便于计算出现某种特定的 观测结果的概率。
为 =x 149.8克,样本标准差s=0.872克。问该
生产线的装袋净重的期望值是否为150克(即 问生产线是否处于控制状态)?
整理课件
6-4
所谓假设检验,就是事先对总体的参数 或总体分布形式做出一个假设,然后利用抽 取的样本信息来判断这个假设(原假设)是 否合理,即判断总体的真实情况与原假设是 否存在显著的系统性差异,所以假设检验又 被称为显著性检验。
量所得结果落入接受域的概率。
问题,对于 和 大小的选择有
不同的考虑。例如,在例 6-1 中,如果检验者站在卖方 的立场上,他较为关心的是不要犯第一类错误,即不 要发生产品本来合格却被错误地拒收这样的事情,这
时, 要较小。反之,如果检验者站在买者的立场上,

统计学原理第六章动态数列剖析

统计学原理第六章动态数列剖析
列与变量数列( ) A、都是根据时间顺序排列的 B、都是根据变量值大小排列的 C、前者是根据变量值大小排列的,后者是根据 时间顺序排列的 D、前者是根据时间顺序排列的,后者是根据变 量值大小排列的 答案:D
(四)指标的计算方法和计量单位方面的可 比性

指标的计算方法和计量单位方面应该一致。各个指 标的计算方法如果不一致,不便于动态对比。指标 数值的计量单位也应该一致,否则也不可比。
四、时间数列分析的内容体系


对时间数列的分析基本上可以分为三个层次:
第一个层次就是通过计算一些基本分析指标对事物 的发展过程进行一般的统计描述; 第二个层次就是通过对时间数列的结构分析揭示事 物发展变化的基本趋势和基本规律; 第三个层次就是在对事物发展变化的趋势及其规律 有所认识的基础上,通过建立时间数列模型来对事 物的未来进行预测。

时点数列的特点:
(1)时点数列中各项指标值反映现象在一定时点上 的发展状况; (2)各项指标值只能按时点所表示的瞬间进行不连 续登记,相加无实际经济意义,因而不能直接相 加; (3)各项指标值的大小,与其时点间隔的长短没有 直接关系。
(二)相对数时间数列
相对数时间数列:是指由一系列同类的相对指标数值 所构成的时间数列。它可以反映社会经济现象数量对 比关系的发展过程。它包括:
这类动态数列可以揭示研究对象一般水平的发展趋 势和发展规律。平均数时间数列中各项水平数值也 不能直接加总。

三、编制时间数列的原则

编制时间数列的目的,在于通过数列中各项指标值 对比,说明社会经济现象的发展过程和规律性。因 此,为了保证同一时间数列中指标值的可比性,即 数列中前后各项指标值可以相互比较,应遵守以下 几个基本编制原则:

统计学原理06-第6章时间数列分析(新)

统计学原理06-第6章时间数列分析(新)

点或连续时期上测量的观测值的集合。 点或连续时期上测量的观测值的集合。
年份 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 国内生产总值 亿元) (亿元) 4038.2 4517.8 4862.4 5294.7 5934.5 7171.0 8964.4 10202.2 11962.5 14928.3 年份 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 国内生产总值 亿元) (亿元) 16909.2 18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74462.6 79395.7
平均发展水平 时期 数列 序 时 总量指标 平 均 方 法 连续 时点 间断 时点 简单算术平均 间隔相等 简单算术平均 间隔不等 加权算术平均 间隔相等 两次简单平均 间隔不等 先简单后加权
时点 数列
相对指标、 视情况选用:先平均再相除、 相对指标、 视情况选用:先平均再相除、先加总再 平均指标 相除、加权算术平均、加权调和平均等 相除、加权算术平均、
趋势性数列
指数( 指数 ( % )
平稳性数列
79
80
81
82
83
85
84
86
87
88
89
90
91
92
93
95
94
96
97
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19

统计学原理

统计学原理

第一章绪论一、什么是统计三种涵义:统计工作、统计资料和统计学两重关系:统计工作是统计实践活动,统计资料是统计工作的成果;统计学是统计实践经验的理论概括和深化,它们是理论与实践的关系。

1、统计工作:调查研究。

资料收集、整理和分析。

2、统计资料:工作成果。

包括统计数据和分析报告。

3、统计学:研究如何搜集、整理、分析数据资料的一门方法论科学。

二、统计学的对象和特点(一)从研究对象看,它研究客观事物总体数量方面(数量特征和数量关系),其对象具有:①总体性:统计研究虽然是从个别入手,对个别单位的具体事实进行观察研究,但其目的是为了达到认识总体数量特征。

(个体与总体)②数量性:是统计学研究对象的基本特点。

统计数据是客观事物量的反映,通过数据以测度事物的类型、量的顺序、量的大小和量的关系。

(定量与定性)③变异性:统计研究的是同质总体的数量特征,其前提是各单位的特征表现存在差异,而这些差异不是由某些特定的原因事先给定的。

(同质与变异)(二)从方法核心看,它强调对客观总体进行大量观察,通过归纳推理以获得总体数量方面的综合性认识。

大量观察法统计分组法相关分析法抽样推断法(三)从学科体系看,它是一门多科性的学科“家族”。

第三节统计学的基本范畴总体单位:组成总体的各个单位(或元素),是各项统计数字的原始承担者。

总体既可以指客观事物本身,也可以是反映该事物某重要数量特征的一组数据的集合。

该集合中的每个元素就是总体单位。

无限总体:含无限多个单位。

有限总体:含有限个单位。

样本定义:是从总体中随机抽取部分单位所构成的集合体。

(一)标志1、定义总体单位的属性、特征的名称。

(单位是标志的承担者)(一)指标1、定义及构成要素⏹综合反映总体数量特征的概念和数值。

⏹指标 = 指标名称 + 指标数值时期指标(一段时期累计总量及据此计算的相对、平均指标)时点指标(瞬间的总量及据此计算的相对、平均指标)①数量指标(外延指标): 它是说明总体外延范围大小的统计指标。

统计学课件及习题的答案06第六章 时间数列分析

统计学课件及习题的答案06第六章  时间数列分析
★年距增长量=报告年某期水平—上年同期水平
四、平均增长量
平均增长量:是某一现象各逐期增长量的序时平
均数,反映现象在较长一段时期 内 平 量。均增 逐 逐 长 增减期 期 量 变化增 增 的一般长 长 水平累 量 量 。又计 n 项 之 叫递增 增数 和长
【教学资料】河南1954年总耕地面积9062千公顷,到2019年耕地面积 减少至8080千公顷,平均每年减少18.9千公顷,人均耕地也由1954年 的0.2公顷减少到2019年的0.08公顷,也低于全国人均耕地面积0.1公顷 的平均水平。。
动态 平均 指标
四、时间数列的编制原则
编制时间数列应遵守的基本原则:可比性。表现在:
(一)时间上要可比 (二)总体范围要可比 (三)指标的经济内容要可比 (四)计算方法、计算价格和计量单位上要可比
第二节 时间数列的水平分析指标
主要内容 ★ 发展水平 ☆ 平均发展水平 ★ 增长量 ☆ 平均增长量
一、发展水平
时间 1月初 人数 100
某企业职工人数资料
5月初
8月初
160
200
12月末 180
1 010 64 0 3 0 1 620 03 0 3 0 2 010 85 0 30101064016200302010850
a 2
2
2
2
2
2
4 3 0 3 3 0 5 30
第三节 时间数列的速度分析指标
本节内容
发展速度和增长速度 平均速度(平均发展速度和平均增长速度) 计算和运用速度指标应注意的问题
一、发展速度
发展速度:说明现象发展变动的相对程度。其值可 大于、等于或小于1。基本公式为:
按对比的 基期不同

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。

经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。

统计学第六章方差分析

统计学第六章方差分析
第27页,共55页。
总离差平方和=组间离差平方和+组内离差平方和
方差的分解
组间方差反映出不同的因子对样本波动的影响;组内方差则是不考虑组间方差的纯随机影响。
如果组间方差明显高于组内方差,说明样本数据波动的主要来源是组间方差,因子是引起波动的主要原因,可认为因子对实验的结果存在显著的影响 ;
第28页,共55页。
X4
第24页,共55页。
如果备择假设成立,即H1: (i=1,2,3,4)不全相等
– 至少有一个总体的均值是不同的
– 有系统误差
Xi
这意味着四个样本分别来自均值不同的四个正态总体 。
第25页,共55页。
f(X)
X
X1 X2 X3
X4
第26页,共55页。
方差的分解 样本数据的波动又两个来源:一个是随机波动;一个是因子影响。样本数据的波动,可通过离差平方和来反映。这个离差平 方和可分解为组间方差与组内方差两部份。即
算术均值
x1 x...2....
x3
方差
S12 S22
.......
Sr2
si2ni1 1jn i1
2
xijxi
(i1,2, ,r)
第37页,共55页。
SST是全部观察值 与总平均值的离差平方和,反映全部观察值的离散状况。 其计算公式为:
r n
2
SST
xij X
i1 j1
SST反映了全部数据总的误差程度。
样本均值越不同,我们推断总体均值不同的证据就越充分。
第22页,共55页。
• 如果原假设成立,即H0: = = • 四种颜色饮料销售的均值都相等
– 没有系统误差

这意味着每个样本都来自均值为 、方差为2的同一正态总体

统计学原理抽样调查

统计学原理抽样调查
第六章 抽样调查
第一节 抽样调查的意义
一、抽样调查的概念
一般所讲的抽样调查,即指狭义的抽样调
查(随机抽样):按照随机原则从总体中抽取 一部分单位进行观察,并运用数理统计的原 理,以被抽取的那部分单位的数量特征为代 表,对总体作出数量上的推断分析。
二、抽样调查的特点
(一)抽样调查的目的是由部分来推断整体。
(三)抽样平均误差计算实例(p270-271)

五户家庭三月份购买某商品的支出: 10元,20元,30元,40元,50元
X 30元 现从五户中抽取二户作调查, 如果为重复抽样(考虑顺序) 52=25(种) 排列组合如下:
抽样平均误差
x
2
n

N N
n 1


2
n
1
n N


n N
很小时,1
n N

接近于1,n2

N N
n 1

2 很接近。
n
四、抽样平均误差的计算
(二)抽样成数的抽样平均误差
重复抽样条件下抽样成数的抽样平均误差
抽样平均误差 p
(三)统计抽样过程(图6-1,p255)
所谓推断,就是用抽样指标来推断全及指标。 一是用抽样平均数 x推断全及平均数 X,从而推断 总体标志总量 二是用抽样成数p推断全及成数P,从而推断总体 单位总量
三、抽样方法和样本可能数目
抽样方法
根据取样的方式不同,抽样方式分为:重复抽样和不重复抽样。
根据对样本的要求不同,抽样方式分为:考虑顺序抽样和不考 虑顺序抽样。
第二节 抽样调查的基本概念及理论依据
一、全及总体和抽样总体
(一) 全及总体,简称总体

统计学原理 第六章 随堂练习题 (1)

统计学原理 第六章 随堂练习题 (1)


2
答案:
16.(2) 17.(1)
18.若总体服从正态分布,且总体方差已知,则通常选用统 计量( )对总体平均数进行检验。
(1)
Z x X0 S n
(2)
Z
x X0

n
x X0 x X0 t t (3) (4) S n n 19.矿砂的5个样品中,测得其含铜量均值为
(
)
( )
10.假设检验和区间估计之间没有必然的联系。
答案: 6. × 7. √ 8. × 9. √ 10. ×
答案:
5.(4)
6.(3)
7.纯随机抽样(重复)的平均误差取决于( )。 (1)样本单位数 (2)总体方差 (3)样本单位数和样本单位数占总体的比重 (4)样本单位数和总体方差
N n 8.抽样平均误差公式中, N 1 这个因子总是( (1)大于1 (2)小于1 (3)等于1 (4)唯一确定值
变异程度的大小和抽样误差无关。 ( ) 7.正态分布总体有两个参数,一个是均值(期望值) X,一个 是方差 2 ,这两个参数确定以后正态分布也就确定了。 ( ) 8.原假设的接受与否,与选择的检验统计量有关,与 (显著
水平)无关。
( )
9.单侧检验中,由于所提出的原假设不同,可分为左侧检验
和右侧检验。
( x x)
n
2
,这是( )。
答案:
3.(2)
4.(1)
5.抽样极限误差是指抽样指标和总体指标之间( (1)抽样误差的平均数 (2)抽样误差的标准差 (3)抽样误差的可靠程度 (4)抽样误差的最大可能范围
)。
6.抽样误差的定义是( )。 (1)抽样指标和总体指标之间抽样误差的可能范围 (2)抽样指标和总体指标之间抽样误差的可能程度 (3)样本指标与所要估计的总体指标之间数量上的差别 (4)抽样平均数的标准差

大学课程《统计学原理》PPT课件:第六章 平均指标与标志变异指标

大学课程《统计学原理》PPT课件:第六章 平均指标与标志变异指标

二、标志变异的测度
(一)极差 (二)四分位差 (三)平均差 (四)方差和标准差 (五)是非标志的标准差 (六)变异系数
第三节 分布的偏度和峰度
一、偏度
偏度是用于衡量分布的不对称程度或偏 斜程度的指标。如果用矩法方式测定,偏 度指标α是变量的三阶中心动差除以标 准差三次方。
图6-5 偏度
第三节 分布的偏度和峰度
二、峰度
峰度是用于衡量分布的集中程度或分布曲 线的尖峭程度的指标。
图6-6 峰度
第四节 运用平均指标的原则
一、总体各单位必须是同质的
在统计研究中之所以需要计算平均数, 是因为总体的各个单位在数量标志上 存在着差异,通过平均,它们之间个别的、 偶然的差异可以相互抵消,从而反映出 整个总体的特征。
第六章 平均指标与标志变 异指标
目录
1 平均指标 2 标志变异指标——分布的离中趋势 3 分布的偏度和峰度 4 运用平均指标的原则
第一节 平均指标
一、平均指标概述
(一)平均指标的含义
在统计总体中,各个统计单位有表明其 属性和特征的标志,但这些标志在各统 计单位中的表现往往是不同的。
平均指标是将总体各单位标志值的差 异抽象化,反映总体在具体条件下各单 位标志值所达到的一般水平。
第一节 平均指标
(二)平均指标的作用
1.反映总体各单位变量分布的集中趋势 和一般水平
2.比较同类现象在不同单位的发展水平
3.比较同类现象在不同时期的发展变化 趋势或规律
4.分析现象之间的依存关系
(三)平均指标的分类
根据设置平均指标的方法的不同,可以将 平均指标划分为数值平均数和位置平均 数。
数量关系的经验公式为:算术平均数x和 众数Mo的距离约等于算术平均数x与中 位数Me距离的3倍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般平均数:是将总体各单位同一时间的变量值 差异抽象化,用以反映总体在具体历史条件下的一 般水平,不体现时间的变动,又称静态平均数。
1、总量指标动态数列计算序时平均数 按时期数列计算: (采用简单算术平均法)
a a1 a2 ...... an
a
n
n
a 代表序时平均数
a 代表各期发展水平
现象变动趋势分析就是要把动态数列受各类因 素的影响状况分别测定出来,搞清研究对象发 展变换的原因及其规律,为预测未来和决策提 供依据。
二、长期趋势的测定:
1、定义: 2、测定长期趋势的方法:时距扩大法、移动平均法、数
学模型法 • 时距扩大法:是把原有动态数列中各时期资料加以合
并,扩大每段计算所包括的时间,得出较长时距的新 动态数列,以消除由于时距较短受偶然因素影响所引 起的波动,清楚地显示现象变动的趋势和方向。 • 移动平均法:是采用逐期递推移动的方法计算一系列 扩大时距的序时平均数,并以这一系列移动平均作为 对应时期的趋势值。 • 数学模型法:用适当的数学模型对动态数列配合一个 方程式,据以计算各期的趋势值。
增长1%的绝对值:是以绝对增长量除以相应的用百分数 表现的增长速度,即前期水平的1%
ai ai1
ai1
ai ai1
1
100
100
2、要把平均速度指标与动态数列水平指标结合起来
§4、现象变动的趋势分析
一、现象变动趋势分析的意义:
影响动态数列各项发展水平变化的因素 1、长期趋势:指现象在一段较长时间内,由于普遍的、
联系。
2、相对指标动态数列:把一系列同类相对指标按时间先后 顺序排列而形成的时间数列
3、平均指标动态数列:把一系列平均指标按时间先后顺序 排列形成的动态数列
三、编制动态数列的原则
1、目的:是要通过对数列中各时期指标值的比较,来研究 社会经济现象的发展变化及其规律。
2、编制原则: • 时间长短应该前后一致 • 总体范围应该统一 • 计算方法应该统一 • 经济内容要统一
一、动态数列的意义:
1、动态是指社会经济现象在时间上的发展和运动的过程 2、动态分析就是根据历史资料,应用统计方法来研究社
会经济现象数量方面的变化发展过程,认识它的发展 规律并预见它的发展趋势。 3、时间数列指社会经济现象在不同时间上的系列指标值 按时间先后顺序加以排列后形成的数列,又称时间数 列。 时间数列组成:一是反映时间顺序变化的数列,二是反 映各个时间下指标值变化的数列。
二、时间数列的种类
按指标表现形式的不同分为总量指标、相对指标、平均 指标动态数列
1、总量指标动态数列: 把总量指标在不同时间上的数值按时间先后顺序排列 形成总量指标动态数列。 根据总量指标反映社会经济现象性质的不同,又分时期 指标、时点指标 时期数列:在总量指标动态数列中,如果每一指标是反 映某现象在一段时间发展过程的总量称时期数列
a0
a1
an1
环比增长速度的连乘积不等于定基增长速度
四、平均发展速度和平均增长速度
1、平均发展速度和平均增长速度统称平均速度,是指各 个时期环比速度的平均数,说明社会经济现象在较长 时期内速度变化的平均速度。
平均发展速度表示现象逐期发展的平均速度 平均增长速度则是反映现象递增的平均速度 2、平均增长速度=平均发展速度-1
持续的、决定性的基本因素的作用,使发展水平沿着 一个方向,逐渐向上或向下变动的趋势。 2、季节变动:指现象受季节的影响而发生的变动,其变 动的特点是:在一年或更短的时间内随着时序的更换, 使现象呈周期重复的变化。
3、循环变动:指现象发生周期比较长的涨落起伏 的变动
4、不规则变动:指现象除了受以上各种变动的影 响以外,还受临时的,偶然因素或不明原因而 引起的非周期性、非趋势性的随机变动。
an
f n 1
fi
f
a — 各指标值.........f —时间间隔长度
2、相对指标动态数列或平均指标动态数列计算序 时平均数
c a b
c — 代表相对指标动态数列或平均指标动态数列序时平均数 a — 代表作为分子的动态数列序时平均数 b — 代表作为分母的动态数列序时平均数
§3、现象发展的速度指标
a0
an a0
a
因为定基发展速度等于环比发展速度的连乘积
a0x1 a0x1x2 ....... a0x1x2...xn a
用平均值代替各期环比发展速度:
2
n
a0 (x x ...... x ) a
y
a
a0
y—定基发展速度
五、速度与水平指标的结合运用
1、要把发展速度和增长速度同隐藏在其后的绝对量—— 发展水平和增长量结合起来
第六章 时间数列分析
本章详细讲述了时间数列的编制方法和分析方 法。通过本章的学习,应了解动态数列的概念、 种类及编制原则,熟练掌握动态数列的各项分 析指标及计算方法,并能结合实际资料进行应 用。
§1、时间数列的意义和种类 §2、现象发展的水平指标 §3、现象发展的速度指标 §4、现象变动的趋势分析
§1、动态数列的意义和种类
1、增长速度是反映现象数量增长方向和程度的动态相对 指标,由增长量对比基期水平而得
2、公式:
增长速度
报告期水平 基期水平 基期水平
增长量 基期水平
增长速度 发展速度 1
3、定基增长速度:定基发展速度1
a1 1、a2 1..............an 1
a0
a0
a0
环比增长速度:环比发展速度1
a1 1、a2 1.............. an 1
平均发展速度总是正值,而平均增长速度可为正值 也可为负值
3、计算平均发展速度的方法: • 几何平均法:
1)、x n x1 x2 x3 ...... xn n x x 平均发展速度.....x 各年环比发展速度 n 环比发展速度的项数.... 连乘符号
2)、由于定基发展速度等于各环比发展速度的连乘积 x n an
a1 、a2 、a3 ......... an
a0 a1 a2
an1
an a1 a2 a3 ......... an
a0 a0 a1 a2
an1
二、增长量
1、增长量是以绝对数形式表示的速度分析指标(称现象 发展的绝对速度)
2、公式:增长量=报告期水平-基期水平 3、累积增长量:按固定的基期水平计算的增长量
a1-a0、a2-a0……..an-a0
逐期增长量:以前一期水平为基期计算的增长量
a1 a0、a2 a1.......a. n an1
an a0 (a1 a0 ) (a2 a1) ......(an an1)
平均增长量
逐期增长量之和 逐期增长量个数
累积增长量 逐期增长量个数
三、增长速度
特点: ①、数列具有连续统计的特点 ②、数列中各个指标的数值可以相加 ③、数列中各个指标值大小与所包括时期长短有直接关
系。 时点数列:在总量动态数列中,若每一个指标值所反
映的是现象在某一时刻上的总量,称时点数列。 特点: ①数列不具有连续统计的特点 ②数列中各个指标数值不具有可加性 ③数列中每个指标值的大小与其时间间隔长短没有直接
最初水平—动态数列中第一项指标值,用a0表示 最末水平—动态数列中最后一项指标值,用an表示 报告期水平和基期水平 用符号表示:a0、a1、a2、a3……an
二、平均发展水平
动态平均数(序时平均数):平均发展水平所平 均的是现象总体在不同时期上的数量表现,从动态 上说明其在某一时期内发展的一般水平。
§2、时间数列的的水平指标分析
动态分析:现象发展的水平分析、现象发展的速度分析。 水平分析是速度分析的基础,速度分析是水平分析的深入 和继续。
一、发展水平
1、定义:是动态数列中的每一项具体指标数值,又称发展 量,它反映社会经济现象在各个时期所达到的规模和发 展的速度。(可以是总量指标,也可以是相对指标或平 均指标)
n 代表时期项数
按时点数列计算 ①、以天为间隔的连续时点数列:
a a .....a. —时点指标值、n — 天数
n
a
af f
.....a.

变动时的指标值
f — 资料持续不变的时间长度
②间断时点数列
当时点数列间隔相等,采用“首末折半法”计算:
a
ai fi
1 2
(a1
a2
)
f1
1 2
(a2
a0
3)、一段时期的定基发展速度为现象总速度,用R表示
xn R
4)、如果现象发展过程为几个时期,又具有各时期平 均发展速度,求全过程平均发展速度,
x f xf
•方程式法:又叫代数平均法或累计法,它是以各期发展 水平总和与基期水平之比为基础来计算的
a0
a1 a0
a0
a2 a0
.....
三、季节变动的测定
1、目的:在于掌握季节变动的周期、数量界限 及其规律,以便预测未来,及时采取措施,克 服它对人们经济生活所导致的不良影响,更好 地组织生产和销售,提高经济效益和安排好人 民生活。 2、主要方法:计算季节比率(按月平均法、趋 势剔除法)
a3 ) f2
...... 1 2Fra bibliotek(an1
an
)
f
n1
fi
f1 f2 ....... fn1
当f1
f2
.....
f

n
a
1 2
a1
a2
....
an1
1 2
an
n 1
n — 动态数列的项数
当时点数列间隔不相等时:
a
ai fi
a1 a2 2
f1
a2
2
a3
f2
相关文档
最新文档